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Hepatitis C virus (HCV) infection is the leading cause of chronic liver disease that currently affects at least
170 million people worldwide. Although significant efforts have been focused on discovering inhibitors of a
viral polymerase (NS5B) or protease (NS3), strategies to cure HCV infection have been hampered by the
limited therapeutic target proteins. Thus, discovery of a novel target remains a major challenge. Here, we
report a method that combines transcriptome expression analysis with unbiased proteome reactivity
profiling to identify novel host cell response factors in HCV infection. A chemical probe for non-directed
proteomic profiling was selected based on genome-wide transcriptome expression analysis after HCV
infection, which revealed noticeable alterations related to disulfide bond metabolism. On the basis of this
result, we screened the proteome reactivity using chemical probes containing thiol-reactive functional
groups and discovered a unique labeling profile in HCV-infected cells. A subsequent quantitative chemical
proteomic mapping study led to the identification of a target protein, T-plastin (PLST), and its regulation of
HCV replication. Our approach demonstrates both a straightforward strategy for selecting chemical probes
to discriminate disease states using a model system and its application for proteome reactivity profiling for
novel biomarker discovery.

and almost 80% of patients suffer a persistent chronic infection that results in fibrosis, cirrhosis, and

hepatocellular carcinoma.' The currently available treatments use a combination of an HCV protease
inhibitor with ribavirin and PEGylated alpha interferon to disrupt virus replication, but the therapy is effective in
only half of the people infected with HCV genotype 1, and even in those patients the efficacy is limited.” Two
recently approved drugs targeting the HCV protease (telaprevir and boceprevir) showed considerably improved
curative effects,” however, there are still unmet needs for more effective antivirals. Despite intensive efforts over
the last decades, strategies to cure HCV infection have been impeded due to the lack of a detailed understanding of
the biology of the HCV infection process. Most previous attempts were focused on discoveries of inhibitors of
viral polymerases or proteases because of the narrow scope of known therapeutic targets.*® Alternative targets are
host cell factors that play roles in HCV replication. HCV is a positive-strand RNA virus of the Flaviviridae family
that contains 9.6 kb of RNA.” HCV encodes a single polypeptide protein that is subsequently cleaved into
structural (core, E1, and E2) and nonstructural (NS2, NS3, NS4A/B, and NS5A/B) subunits by both viral and
host proteases.'® Briefly, viral enzymes (NS2/NS3 and NS3 protease) cleave the nonstructural proteins from the
polypeptide protein to generate mature forms, whereas host cell enzymes are responsible for processing structural
proteins.'"'* Thus, host cell factors are closely involved in HCV replication, and they have high potential as new
therapeutic targets for regulating HCV infection.

To examine host cell responses to HCV infection, biologists have utilized conventional high throughput (HTS)
techniques, such as gene or proteomic expression profiling.">"” These approaches have unveiled many important
host-HCV interactions,'®'* but these techniques provide only the perturbations in expression abundance despite
the fact that the HCV replication process is highly regulated by various post-translational modifications (PTM)
and proteolysis. To directly monitor the catalytic activities of enzymes, an activity-based protein profiling (ABPP)
method was applied to the protease and fatty acid synthase superfamily;*>*' this analysis revealed the differential
activity of those enzymes together with several small-molecule regulators.?>** Although ABPP can provide unique
insight into the intact metabolic status during HCV infection, this approach still has drawbacks. First, target
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Figure 1| Schematic of the transcriptome expression assisted non-directed proteomic profiling (TEAnDPP) strategy for identifying host cell response factors.

enzymes of ABPP probes are limited to only a few enzyme super-
classes at the moment.**** Second, the pathological features of many
diseases, such as HCV infection, are not well characterized, which
makes it difficult to choose proper chemical probes.

As a complementary method for enzyme activity profiling, undir-
ected proteomic profiling has unique merits in terms of the diversity
of target proteins. It has been reported that proteome reactivity can
be monitored using various small-molecule electrophiles,**?® and the
usefulness of identifying functional cysteine residues® or discrim-
inating pathogens has been demonstrated.*® In particular, we found
that distinct pathological samples produced fingerprint signatures of
proteome reactivity patterns.’® Currently, the major bottleneck step
of undirected profiling for disease models is identification of proper
electrophiles to maximize the discriminant signature. We envisioned
that conventional HTS data could provide insights for selecting
desirable chemical probes. Here, we demonstrated a strategy that
combines transcriptome expression assisted non-directed proteomic
profiling (TEAnDPP) to identify host cell response factors in geno-
type 2a HCV infection (Figure 1).

To determine small-molecule electrophiles, we initiated our studies
by exploring the transcriptome analysis of the human hepatoma cell
line (Huh7.5) expressing the HCV2a subgenomic replicon (APC140
cells: Huh7.5 cells containing a genotype 2a subgenomic replicon in
bicistronic configuration; HuhHuh?7.5/J6/JFHEMCVIRESRIucNeo).
The replicon system was developed for stable expression of HCV2a

proteins in host cells,’* and we chose this system for the ease of culture
and for the maintenance of homogeneity in the viral protein express-
ion. Total RNA was extracted from control Huh7.5 cells and Huh7.5
cells expressing the HCV2a replicon (APC140 cells), and the genome-
wide transcriptome expression levels were measured using an Illumina
Human HT12 expression bead array (data are freely available in an
NCBI GEO repository: GSE62546). Based on the statistical signifi-
cance and the fold change values of the expression levels, we identified
541 differentially expressed genes (DEGs) out of 47,000 total genes
with high reproducibility from duplicated experiments (Fig Sla-b).
Rather than focusing on the strongly responsive genes, we investigated
the biological functions of all 541 DEGs using DAVID gene enrich-
ment analysis to determine the general responses of the host cell.*>*
DAVID is a bioinformatics tool for integrative functional analysis of a
large gene list. Gene ontology analysis revealed that biological path-
ways related to cellular hormone metabolism and chromatin assembly
were considerably perturbed (Fig Slc-d). Furthermore, the functional
category of the most significantly enriched DEG cluster was disulfide
bond processing (83 genes in 541 DEGs; Table 1). Because gene
enrichment analysis showed remarkable distinctions in cellular thiol
metabolism, we hypothesized that thiol-reactive probes could generate
differential proteome reactivity signatures upon HCV infection.
Therefore, we chose o—iodoacetamide (IA), vinyl sulfone (VS),
and benzyl halide (BH) functional groups that selectively label free
thiol groups.

Table 1 | DAVID gene enrichment scores of functional category keywords. In total, 541 DEGs were analyzed against Uniprot functional
categories and enriched gene lists were generated for each functional category.

Enrichment

Functional Categories Score of  Gene

(Uniprot) Cluster  Count Genes

SP_PIR_KEYWORDS: 3.810 83 A2M, MICB,NRTN, GABRB1,EDNT,JAG1, DLK1,CXCL10, SLC7A7, UNC5B, GSN, HAMP, CNTNAP2,

disulfide bond PLATA, CYGB, LOXL4, FABP5L2, CFD, CEACAM1, KNG1, MATN3, STC2, ICAM2, LYZ, OLFML2A,
TNFRSF14, HEPACAM?2, HLAE, SIRPA, MMP11, AADAC, INHBE, IGF2R, ULBP1, LRP11, ULBP2, TFPI,
ROR1, VCAN, PRNP, CTSH, LUM, KITLG, CXCL6, LEAP2, AHSG, COL9A2, NPTX2, FGB, TFF2, TFF3,
THBS1, ANGPTL2, GCNT1, CD7, ANGPTL4, HPN, GLRB, LGALS3, EFEMP1, CELSR2, FZD2, C4BPA,
COL4A6, FZD7, COL4A5, NOTCH3, DNASE2, DKK1, COL14A1, GPR37, PTP4A3, PI3, LASST,
C1RL, EPOR, ADM2, GDF15, FABP5, IGFBP4, PON3, CD14, HABP2, VLDIR

SP_PIR_KEYWORDS: 2.521 8 KNGI1, COL9A2, COL14AT1, COL1A2, CELSR2, COL2A1, COL4A6, COL4AS

hydroxylation

SP_PIR_KEYWORDS: 2.339 18 FUS, HISTTH2AC, HIST2H2AA3, HIST2H2AA4, HISTTH2BD, HIST1IH1C, EEF1A2, RHOQ, HIST2H4A,

methylation RPL29, RND2, HISTTH2BK, TAF15, HIST2H2BE, PPP2CA, HIST2H2AC, LOC399942, THOC4, RASDT,
HIST1H4H

SP_PIR_KEYWORDS: 2.261 11 DDC, CTH, ENO2, ACMSD, HAL, GUCY1A3, ENO3, CA2, GUCY2C, PCK2, GAD1

lyase

SP_PIR_KEYWORDS: 1.912 8 AADAC, UGT2B17, CYP1A1, UGT2B11, HSD17B6, CYP26A1, UGT2B4, UGT2B7

microsome
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Unlike other diseases that cause dramatic pathological changes,
HCV infection tends to induce subtle and chronic interference in the
host cell. In our cell line model, the HCV replicon expression did not
produce noticeable changes in the cell morphology or the total pro-
teome band pattern, which was measured using coomassie staining
(Fig 2a). To visualize the non-directed proteome reactivity finger-
prints in both cell lines, we used two oppositely charged fluorophores
for individual IA, VS, and BH functional groups (Figure S2). We
administered each probe at a concentration of 1 pM for 30 min in
live Huh7.5 and APC140 cells, and the cell lysates were separated
using SDS-PAGE. Proteome reactivity signatures were obtained
using fluorescence gel imaging with the proper excitation and
emission filters (Fig 2b-d). All three electrophiles generated unique
proteome reactivity patterns for control Huh7.5 cells (Fig 2b-d: left
lanes). In general, the VS groups exhibited the most intense and
numerous bands among the three motifs due to their intrinsic high
electrophilicity, and IA showed faint bands and the least number of
labeled bands. Notably, the undirected protein targets that were
labeled by probes significantly differed depending on the charge state
of the fluorophores. Our particular interest was the relative proteome
reactivity changes between Huh?7.5 cells with and without expression
of the HCV2a replicon, and all 6 thiol-reactive probes generated
distinct labeling patterns, as we anticipated. This observation was
also supporting the finding from the transcriptome analysis that
showed that the reactivities of many cellular thiols were altered by
thiol metabolism upon HCV replication.

To investigate the host cell factors that are selectively up-regulated
upon HCV replication, we employed competition-based quantitative
chemical proteomic profiling geared to determine the identity of

labeled proteins (Figure S3). Inspired by the competitive isoTOP-
ABPP strategy,* we adapted the protocol utilizing stable-isotope
labeling of amino acids in cell culture (SILAC). SILAC involves
differential labeling of proteins with stable isotopes of different mass
to generate isotopically “heavy” and “light” samples. Because the
Flu-IA probe exhibited the most prominent change upon HCV2a
replicon expression, we then tried to identify the protein targets of
the Flu-IA probe (Fig 2-b). Control Huh7.5 cells were grown in
medium containing “heavy” isotopes of arginine (*C¢,'"°N,) and
lysine (*Cg), and APC140 cells were grown in “light” media. As
illustrated in Figure S3, we conducted two-way competition experi-
ments in both Huh7.5 cells and APC140 cells. Flu-IA was adminis-
tered to live cells: either “light” isotope-labeled APC140 cells or
“heavy” isotope-labeled Huh7.5 cells at a 1 pM concentration for
30 min, and whole-cell lysates were subsequently incubated with an
excess amount of biotin polyethylene oxide IA (Biotin-IA, 100 pM)
to enrich proteins that could form a covalent bond with the IA
functional group but were not labeled with Flu-IA. Then, cells that
were not treated with Flu-IA were prepared as a control, and the
lysates were also labeled with excess Biotin-IA to enrich proteins that
could form a covalent bond with the IA functional group, which
included Flu-IA targets in this case. The same quantities of proteins
were mixed, and enriched biotinylated proteins were separated by
affinity purification using avidin-coated agarose beads. Following
on-bead trypsin digestion, the peptide mixtures of enriched proteins
were separated by nano-flow HPLC and analyzed with using an
Orbitrap mass spectrometer.

From the SILAC-based quantitation results, proteins exhibiting
competition in both cases were considered to be non-directed target
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Figure 2 | Investigation of the non-directed proteome reactivity to iodoacetamide (IA), vinyl sulfone (VS), and benzyl halide (BH) functional groups.
(a) Coomassie staining of Huh7.5 cells without (left) and with expression of the HCV2a replicon (right). (b-d) In-gel fluorescence image of the probe
labeling in Huh7.5 cells without (left) and with expression of the HCV2a replicon (right).
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proteins of Flu-IA. In all, 71 proteins were identified from the
competition experiment in “light” APC140 cells having a SILAC
ratio (Heavy/Light) greater than two folds (Table S2a), and 46
proteins were discovered from the competition in “heavy” Huh7.5
cells having a SILAC ratio (H/L) lower than 0.5 (Table S2b). Both
competition experiments were performed in triplicate, and the
proteins identified in both cases were 26 proteins with sizes ranging
from 18.5 kDa to 273.3 kDa (Table S2-c), including previously
reported host cell factors for HCV infection, such as chloride channel
protein 1,” fatty acid synthase,*"** heat-shock protein 90, protein
disulfide-isomerase,”® and thioredoxin peroxidase.”” From these
proteins, we were especially interested in the one that showed a
strong fluorescence band in an SDS gel (Fig 2-b). The protein size
of the marked band in Figure 3-b was approximately 70 kDa, and
there was one protein in that range, plastin-3 (i.e., T-plastin). We
further confirmed the identity of the corresponding band by western
blot (Fig S4), but we could not find the exact modification site, possibly
due to the low ionization efficiency of the charged modification.

(@)

The plastin family comprises actin-bundling proteins that are
critical to actin regulation in eukaryotes.*® Plastins are evolutionary
conserved and expressed throughout eukaryotes; thus, plastins have
been considered one of the key regulators that have a fundamental
cellular function, but functional studies of plastins are still at an early
stage.”>* Plastins consist of N-terminal EF-hand Ca**-binding
domains and actin-binding domains (ABD).*! Unlike other ABD-
containing proteins, plastins contain two tandem repeats of ABD,
which are involved in cross-linking actin filaments into bundles.**

Because HCV NS3 and NS5A proteins interact with microtubules
and actin filaments to transfer the replication complex to various
subcellular regions,*> we postulated that up-regulating of T-plastin
might have a cooperative influence on HCV replication. To validate
the collaborative effect of T-plastin, we examined the dependence of
HCYV replication efficiency on perturbations of intact T-plastin. An
RNAI knock-down experiment of T-plastin resulted in greater than
50 % inhibition of the HCV replication efficiency, as indicated by the
Renilla luciferase activity encoded in the HCV2a replicon (Fig 3-a).
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Figure 3 | Inhibition of HCV replication. (a) Effect of T-plastin knock-down measured by Renilla luciferase activity. (b) Two target sites of T-plastin
RNAI. (¢) Dose-dependent HCV replication inhibition effect of prolonged Flu-IA treatments. (d) Cell viability test by an MTT assay in response to serial
concentrations of Flu-IA treatment. All mean and standard deviation data were obtained from quadruplicate experiments (N = 4).
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The HCV replication efficiency was also altered by the Flu-IA
modification of T-plastin, which might induce conformational
changes similar to those of other endogenous PTMs that disturbed
the actin-bundling activity (Fig 3-¢).*’ In addition, it was previously
reported that an actin polymerization inhibitor, cytochalasin D,
caused dose-dependent inhibition of the HCV replication
efficiency at micromolar concentrations.** Taken together, these
observations suggested that the actin-bundling effect of T-plastin
facilitated the HCV replication process, and selective perturbation
of T-plastin could be an alternative strategy to treat HCV
infection.

In summary, we have demonstrated a robust strategy that com-
bines transcriptome expression signature analysis and non-directed
proteome reactivity profiling to discover a novel host cell response
marker for HCV infection. Based on the unique signature of thiol
metabolism, we chose cross-reactive thiol-targeting probes to
obtain a proteome reactivity profile, and we discovered T-plastin
as a novel host cell response factor. Interfering with the expression
abundance or exogenous modification of T-plastin attenuates
HCV replication, which suggests that modulating this protein
may provide a strategy for treating HCV infection. We are currently
working on discovering small-molecule ligands that target
T-plastin and on applying TEAnDPP to diverse infectious disease
models.
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