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a b s t r a c t 

Evapotranspiration is a key variable of the water cycle. Its calculation requires several ground data that frequently 

are not available. This study contains a detailed method and measurements of meteorological and energy balance 

variables that can be used to estimate the daily actual evapotranspiration (ETa). A linear generalized model is 

obtained to calculate the ETa from common variables measured in meteorological stations. The method showed a 

good performance over a barley crop of easthern Argentine Pampas and can be applied and tested in other great 

plains. 

Measurements of soil-plant-atmosphere are included 

The routines to reproduce the method are included 

The generalized method allows the calculation of daily ETa over crops and was tested over barley crops 
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Specifications table 

Subject Area; Earth and Planetary Sciences 

More specific subject area; Soil-plant water system 

Method name; Calculation of actual evapotranspiration 

Name and reference of original method; N.A. 

Resource availability; Dataset and routines of the model: https://data.mendeley.com/datasets/ 

77r6w44xbp/draft?a=5d9be36a- ae9a- 4c9f- b526- 121d1d37b6eb 

Introduction 

Evapotranspiration represents about 80% of the water transferred from soil-plant into the 

atmosphere over great plains [1] . The calculation of actual evapotranspiration (ETa) usually requires

measurements of several variables of the atmosphere (e.g. air temperature and humidity, solar 

radiation) and surface (e.g. temperature, soil moisture), with nonlinear and complex interactions. 

The application of artificial intelligence has contributed to the estimation of the evapotranspiration, 

considering the fluctuations of the local climate [2] . However, given that these techniques usually

limit the understanding of the relationships between the involved variables, linear generalized models 

(GLM) could be a possible solution. In GLM, the dependent variable is linearly related to the factors

and co-variables through a link function. This study describes the method and data used to build a

GLM to monitor ETa over rain-fed barley crops. 

The study was carried out during the development of a barley crop (from August to December 2019

and 2020) in eastern Argentine Pampas (La Alcira station: 37,49 °S, 58,90 ° W, 186 m.a.s.l.). The climate

is temperate and subhumid. The soil type is Typic Argiudoll. Barley was sown by direct seeding

with 0.17m between furrows. Ground measurements were collected from an energy balance station 

connected to CR10 0 0 and CR30 0 data loggers (Campbell Scientific Inc.), monitoring the variables

detailed in Table 1 . 

A GLM was obtained considering the most important variables for ETa estimation. The 

mathematical expression of the GLM is: 

Y i = link 

( 

β0 + 

n ∑ 

j=1 

β j x i j 

) 

(1) 

where Y i is the i th observation of the dependent variable (ETa), x ij is i th observation of the j th 

independent variable ( j = 1, 2, ..., n ), β j represents parameters to be estimated, β0 is the intercept,

and link is the link function. 

On the other hand, ETa was calculated using the water balance method (WB) considering soil

moisture and crop physiological characteristics. The daily WB used to calculate soil water storage
Tabla 1 

Number, sensor name, variable and brand of sensors installed in the energy balance station. 

number of sensor Sensor Variable Brand 

1 CNR4 Terms of net radiation Campbell Scientific Inc 

2 CS215 Air temperature (T) and relative 

humidity (RH) 

Campbell Scientific Inc 

1 Wind Sonic 2D Wind speed and direction Gill Instruments 

1 014A Wind speed Campbell Scientific Inc 

1 HFP01 Soil heat flux Hukseflux 

2 SI-111 Land surface temperature (Tr) Apogee 

3 CS655 Soil moisture and temperature 

(SM) at 10, 30 and 60 cm depth 

Campbell Scientific Inc 

1 SoilVUE10 Soil moisture and temperature at 

5, 10, 20, 30, 40 and 50 cm depth 

Campbell Scientific Inc 

2 NR / NI Surface reflectance in Red and 

NIR to calculate the NDVI 

Decagon 

1 TE252MM Rainfall Global Water 

https://data.mendeley.com/datasets/77r6w44xbp/draft?a=5d9be36a-ae9a-4c9f-b526-121d1d37b6eb
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Fig. 1. Flowchart of ET GLM model. 
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onsiders the following terms: 

S f − S i = E x f − −E x i + P − −RO − −DP − −E T a (2)

here S f and S i are the final and initial soil water storage in the root zone, Ex f and Ex i are the last

nd initial water excess accumulated in the soil, P is the rainfall, RO is the surface runoff, and DP

s the deep percolation. Subsurface horizontal water movements have been dismissed due to their

alues are lower than the vertical ones in plain environments. The units of Eq. 2 are in mm d 

−1 . ETa

as calculated as the residual term of Eq. 2 and was later used as the dependent variable of our

eneralized linear model. 

The difference S f - S i was estimated using the SOILVue10 sensor, which measures the volumetric

oil moisture (SM). Water storage is directly proportional to SM [m 

3 m 

−3 ] times the depth covered

y the sensor. We considered daily averages of S at a depth of 0.05-0.3 m. In the analysis

eriod, no significant water excesses or losses due to deep percolation were recorded to calculate

Ta, which can be corroborated by the water table levels in areas surrounding the experimental

lot (see sheet “Water_table,” Data_GLM.xlsx, https://data.mendeley.com/datasets/77r6w44xbp/draft?

=5d9be36a- ae9a- 4c9f- b526-121d1d37b6eb). On the other hand, no surface runoff was recorded

uring the visual control of the plot. 

A supervised method of learning was chosen to train the model. The flowchart of ET GLM 

model is

hown in Fig. 1 . It shows the phases of the framework: i) Data collection, ii) Data analysis and data

reprocessing, and iii) grid search of best hyperparameters. In step i) the response variable (ETa) and

he explanatory variables were collected, where SM is the volumetric soil moisture [m 

3 /m 

3 ], NDVI is

he normalized difference vegetation index, Tr is the crop surface temperature measured at 45 ° [ °C],

in is the incoming (305 to 2800 nm) solar radiation at surface [MJ/m 

2 /d], T [ °C] and RH are the air

emperature and relative humidity (%), respectively. These variables are in a daily temporal resolution.

In stage ii) the final dataset was created. Previously to build the model, an exploratory analysis

f data was carried out. The variables with linear dependence (-0.7 > r of Spearman > 0.7) were

iscarded and the most explanatory ones (p < 0.01) were selected. Statistical assumptions about the

https://data.mendeley.com/datasets/77r6w44xbp/draft?a=5d9be36a-ae9a-4c9f-
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Fig. 2. a) Frequency distribution of daily ETa obtained from water balance (WB), b) comparison between GLM and WB results 

at daily scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

heterogeneity of variance structure and the distribution of statistical residuals were tested [3] . Finally,

in step iii) a set of optimal hyperparameters for a learning algorithm was chosen in order to avoid

the overfitting. For this, the K-fold cross-validation (K-CV) method was selected. K-CV is a resampling

procedure used to evaluate machine learning models on a limited data sample. This technique aims

to partition the training and test data about K times. K-CV is simple to understand and because it

generally results in a less optimistic estimate of the model skill than other methods, such as a simple

train-test split. The Python language and the Pandas [4] , NumPy [5] and Scikit-Learn [6] libraries were

used to develop the procedure. The routines are included in the file named MethosdX_Notebook: 

https://data.mendeley.com/datasets/77r6w44xbp/draft?a=5d9be36a- ae9a- 4c9f- b526- 121d1d37b6eb 

Thus, with a total of 189 measurements, the model (mod) was obtained: 

mod = (−4 . 004) + (8 . 4359 × SM) + (2 . 2935 × NDVI) + (0 . 6172 × T) 

+ (0 . 0926 × Rin) + (−0 . 5486 × Tr) + (−0 . 0227 × RH) (3) 

ET a = e ( mod ) (4) 

Rin, NDVI, T, RH and Tr were measured at 2 m height while SM was measured at 20 cm

depth. It should be noted that the algorithm randomly uses the data to adjust and validate the

model. The used data are included in the link https://data.mendeley.com/datasets/77r6w44xbp/draft? 

a=5d9be36a- ae9a- 4c9f- b526- 121d1d37b6ebXX 

On the other hand, ETa measurements described a Poisson-Gamma distribution ( Fig. 2 a). This

distribution has a complex probability density function. Thus, the distribution was adjusted to a 

Tweedie distribution [7] . The algorithm sklearn.linear_model.TweedieRegressor [6] allowed us to find 

the optimal link function to adjust the coefficients to the ETa distribution ( Eq. 4 ). About the validation,

the comparison between GLM results and the results obtained with the WB is included in Fig. 2 b.

About the performance of the model, the root mean square error (RMSE) was 0.577 mm/d, the Mean

Absolute Error (MAE) was 0.473 mm/d, and the Determination Coefficient (R2) was 0.81. 

The proposed GLM is suitable to follow a crop surface (from partially vegetated to full cover) with

meteorological data measured near the canopy (2m height) and soil moisture measured in the root

zone. It can be applied in other areas with data commonly obtained in typical energy balance or

meteorological stations. The model showed the forcing variables of the soil-plant-atmosphere system 

that influence evapotranspiration. 

Given the frequent limitation of ground data, the method can be used with satellite data, reanalysis

or a combination of them. For example, the variables involved in Eq. 3 are available in the NASA-

POWER dataset [8] , which have a good correlation with field data [9 , 10] . Likewise, NDVI data are

https://data.mendeley.com/datasets/77r6w44xbp/draft?a=5d9be36a-ae9a-4c9f-b526-121d1d37b6eb
https://data.mendeley.com/datasets/77r6w44xbp/draft?a=5d9be36a-ae9a-4c9f-b526-121d1d37b6ebXX
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vailable in several missions (e.g. MODIS products MOD13C2, MOD13A1 version 6 [1 , 11] ). It should

e noted that a calibration model is needed to be applied in other areas with different biophysical

haracteristics to obtain good results, considering the variables involved in the method for those areas.

upplementary material and/or Additional information 

All the tables mentioned in the text are included in https://data.mendeley.com/datasets/77r6w44

bp/draft?a=5d9be36a- ae9a- 4c9f- b526- 121d1d37b6eb 
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