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Abstract Metabolomics is increasingly being applied

towards the identification of biomarkers for disease diag-

nosis, prognosis and risk prediction. Unfortunately among

the many published metabolomic studies focusing on bio-

marker discovery, there is very little consistency and rel-

atively little rigor in how researchers select, assess or

report their candidate biomarkers. In particular, few studies

report any measure of sensitivity, specificity, or provide

receiver operator characteristic (ROC) curves with associ-

ated confidence intervals. Even fewer studies explicitly

describe or release the biomarker model used to generate

their ROC curves. This is surprising given that for bio-

marker studies in most other biomedical fields, ROC curve

analysis is generally considered the standard method for

performance assessment. Because the ultimate goal of

biomarker discovery is the translation of those biomarkers

to clinical practice, it is clear that the metabolomics com-

munity needs to start ‘‘speaking the same language’’ in

terms of biomarker analysis and reporting-especially if it

wants to see metabolite markers being routinely used in the

clinic. In this tutorial, we will first introduce the concept of

ROC curves and describe their use in single biomarker

analysis for clinical chemistry. This includes the con-

struction of ROC curves, understanding the meaning of

area under ROC curves (AUC) and partial AUC, as well as

the calculation of confidence intervals. The second part of

the tutorial focuses on biomarker analyses within the

context of metabolomics. This section describes different

statistical and machine learning strategies that can be used

to create multi-metabolite biomarker models and explains

how these models can be assessed using ROC curves. In

the third part of the tutorial we discuss common issues and

potential pitfalls associated with different analysis methods

and provide readers with a list of nine recommendations for

biomarker analysis and reporting. To help readers test,

visualize and explore the concepts presented in this tuto-

rial, we also introduce a web-based tool called ROCCET

(ROC Curve Explorer & Tester, http://www.roccet.ca).

ROCCET was originally developed as a teaching aid but it

can also serve as a training and testing resource to assist

metabolomics researchers build biomarker models and

conduct a range of common ROC curve analyses for bio-

marker studies.
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1 Introduction

Biomarkers are objectively measurable biological charac-

teristics that can be used to diagnose, monitor or predict the

risk of disease (Atkinson et al. 2001). For example, BRCA1

mutations are genetic markers for breast cancer risk (Miki

et al. 1994), blood glucose is a standard chemical biomarker

for monitoring diabetes, serum creatinine is a chemical

marker for kidney function, and prostate specific antigen

(PSA) is a protein biomarker for prostate cancer (Polascik

et al. 1999). As ‘‘omics’’ technologies such as transcripto-

mics, proteomics and metabolomics have emerged, the

possibility of both measuring and using multiple biomarkers

simultaneously to predict or diagnose disease has captured

the imagination of many clinicians and scientists. Certainly

it is common practice among physicians to use multiple

physiological biomarkers (age ? BMI ? triglyceride level ?

cholesterol level = cardiac disease risk) to improve the sen-

sitivity and specificity of a clinical diagnosis. Therefore it

stands to reason that by combining two or more biomarkers

together it might be possible to generate more accurate

diagnoses and prognoses or better distinguish between sim-

ilar diseases (Newby et al. 2001). This, of course, is the

motivation behind many recent biomarker studies in meta-

bolomics. Fundamentally, the goal of biomarker develop-

ment in metabolomics is to create a predictive model from a

collection of multiple compounds, which can be used to

classify new samples/persons into specific groups (e.g.

healthy vs. diseased) with optimal sensitivity and specificity.

From a statistics and machine learning point of view, there

are three major steps involved in biomarker analysis—(1)

biomarker selection, (2) performance evaluation, and (3)

model creation. Biomarker selection involves the identifi-

cation of an optimal subset of features that will provide the

maximal discriminating power between the diseased and

healthy samples. Performance evaluation involves the

assessment and validation of the panel of biomarkers pro-

posed by step one. Final model creation involves developing

a fixed mathematical equation or computer algorithm, which

combines the panel of selected biomarkers into a single test

score with the aim of accurately predicting a particular

clinical outcome, given measured biomarker responses from

a particular target population. Steps one and two are often

iteratively combined.

Current metabolomics studies can be placed into two

general categories—those that aim to understand biological

processes and those that aim to develop biomarkers.

Studies in the first group focus primarily on gaining

improved biological understanding through the analysis of

metabolite profiles. Data analysis is usually performed

using multivariate statistical methods such as principal

component analysis (PCA) or partial least squares dis-

criminant analysis (PLS-DA) (Trygg et al. 2007). These

dimension reduction methods summarize and transform

100s–1,000s of metabolite features into a few key com-

ponents that capture the maximal variance or discrimina-

tory covariance in the data. A 2D or 3D scatter plot of these

components is usually presented to describe the overall

patterns of change, or latent structure in the data, under

different conditions. The results are accompanied by a

relatively long list of compounds that were selected based

on a given model’s loading values, variable importance in

projection (VIP) scores, or alternatively p-values derived

from parametric univariate hypothesis testing (Student’s

t test, ANOVA etc.) or their non-parametric equivalent

(Mann–Whitney U test, Kruskal–Wallis etc.) performed, in

turn, on each measured metabolite. In most cases, these

kinds of statistical analyses are not sufficient to acquire

detailed biological understanding. As a result, researchers

often resort to functional analyses that incorporate prior

biological knowledge to help reveal key underlying bio-

logical processes. For example, metabolite set enrichment

analysis (Xia and Wishart 2010b) or metabolic pathway

analysis (Xia and Wishart 2010a; Gao et al. 2010; Kan-

kainen et al. 2011) can be performed on these long com-

pound lists, and the results can be used to infer possible

biological processes. While these compound lists are

sometimes referred to as ‘‘putative biomarkers’’ by some

authors, they are not really useful as clinical biomarkers,

which require somewhat different analysis, evaluation and

validation procedures. In other words, the analytical

methods used by those wanting to understand biological

processes differ fundamentally from those wanting to dis-

cover or develop biomarkers. These differences are out-

lined below.

In contrast to metabolomic studies focused on deci-

phering biological processes, where interesting metabolites

are found post hoc, in biomarker studies metabolite

selection should be performed a priori rather than post hoc.

That is, biomarker selection must be performed before

deriving a definitive multivariate predictive model. Fur-

thermore, whereas long lists of metabolites or large mul-

tivariate models amalgamating 100s of molecular features

are quite useful for understanding pathways and biological

processes, they are not ideal for developing cost-effective

biomarker tests. Rather, a short list of 1–10 biomarkers is

mathematically much more robust and far more practical

for clinical testing purposes. While pattern discovery

methods such as unsupervised clustering or PCA are useful

for discovering novel biological processes, they are not

ideal for biomarker discovery. Instead, supervised machine

learning algorithms, or multivariate regression models

should be used to build the predictive models needed for

biomarker analysis. That is, for biomarker discovery one

needs to use methodologies that model the discriminatory

relationship between a binary dependent variable
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y (typically a two-state clinical outcome variable such as

healthy vs. diseased) and one or more explanatory variables

X (in this context a list of metabolite features). Performing

biomarker selection based on univariate statistical signifi-

cance is equally inappropriate, as often metabolites that are

not significant in isolation can, when combined into a

single multivariate model, produce clear and reproducible

discrimination. Likewise, a significant difference in the

average levels of a metabolite between two patient groups

does not necessarily mean that the given compound will be

a good classifier/biomarker. Perhaps the most important

difference to remember is that biomarker models are not

intended to help explain biology. Rather they are designed

only to discriminate with an optimal sensitivity/specificity

without regard to biological cause or biological interpre-

tation. In other words, biological understanding is not an

absolute prerequisite for biomarker development. How-

ever, understanding the underlying biological pathways

certainly can give some rationale to support an assay or

give some direction to develop a treatment.

2 Overview of biomarker studies in metabolomics

In some respects, metabolomics has already been remark-

ably successful in seeing biomarkers translate to the clinic.

MS/MS-based screening for inborn errors of metabolism

(IEM) in neonates is now routinely done in most indus-

trialized countries (Chace 2001). These high throughput

methods measure dozens of metabolites simultaneously

(esp. amino acids and acylcarnitines) and are able to

diagnose more than 30 different disorders (Wilcken et al.

2003). While most clinical chemists would not confess to

performing metabolomics, the principles and technologies

behind newborn screening and metabolomics biomarker

testing are largely the same. The advantages of using

metabolite biomarkers (speed, reproducibility, quantitative

accuracy, low cost, non-invasiveness, small sample vol-

ume) combined with the remarkable success of newborn

screening programs worldwide has inspired many meta-

bolomics researchers to pursue biomarker studies for other

diseases. Figure 1 shows the number of annual publications

containing both ‘‘metabolomics’’ and ‘‘biomarker’’ in the

last 10 years (2001–2011) based on PubMed search results.

From 2001 to 2008, there was a slow but steady increase

from zero to 70 publications per year. Since 2009, a rapid

growth has occurred with over 250 papers published on

metabolomics-based biomarker studies in 2011.

While the interest in metabolomic biomarkers has been

growing almost exponentially and biomarker discovery

efforts have been continuing for [10 years, the number of

metabolomics-based tests available for non-IEM diseases

stubbornly remains at ‘‘zero’’. There are three probable

reasons for this. First, unlike most chronic or common

diseases, IEMs can often be diagnosed using only a single

metabolic marker. This is because the concentration dif-

ferences for that biomarker, between normal and diseased,

are so profound that the test sensitivity/specificity is often

100 %. On the other hand, non-IEMs (i.e. common, chronic

diseases) exhibit considerably smaller concentration chan-

ges spread among of dozens of metabolites, making the

development of accurate, single compound tests almost

impossible. The second reason has to do with the general

lack of quantitation in many metabolomics assays and in

most metabolomics biomarker studies. Nearly every

approved clinical test, including IEM tests, measures

chemical (or protein) concentrations in absolute terms (nM,

lM or mM). Unfortunately, compound quantification has

not, historically, been a priority in many metabolomics labs.

This may be due to the fact that compound quantification is

both difficult and time-consuming (although it is now get-

ting much easier). The third reason—which may be the

most important—has to do with the general lack of know-

how in how many metabolomics researchers perform and

report biomarker studies. Based on our review of the liter-

ature, there is remarkably little consistency and relatively

little rigor in how metabolomics researchers select, assess

or report their candidate biomarkers. For instance, many

studies identify and report only individual biomarkers in a

qualitative way (up vs. down or present vs. absent) without

any explicit description of changes in metabolite concen-

tration (or fold-change) together with associated confidence

intervals. Biomarker studies that are slightly more quanti-

tative will often report the performance of multivariate

models using arbitrary ‘‘correct classification’’ criteria;

however no statistical measures of reliability or clinical

applicability are provided. PLS-DA models are routinely

employed in metabolomics biomarker research where often

the coefficient of determination (R2) and cross-validated R2

Fig. 1 PubMed search results using key words ‘‘metabolomics’’ and

‘‘biomarker’’ from year 2001 to 2011
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(Q2) are presented as measures of clinical utility, rather than

in their true role (i.e. as a method for choosing the optimal

model structure and simultaneously guarding against model

over-fitting). R2 and Q2 performance measures can certainly

be used as part of the biomarker selection process; however,

they provide very little transparency and they are not a

readily interpretable indication of the clinical utility of a

given model for a target population. Additionally, most end

users (i.e. clinicians or clinical chemists) are not familiar

with this style of model evaluation and hence are very

skeptical of such an approach. Remarkably few studies

present receiver operator characteristic (ROC) curves.

Indeed only 15 out of the 823 (\2 %) publications on

metabolomics and biomarkers in the last 10 years men-

tioned the term ROC. This is surprising given that for binary

classification problems (e.g. disease vs. healthy), ROC

curve analysis is generally considered the standard method

for describing and assessing the performance of medical

diagnostic tests (Obuchowski et al. 2004; Zweig and

Campbell 1993; Pepe et al. 2001). If the ultimate goal is to

move metabolite biomarkers from the benchtop to the

bedside, metabolomics researchers need to speak the same

language as their target audience in order to effectively

communicate their findings.

The primary goal of this tutorial is to introduce some

basic techniques commonly used in clinical biomarker

analysis and to provide some practical guidance on how to

apply these concepts to metabolomic data. The advice and

recommendations we provide here are primarily intended

to apply to human biomarker studies with a special focus

on translating these discoveries to the clinic. Common

issues, misuses, and pitfalls will also be discussed. We will

conclude the tutorial with a brief introduction to an online

tool we have recently implemented as a teaching aid that

supports and implements some relatively simple, yet

practical approaches covered in this tutorial. The intended

audience for this tutorial includes bench researchers and

clinicians who are interested in biomarker discovery using

metabolomics-based technologies. The methods and prin-

ciples discussed here primarily apply to the discovery and

validation of diagnostic, prognostic, predictive and moni-

toring biomarkers for human disease, for human toxicity

and for human studies involving drug monitoring and drug

efficacy.

Note In this tutorial, for clarity and simplicity, the term

‘biomarker’ or ‘biomarker score’ refers to either a single

biochemical measurement (e.g. metabolite concentration)

or a predictive score from a multivariate model combining

several biochemical measurements (e.g. a multi-metabolite

biomarker model). The key point to remember is that in

both these situations the data generated for a set of test

subjects (biological specimens) will be a single explanatory

variable whose values will be real and continuous. In this

sense, a multi-metabolite biomarker score can be consid-

ered the equivalent to a single metabolite concentration.

3 ROC curve analyses in clinical chemistry

Most clinical chemistry tests are applicable to a dichoto-

mous or binary outcome, meaning that they categorize

subjects into two states: positive or negative, disease or no

disease, admitted or discharged. For a continuous bio-

marker measurement (e.g. metabolite concentration) the

decision as to which outcome a given test subject is cate-

gorized is typically based on some pre-determined con-

centration or detection threshold. In predictive biomarker

studies, the performance of a candidate biomarker is

determined by comparing the predicted outcome to the true

outcome for a representative set of subjects sampled from a

target population. The true outcome is typically determined

by monitoring the subjects after the biological specimen

has been collected to see if the clinical outcome is ulti-

mately diagnosed to be positive or negative based on some

well-established clinical signs or physiological measure-

ments. In general, the nature of this true classification

process is dependent on the clinical application of the

biomarker and a thorough discussion is beyond the scope

of this paper. However, what ultimately results is a

dependent ‘‘outcome’’ variable (a positive or negative class

label) to which a biomarker ‘‘score’’ can be compared.

The performance of a given biomarker can be assessed

in several ways. The simplest, and most naı̈ve, method is to

quote the percentage correctly classified. This is known as

the predictive accuracy. This approach is flawed in several

fundamental ways. Firstly, it forces the developer of the

biomarker to predetermine the optimal decision boundary

(critical biomarker concentration/score) from which sub-

jects will be classified as having either a positive or neg-

ative outcome. It may well be that the mathematically

optimal threshold is not the optimal clinically useful

threshold. For example, it may be an ethical necessity for

all positive outcome subjects to be correctly classified at

the cost of many subjects being incorrectly negatively

classified. The choice of the optimal decision threshold

should be determined jointly with domain experts such as

physicians and health economists before being transferred

to the end user (i.e. the testing labs). Secondly, biomarker

discovery studies are often performed on a small (n \ 100)

but representative sample drawn from a given target pop-

ulation. This means that there will always be some

uncertainly in the predictive accuracy of any reported test

(recall the smaller the sample, the larger the uncertainty).

Thus, presenting a single measure of accuracy without any

associated statistical measure of uncertainty is simply bad

scientific practice. Indeed, it is comparable to reporting a
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sample mean without an associated standard error. Confi-

dence intervals and sample size will be discussed, in detail,

later. Finally, it is important to note that predictive accu-

racy is not a reliable metric for the real performance of a

biomarker if the sample population is unbalanced (that is,

when the number of subjects in different classes varies

greatly). This is generally the case in clinical settings,

where (hopefully) most people are healthy and very few are

diseased. For example, if the prevalence of a positive

outcome in a given population is low, say five in every 100

subjects, and a biomarker is presented that always predicts

a negative outcome, then this biomarker would be con-

sidered 95 % accurate, which is misleading. The problem

of outcome imbalance can be avoided by retrospectively

designing a matched nested case–control study from an

existing larger prospective study (typically using bio-

banked specimens). A matched nested case control study is

a variation of a case–control study in which only a subset

of controls from the larger cohort are compared to the

disease cases. This type of experimental design and the

associated issues are discussed in detail elsewhere (Dunn

et al. 2011, 2012; Rothman and Greenland 1998). Using

this approach, even in extremely unbalanced target popu-

lations, a balanced biomarker discovery study can be

designed and conducted. Regardless of how one designs

and conducts a biomarker ‘‘discovery’’ project, ultimately

any candidate biomarker test must be validated in a large

cross-sectional study so understanding the limitations of

different performance metrics remains very important.

A far superior approach to the assessment of biomarker

performance is to consider the frequency with which the

test produces: true positives (TP), true negatives (TN),

false positives (FP) and false negatives (FN). One then

summarizes these values into the proportion of actual

positives that are correctly classified as positive (sensitiv-

ity) and the proportion of actual negatives that are correctly

classified as negative (specificity). In the context of a

biomarker designed to discriminate between diseased and

healthy subjects:

TP the number of diseased subjects that are correctly

identified as disease (outcome positive & test positive)

TN the number of healthy subjects that are correctly

identified as healthy (outcome negative & test

negative)

FP the number of healthy subjects that are incorrectly

identified as diseased (outcome negative & test positive)

FN the number of diseased subjects that are incorrectly

identified as healthy (outcome positive & test negative)

The definitions of TP, TN, FP and FN are illustrated in

Fig. 2. And sensitivity (Sn) and specificity (Sp) are math-

ematically defined as:

Sn = TP/(TP ? FN)

Sp = TN/(TN ? FP)

For ease of interpretation, sensitivity can be considered

as the probability of a positive test result given that a

subject has an actual positive outcome, and specificity can

be considered as the probability of a negative test result

given that a subject has an actual negative outcome. Thus,

for a given biomarker with a fixed decision boundary

(metabolite concentration or model score) a sensitivity of

0.95 and a specificity of 0.6 indicate that: given a new test

subject with unknown clinical outcome, when the resulting

test score is above the decision boundary there is a 95 %

chance that the subject is correctly classified as a positive

outcome; but if the test score is below the decision

boundary then there is only a 60 % chance that the subject

is correctly classified as a negative outcome. It is important

to note that this is only true if the new test subject is drawn

from the same target population as that sampled to develop

the biomarker (i.e. biomarker performance is population

specific). Biomarkers designed for a specific population

(e.g. pregnant women) are only applicable to that target

population.

The sensitivity and specificity of a test can vary

depending on the biomarker decision boundary one choo-

ses to classify subjects as either ‘‘positive’’ or ‘‘negative’’.

Changing the decision boundary may, for example,

increase the sensitivity at the expense of lowering the

specificity, or vice versa. One of the best ways to observe

how a decision threshold affects sensitivity and specificity

is through a ROC curve. A ROC curve shows how the

sensitivity and specificity change as the classification

Fig. 2 Illustration of TP, TN, FP, and FN with hypothetical

biomarker test data. The distributions of true outcomes are given by

the two Gaussian curves with positive cases on the right side and

negative cases on the left. The cut-off level is indicated by the dashed

line. Due to the overlap between the biomarker concentrations of the

two populations, the cut-off level will misclassify the left-hand side of

the positive cases and the right-hand side of the negative cases. TP
true positives, TN true negatives, FP false positives, FN false

negatives
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decision boundary is varied across the range of available

biomarker scores. Unlike prediction accuracy, a ROC

curve is not dependent on the prevalence of a given out-

come. Furthermore, because it depicts the performance of a

biomarker test over the complete range of possible decision

boundaries, it allows the optimal specificity and associated

sensitivity to be determined post hoc. Unlike the popular

R2 and Q2 metrics, a ROC curve is a non-parametric

measure of biomarker utility rather than a parametric

measure of deviation from an ideal model. As a result,

when one evaluates a biomarker using a ROC curve there is

no need to be worried about the ‘‘data-normality’’ of either

the predicted positive or negative score distributions, nor

whether the two distributions have equal number of sub-

jects and equal variance. These considerations are very

important when using a parametric performance metric. As

a result, ROC curve analysis is widely considered to be the

most objective and statistically valid method for biomarker

performance evaluation (Obuchowski et al. 2004; Zweig

and Campbell 1993; Pepe et al. 2001; Soreide 2009).

3.1 Generation of ROC curves

In this section, we provide a simple example on how to

generate a ROC curve from the results of a single bio-

marker diagnostic test as might commonly be found in

clinical chemistry. However, it is important to note that the

process is identical for interpreting the predictions from a

fixed multivariate model (i.e. a multi-biomarker test). Here,

we use data from a hypothetical 2-h oral glucose tolerance

test (OGTT) adapted from Lasko et al. (2005) where the

glucose concentration is the continuous or graded value

(Table 1).

To generate a ROC curve, we first sort the glucose

concentration values in ascending order. Each concentra-

tion value in this list essentially represents a different cut-

off point. Note, an empty row is inserted at the top of the

table to indicate a threshold that is lower than the smallest

value. We now calculate the sensitivity and specificity

(actually 1 - Sp) for each concentration value (or cut-off)

assuming values that are equal or above the current

threshold are predicted positive (diseased) and values

below the threshold are predicted negative (healthy). After

obtaining these values (Table 1, last two columns), we

generate a scatter plot with circles representing each pair of

sensitivity and 1 - specificity values. We can then obtain

the empirical ROC curve by connecting each circle with

straight-line segments. The result is shown in Fig. 3. It

displays the sensitivity of a diagnostic test over all possible

false positive rates (1–Sp). From this example it is clear to

see that ROC curves are very straightforward to generate

and widely applicable to any two-class distribution of data.

Note the jagged shape of the curve due to the small number

of data points. ROC curves can be smoothed by adding

more measurements or by applying approximation methods

using either a kernel density or binormal distribution (Zou

et al. 1997; Zweig and Campbell 1993).

3.2 Area under the curve (AUC), ‘optimal’ threshold

point and partial AUC

ROC curves are often summarized into a single metric known

as the: Area under the curve (AUC). AUC can be interpreted

as the probability that a diagnostic test or a classifier will rank

a randomly chosen positive instance higher than a randomly

chosen negative one. If all positive samples are ranked before

negative ones (i.e. a perfect classifier), the AUC is 1.0. An

AUC of 0.5 is equivalent to randomly classifying subjects as

either positive or negative (i.e. the classifier is of no practical

utility). It can be shown that the area under the ROC curve is

closely related to the Mann–Whitney U test [the nonpara-

metric equivalent of the Student’s t test (Bamber 1975)]. The

AUC of an empirical ROC curve can be easily calculated

using the trapezoidal rule. A rough guide for assessing the

utility of a biomarker based on its AUC is as follows:

0.9–1.0 = excellent; 0.8–0.9 = good; 0.7–0.8 = fair;

0.6–0.7 = poor; 0.5–0.6 = fail.

Table 1 Calculation of sensitivity and 1-specificity for each cut-off

Glucose Diagnosis Sensitivity 1-Specificity

1.00 1.00

4.86 Healthy 1.00 1.00

5.69 Healthy 1.00 0.90

6.01 Healthy 1.00 0.80

6.06 Healthy 1.00 0.70

6.27 Healthy 1.00 0.60

6.37 Healthy 1.00 0.50

6.55 Healthy 1.00 0.40

7.29 Healthy 1.00 0.30

7.29 Diseased 0.90 0.30

7.82 Healthy 0.90 0.20

9.22 Diseased 0.80 0.10

9.79 Diseased 0.70 0.10

11.28 Diseased 0.60 0.10

11.83 Diseased 0.60 0.10

12.06 Healthy 0.50 0.00

18.48 Diseased 0.40 0.00

18.5 Diseased 0.30 0.00

20.49 Diseased 0.20 0.00

22.66 Diseased 0.10 0.00

26.01 Diseased 0.00 0.00

Glucose concentrations (mmol/L) are sorted from low to high. Here

we assume values above the threshold will be positive (diseased) and

below the threshold are negative (healthy)

An introductory tutorial 285

123



ROC curves are often used to determine the ‘optimal’

cut-off point based on which subjects will be classified as

either a positive or negative outcome. There are three

common approaches to calculate the optimal points. The

first criterion is to minimize the distance to top-left corner

(0, 1). As the distance (d) from the top-left corner to any

point on the ROC curve can be expressed as: d = sqrt

[(1 - Sn)2 ? (1 - Sp)2] we can calculate the value of

d for each cut-off point and then locate the point that has

smallest value. The second approach is to identify the point

with furthest vertical distance from the diagonal line.

The point, also known as Youden index: J = max {Sn

- Sp - 1} (Youden 1950), can be easily identified by

searching for the point with maximal sum of sensitivity and

specificity values from all plausible sum values for each

cut-off. The first two approaches are illustrated in Fig. 3.

As we have discussed earlier, the mathematically optimal

threshold may not be appropriate in all clinical applications

due to ethical, economic and prevalence constraints. In

general, these considerations can be formulated into a

single cost function and each cut-off can then be evaluated

to identify the point that minimizes the cost. For more

discussions and example formulas, please refer to the paper

by Zweig and Campbell (1993).

AUC is widely used for performance comparison across

different biomarker models. However, using the whole area

under a ROC curve may not be appropriate in some cases.

An example is shown in Fig. 4 in which two diagnostic

tests give nearly the same AUC value. However, Test A

performs better than test B in regions of high sensitivity,

while test B performs better when high specificity is

required. This can have very different implications

regarding which test should be used or which biomarker

should be chosen. Using the partial AUC (pAUC) is most

useful when only certain regions of the ROC space (i.e.

high sensitivity or high specificity) are of particular interest

(Walter 2005; Dodd and Pepe 2003; McClish 1989).

3.3 Confidence intervals

Sensitivity, specificity, ROC curve shape, optimal cut-offs,

AUC and pAUC are all estimations of biomarker perfor-

mance based on limited data sets or limited data sampling.

Typically biomarker discovery studies are relatively small

(n \ 100) when compared to the size of the proposed target

population (potentially millions of subjects). As such, any

performance measure is a sample approximation to the

(unmeasurable) performance of the biomarker applied to

the target population as a whole. Just as one should always

quote a standard error when calculating sample means,

with all the metrics described in this tutorial one should

always provide confidence intervals (CIs). Typically 95 %

CIs are calculated for ROC analysis. It is important to note

that a reported 95 % CI does not predict that the true

population statistic has a 95 % probability of falling within

the calculated interval. Rather, it describes the range of

values the sample statistic will take, with a probability of

0.95, if the identical experiment is repeated many times

using independent subjects drawn from the identical target

Fig. 3 Empirical ROC curve and optimal cut-off. After obtaining a

list of sensitivity and specificity values from all possible cut-offs, one

should plot all pairs of sensitivity and 1-specificity values as empty
circles, and then connect each neighboring circles with line segments

to generate empirical ROC curves. The optimal cut-off (solid circle in

magenta) can be identified as the point with by minimal d the distance

from a cut-off to the solid grey circle (0, 1), or the point with maximal

vertical distance from the diagonal line, also known as the Youden

index J (Color figure online)

Fig. 4 Performance comparison using partial AUC. The AUC of Test
A and Test B are about the same. However, Test B is superior to Test A
at regions of high specificity (0.8, 1). Therefore, using the partial

AUC will be more appropriate in this case
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population. For example a reported AUC of 0.8 with 95 %

CI of ±0.1 actually means that if one repeated the exper-

iment 100 times, for 95 of those experiments the AUC

would lie between 0.7 and 0.9. That said, 95 % CIs provide

a very good range of estimates for the unknown true sta-

tistic and it is correct to say that ‘‘we calculated with 95 %

confidence that the true AUC of biomarker X is with the

range 0.7–0.9’’.

Many different approaches have been proposed to cal-

culate CIs for ROC curves (Lasko et al. 2005). One

straightforward and widely applicable method that we

recommend is a technique called bootstrap percentile re-

sampling (Carpenter and Bithell 2000; Efron 1987).

Bootstrap resampling is a very simple but powerful method

of estimating confidence intervals for any population sta-

tistic without either having to repeat the experiment in

question over and over, or being dependent on parametric

estimation of associated standard errors. This is be

achieved by simply constructing a number of different

samples (called ‘‘re-samples’’) from the observed dataset,

each of which is obtained by random sampling with

replacement from the original dataset, such that each

sample is equal in size to the observed dataset. The sample

statistic is then calculated for each of the re-samples (e.g.

total number of re-samples = 1,000), and the 95 % CIs are

calculated by simply taking the 2.5 and 97.5 percentiles of

the ranked list of the 1,000 values. In this way confidence

intervals for the AUC can be readily calculated. Addi-

tionally, by utilizing a nearest neighbor approach (or

smoothing multiple ROC curves), for any given fixed

specificity, a 95 % CI can be calculated for the associated

sensitivity, or vice versa. Indeed, given the available

computational power today, 95 % CI curves can easily be

constructed for the complete ROC curve itself as shown in

Fig. 5. Most modern software tools (including ROCCET—

see sect. 7) have at least some re-sampling methods

implemented that allow users to calculate confidence

intervals for certain key parameters.

3.4 Sample size

The sample size used in a particular biomarker discovery

study is intrinsically linked to the confidence interval of the

generated ROC curve. As with any population-based

statistic, the uncertainly associated with a specific ROC

curve decreases as the number of individuals tested

increases. Similarly, the uncertainty in the ROC curve

decreases the more effective the biomarker is (i.e. the

higher the AUC the lower the uncertainty). With an AUC

of 1, the calculated confidence error will be very close to

zero. Consequently, as uncertainty is partially dependent

on expected biomarker performance, the choice of sample

size is subjective. It can either depend on what the end-user

considers a clinically useful result, with a specified mini-

mum requirement, or if the researcher is competing with an

existing ‘‘gold standard’’ biomarker, the biomarker under

evaluation should, at a minimum, show equal performance.

Sample size calculation based on ROC curves has been

discussed in several publications (Eng 2003, 2004; Obu-

chowski et al. 2004). Often, however, the prerequisite is for

a test to have a fixed specificity with a minimum sensi-

tivity. In this case a minimum sample size can be estimated

using very simple inferential approach introduced by Arkin

and Wachtel (1990). For a study in which we hypothesise

that a clinically effective case/control screening test will be

seen to have a fixed specificity of 0.95 and is expected to

have at least a sensitivity of 0.85 and assuming a 95 %

confidence interval in sensitivity of ±0.05 is sufficiently

precise, it can be calculated that we will require at least 196

cases. If the minimum expected sensitivity is increased to

0.95 the minimum sample size decreases to 73 cases. If

the minimum expected sensitivity decreases to 0.7 then the

minimum sample size increases to 323 cases. Finally, if the

minimum sensitivity is unchanged (0.85) but the required

95 % confidence interval is relaxed to ±0.1, the minimum

sample size decreases to 49 cases. As seen by these

examples, the minimum sample size can vary a great deal

depending on the required utility of the resulting biomarker

(See Appendix A for the mathematical formulas as well as

example analyses). Note: these sample size calculations are

applicable to both single measurement biomarkers and

multivariate models. However, these are the minimum

requirements. Care must be taken in the design of

the experiment such that the target population for which the

biomarker is aimed are suitably represented in both the

Fig. 5 Using a bootstrapping approach to compute the 95 %

confidence interval (CI) for a single cut-off or for the complete

ROC curve
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positive and negative outcome groups. In extremely

heterogeneous target populations, positive outcome indi-

viduals must be selected with great care and matched one-

to-one (as closely as possible) with negative outcome

individuals. Often with extremely rare or low-prevalence

diseases it is advisable to over-sample from the negative

outcome target population in order to obtain some degree

of diversity in the test sample (e.g. match each disease case

to four random healthy controls). Also if cross-validation

(introduced later in this tutorial) is to be performed then

multiplying the minimum sample size by approximately

1.5 is good practice in order to compensate for sub-sam-

pling—although this increase in sample size is purely an

empirical recommendation suggested by the authors based

on past experience and not on any theoretical justification.

4 ROC curve analysis of metabolomics biomarkers

4.1 Multiple comparisons

Unlike the situation for classical clinical chemistry, meta-

bolomics typically involves measuring hundreds of

metabolites at a time rather than just one or two. So in

principle, metabolomics allows the researcher to evaluate

multiple metabolite biomarkers against a given outcome in

a single experiment. In this sense a researcher treats met-

abolomics as the equivalent of performing hundreds of

individual clinical chemistry tests, simultaneously. Thus it

is possible, using the protocol described earlier, to calculate

ROC curves for each compound, and then select potential

biomarkers based on those exhibiting the highest AUC or

pAUC (allowing for the uncertainty described by the

associated confidence intervals). This approach is perfectly

valid. However, care must be taken when performing

multiple evaluations in a single experiment. The proba-

bility of finding a random association between a given

metabolite and the outcome increases with the total number

of comparisons. In another words, the more metabolites

measured in a single experiment the more likely a random

association will be found. In this case, a biomarker or set of

biomarkers is discovered which is of some clinical utility

based on the sample population in question, but that utility

disappears when the experiment is repeated multiple times

using independent samples drawn from the target popula-

tion. In this regard, the confidence intervals calculated

using the resampling simulation method are not accurate

(neither are the parametric equivalent methods). These

‘‘false discoveries’’ are known as false positives. A simple

method for compensating for multiple comparisons (called

Bonferroni correction) involves increasing the percentage

confidence levels as a function of the number of compar-

isons. For example, if the experiment compares 50

metabolites in a single experiment, the acceptable confi-

dence level is changed from 95 to 99.9 % (100(1–0.05/

50)). Thus a biomarker that has an AUC 95 % CI of

0.6–0.8, and is therefore is potentially clinically useful,

could have a Bonferroni corrected AUC CI of 0.5–0.85

which drastically increases the uncertainty that the bio-

marker will have any real clinical utility. Bonferroni cor-

rection is considered a very conservative method for

compensating for multiple comparisons, and has the

potential for easily throwing-away real biomarkers (false

negatives) as the number of metabolites measured increa-

ses to many thousands. There are several alternative

methods to multiple comparison correction such as the

Benjamini–Hochberg false discovery rate or FDR (Benja-

mini and Hochberg 1995), but a full discussion is beyond

the scope of this tutorial. Instead, the reader is directed to

the following excellent reviews on false discovery and

false positives in metabolomics (Broadhurst and Kell 2006;

Noble 2009). It is important to stress that by far the best

way to avoid false positives is to repeat the experiment (of

similar sample size) on independent samples drawn from

the same target population. This is known as a validation

experiment. If a biomarker displays potential clinical utility

in both the ‘‘discovery’’ and ‘‘validation’’ experiments then

the researcher can be reasonably confident that this bio-

marker is worth developing and testing in a much larger

clinical trial—or that it can even be moved into clinical

practice. The more validation experiments performed the

more confidence is accrued.

4.2 Multivariate biomarker discovery

Although it is completely valid to treat a metabolomics

experiment as an opportunity to test many hundreds of

potential individual (univariate) biomarker compounds in a

single experiment, often what results is a long list of quite

‘‘weak’’ biomarkers (AUC \ 0.7) with fairly wide confi-

dence intervals. This may be sufficient to imply some sort

of epidemiologically significant association between bio-

logical mechanism and adverse outcome; however the

results may not be strong enough to use any of these

individual biomarkers as clinically useful biomarker test.

In multifactorial diseases (such as heart disease, cancer,

or neurological disorders) it is often the combination of

multiple ‘‘weak’’ individual markers into single a ‘‘strong’’

multivariate model that provides the required high levels of

discrimination and confidence. In classical clinical chem-

istry this is not as easy as it sounds. Trying to perform

multiple experiments on the same sample population is

time consuming and can introduce many measurement

errors. Furthermore, exhaustively adding or multiplying

multiple compound concentrations together in various

combinations, and then testing the resulting ‘‘score’’ with
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ROC curve analysis, is a very inefficient method for

searching for an effective multifactorial predictive model.

Likewise, the probability of finding false discoveries

increases dramatically when compared to testing individual

markers.

Metabolomic studies, combined with modern multivar-

iate data analysis methods, allow us to perform this mul-

tifactorial biomarker discovery in a highly efficient

manner. Because many hundreds of compounds are mea-

sured in parallel (as a single ‘‘snapshot’’ of metabolism) a

metabolomics experiment provides an individual metabolic

profile, or fingerprint, for each analysed individual. A

population of these profiles can be converted into an n by

m data matrix (n individuals, m metabolites), which can

then be analysed by computer using methods known as

data projection or machine learning. Here the computer

algorithm looks for correlated structure in the measured

data that also correlates with the target outcome. The result

is a multivariate mathematical equation, or computer pro-

gram, which provides a single score (derived from multiple

biomarkers) analogous to those discussed throughout this

tutorial. This score can be assessed through ROC curve

analysis as previously described. In addition to the bio-

marker score, these computational methods generally pro-

duce a measure of the importance for each metabolite in

the resulting algorithm, which in turn gives an indication of

the contribution that each metabolite adds to the model’s

performance. In general, the higher the absolute score, the

more influential the metabolite. In regression-based meth-

ods (e.g. PLS, linear or logistic regression) the importance

of a given metabolite can be directly interpreted from the

model’s loadings vector. The biomarker discovery process

is now transformed into discovering a suitably parsimoni-

ous subset of these ‘‘important’’ metabolites (biomarker

signature) that, in combination with the projection algo-

rithm, produces a ROC curve of sufficient utility.

There are many potentially useful data projection and

machine learning methodologies available for this task.

Some of the most popular methods that have been applied

to metabolomic studies are: linear discriminant analysis

(LDA), PLS-DA, decision trees (e.g. CART), random

forests (RF), artificial neural networks (ANN), and support

vector machines (SVM) (Cortes and Vapnik 1995; Barker

and Rayens 2003; Breiman 2001; Eriksson et al. 2001;

Trygg et al. 2007).

Unfortunately the use of computationally intensive

modelling algorithms can easily be abused. This can lead to

the very real possibility of discovering multivariate pro-

jections that randomly correlate highly with the test out-

come - thus giving a false impression of the true predictive

ability of the candidate biomarker signature. This is known

as model over-fitting, or ‘‘fitting a model to noise’’. Careful

cross-validation procedures are imperative to avoid this

problem. This will be discussed in detail later.

There are four steps in the multi-metabolite or multi-

variate metabolomics biomarker discovery process:

(1) data pre-processing, (2) biomarker selection, (3) per-

formance evaluation, and (4) final model creation. We will

describe these steps in a little more detail below and then

present some easy-to-use on-line tools to help readers

explore and perform these steps in the final section of this

tutorial.

4.3 Data pre-processing

4.3.1 Sample-to-sample normalization

Often in metabolomics experiments there is unwanted

sample-to-sample variation. For example, in urinary met-

abolomics studies there can be significant dilution effects

due to individual’s fluid intake prior to sample collection.

In these cases we suggest that some sort of normalization

technique be used to equalize this effect (often called row

or sample normalization). There are many available tech-

niques, the simplest being to normalize to a single

metabolite level (e.g. Creatinine for urine samples).

Alternatives, such as probabilistic quotient normalization

(Dieterle et al. 2006) and quantile normalization (Bolstad

et al. 2003) are proving to be more generally applicable to a

broader range of metabolomics data. A comprehensive

comparison of state-of-the-art sample-to-sample normali-

zation techniques has recently been published (Kohl et al.

2012).

4.3.2 Data filtering

Most metabolomics platforms can simultaneously measure

hundreds or even thousands of metabolites in a single

experiment. However, only a small proportion of these

metabolites will typically exhibit changes correlated with

the conditions under study. The observed variations for the

majority of the measured metabolites simply reflect ran-

dom fluctuations around a baseline response. Before

embarking on the selection of multiple biomarkers, it is

important to initially filter out clearly non-informative

metabolites that will never contribute to the final biomarker

panel. This step is very important for high-dimensional

metabolomics data, but often underappreciated by many

researchers. Prudent data filtering has the potential of

reducing the computational cost as well as improving the

power to identify real biomarkers (Hackstadt and Hess

2009; Bourgon et al. 2010). Non-informative metabolites

can be characterized into three groups: (1) those exhibiting

very small values close to the limit of detection; (2) those
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in which the given metabolite are only detected in very few

specimens; and (3) those that are near-constant irrespective of

the difference in clinical outcome. The identification of those

metabolites belonging to the first category requires some

platform-specific knowledge, whereby concentrations below

a specified limit of detection are set to ‘‘missing’’. Again

missing values are used to represent features that are not

detected in a given specimen. Metabolites with more than a

user-defined percentage of missing values (typically 20 %)

should then be removed from the data set, and the remaining

values replaced with some small values (i.e. their lower

detection limits) or estimates derived from a missing value

imputation algorithm. Finally, the low variance features can

be detected using the standard measure of relative variance

known as the relative standard deviation, RSD (the sample

standard deviation divided by the sample mean). An

RSD \ 15 % is usually sufficiently invariant to warrant

removal. However, depending on the reproducibility of the

analytical platform of choice, researchers may want to choose

a higher/lower threshold. Specific threshold values need to be

determined empirically but the measurement scientist.

4.3.3 Data transforming

All parametric statistical methods assume that that the data

has come from a specific type of probability distribution,

and then make inference based on the parameters of that

chosen distribution. If the data under examination does not

hold to that distribution, then the inferences can be false, or

at best misleading. Methods popular in the metabolomics

community (ANOVA, MANOVA, CVA, LDA, PLS-DA)

assume that the data comes from a Gaussian distribution.

Or to be more precise they assume that a given model’s

residuals are normally distributed with a homogeneous

variance. Residuals are estimates of experimental error

obtained by subtracting the observed outcome from the

estimated outcome (positive and negative outcome often

being represented as the numerical values ?1 and -1

respectively). Therefore, in order for any statistically

meaningful model to be produced from metabolomics data

it advisable to transform the data before modelling.

Although there is no fixed protocol, the standard practice

for metabolomics data is to perform logarithmic transfor-

mation (i.e. replace each value, x, with log10(x)). This has

the effect of monotonically reducing extremely high val-

ues, which in turn produces homoscedastic and near-nor-

mal or near-Gaussian model residuals. Other monotonic

transforms have also proved useful (e.g. power transforms

such as square root, or cube root) and a more detailed

discussion can be found in a recent paper on the subject

(van den Berg et al. 2006). Note that non-parametric data

analysis methods, such as those based on decision trees

(e.g. CART and RF) do not require data transformation.

4.3.4 Data scaling

For a given biofluid specimen (e.g. human serum) the

average abundance of the many metabolites found therein

can vary by several orders of magnitude. As a result, highly

abundant compound species can dominate a projection

model and obscure small but potentially important bio-

markers during the downstream multivariate analysis.

Therefore, data scaling is another very important step in

biomarker discovery. Data scaling methods divide each

data point for a given metabolite by a scaling factor that is

usually some measure of data dispersion for that feature. In

most cases, scaling is also applied together with data

centering. The most popular scaling method is ‘‘autoscal-

ing’’ (also known as standardization or unit variance scal-

ing) in which the data for each metabolite is mean centred

(subtract the sample mean from each data point) and then

divided by the sample standard deviation. The result is that

the data for each metabolite will have a unit mean and unit

standard deviation, and thus each metabolite can be com-

pared with no bias due to absolute abundance. It is

important to note that autoscaling is a very sensitive to

large deviations from the sample mean as outlying samples

can totally skew the scaling coefficients. It is therefore

often sensible to perform outlier detection and data trans-

formation before data scaling. There are several popular

alternative scaling methods (such as Pareto scaling or

Range scaling) and again a more detailed discussion can be

found in the paper by van den Berg et al. (2006).

4.4 Biomarker selection

As discussed earlier, in order to implement a cost-effective

and reproducible clinical test, a multivariate projection

model utilizing 100s of molecular features is not ideal.

Mathematically this may be feasible, but developing a

single assay to reproducibly quantifying many hundreds

metabolites for use in a hospital clinical chemistry labo-

ratory is an extremely difficult task and often impractical.

Developing an assay based on a short list of 1–10 bio-

markers is a far more attractive proposal and any sub-

sequent computational algorithm is likely to be

mathematically much more robust.

For metabolomics biomarker discovery this means that,

within the modelling process, it is important to find the

simplest combination of metabolites that can produce a

suitably effective predictive outcome. This is not a simple

task, as the biomarker discovery (feature selection) process

now involves optimizing two parameters: (1) the biomarker

utility—AUC etc. and (2) the number of metabolites used

in the predictive model. Multi-objective optimization

problems such as these have been the subject of intensive

studies in the bioinformatics and machine learning
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communities for many years (Handl et al. 2007; Knowles

et al. 2001). Here we provide a very high-level overview of

the two most popular approaches applicable to metabolo-

mics. Also, the final section of this tutorial presents some

easy-to-use on-line tools to explore and perform biomarker

selection. For a more comprehensive review and discus-

sion, please refer to two excellent review papers (Isabelle

and Andr 2003; Saeys et al. 2007).

4.4.1 Feature selection using filters

This is the simplest and most widely used method of feature

selection in metabolomics studies. As described earlier most

projection models provide both an overall model prediction

score and a variable importance score. Feature filtering

simply involves ranking the variables used in the model in

order of importance, and then repeating the modelling pro-

cess using the top N metabolites. Each subset model is then

evaluated, producing the requisite ROC curve. The investi-

gator then subjectively chooses the optimal value for N such

that an adequate ROC curve is produced. Although this

method is very straightforward it does require the investi-

gator to have a good understanding of the underlying mod-

elling algorithm, and may require some manual editing of the

variable importance list before ranking. There is no theo-

retical guarantee that the top N variables from the full model

will produce the optimal subset model (of the same com-

plexity). This is particularly true for projection methods such

as PLS-DA, where the process of projecting the metabolite

responses into a latent structure of reduced dimensionality

means that there is an inherent information compression,

which although optimizing the model performance at the

complete fingerprint level, does not necessarily optimize the

model at the parsimonious metabolite level. That said, this

very quick and methodologically transparent method of

variable selection can often produce a model with the pre-

requisite performance.

4.4.2 Feature selection using wrappers

Another popular approach to biomarker selection is known

as the wrapper method. Methods falling under this cate-

gory are wholly data-driven and require no direct inter-

pretation of a model’s parameters (or variable importance

score) and are independent of the chosen modelling

methodology. The simplest of these methods is Forward

Selection. In this approach, starting with no variables, one

adds variables to the model, one at a time. At each step,

each variable that is not already in the model is tested for

inclusion in the model. The variable that improves the

model’s prediction most significantly is added to the

model. The variable addition process is repeated until a set

maximum number of variables is reached or when there is

no significant improvement to the model. A similar

approach called Backward Elimination starts with the full

model and then removes variables showing the smallest

contribution to the model, one at a time. A modification of

the forward selection technique, known as Stepwise

Selection, combines both of the above approaches. As with

forward selection, variables are added to the model one at a

time; however after a variable is added, the stepwise

method looks at all the variables currently included in the

model and deletes any variable which is no longer signif-

icantly contributing to the model’s performance. Alter-

nately, a more computationally intense selection method

known as subset selection can be used. This method does

not settle for a single ‘‘best’’ model, but instead tries to find

the best one-variable model, the best two-variable model,

the best 3-variable model, etc. up until the best N-variable

model. Subset selection is performed either by exhaustively

searching all combinations of available variables or, as this

becomes mathematically intractable when the number of

available variables is large, optimal subsets are searched

using a heuristic methodology such as genetic algorithms

(Broadhurst et al. 1997; Jarvis and Goodacre 2005).

It is important to note that depending on the statistical or

machine learning method one uses for filtering or feature

selection, it may be necessary to optimize each individual

candidate model’s structure (e.g. number of latent variables

in a PLS-DA model) to avoid over-fitting. This is done

using cross-validation and is discussed in the next section.

However, the final result will be one or more fixed

model(s) (i.e. fixed variables subset, fixed model structure,

and fixed parameter values) which will also have to be

independently validated outside the feature selection pro-

cess as a whole.

4.5 Performance evaluation

4.5.1 Cross-validation

It is imperative that the performance of any biomarker

selection process be independently evaluated so that over-

fitting is avoided. The easiest approach for cross-validation

(CV) is to create what is known as a holdout set. The

available data set is split into two parts, the training set and

the hold-out set (or test set). Typically the hold-out set is

selected to be 1/3 of the total data, and is randomly strat-

ified such that it suitably represents the training set (i.e.

equal proportion of outcomes, and similar demographics

etc.). In this way ROC curve analysis of a biomarker model

based on both the training set and hold-out set can be

performed. The true performance of the biomarker model

can only be judged by the holdout set ROC curve analysis.

Often biomarker discovery studies unavoidably involve

small sample numbers (e.g. less than 100 individuals) and/
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or the sample populations are heterogeneous making it

difficult to effectively split the resulting data into two

suitably representative sets. In these situations methodol-

ogies have been developed in order to evaluate how a given

model’s predictive ability will generalise to an independent

data set without actually creating a holdout set. These

methodologies are known as CV. A single round of CV

involves partitioning a sample of data into two subsets,

performing the model optimization on one subset (training

set), and evaluating the model performance on the other

subset (validation set). To produce a realistic estimate of

model performance, multiple rounds of CV are performed

using different partitions, and the performance results are

averaged over the rounds. Common types of CV include

repeated random subsampling (e.g. Monte Carlo sampling),

k-fold, and leave-one-out CV (Picard and Cook 1984;

Eriksson et al. 2001; Efron and Tibshirani 1997).

4.5.2 Nested cross-validation

Generally the biomarker selection process involves two

levels of model validation; one to optimize the model

structure given for each candidate subset of variables, and

the other to validate the variable selection process as a

whole. Again if the investigator is dealing with small

sample sizes then nested CV can be performed. The

simplest way to explain this process is to use Monte Carlo

cross-validation as an example. Firstly, step-1, the com-

plete data set is randomly split into training and test sets

as described above. Then, step-2, the filter/wrapper bio-

marker selection is iteratively performed using only the

training set, whereby each candidate variable-subset

model is evaluated using CV (this is the nested CV). The

result will be an optimal parsimonious model, which is

then independently validated using the test set. The per-

formance of this optimal model is judged solely on the

ROC curve analysis of the test data. Step-1 and step-2 are

then repeated N times such that N optimal model evalu-

ations are performed. By inspection of the feature subsets

selected across all N optimal models (typically with a

histogram) the investigator can determine whether a con-

sistent panel of metabolite biomarkers has been found. By

inspection of the N model parameter-sets the investigator

can determine whether a consistent model structure has

been determined. By inspection of the N different ROC

curves, the investigator can determine the value and

consistency of the predicted outcome. A full technical

description of nested cross validation, also known as

double CV, and its various subtle variations is beyond the

scope of this tutorial but these issues are discussed in

detail elsewhere (Westerhuis et al. 2008; Filzmoser et al.

2009; Liebmann et al. 2010; Smit et al. 2007; Szymanska

et al. 2012).

4.5.3 Permutation testing

A second level of model validation can be performed using

a technique known as permutation testing (Good 2011). In

permutation testing, the null hypothesis to be proved or

disproved is that the optimal model found during the bio-

marker discovery process could also have been found if

each patient sample had been randomly assigned a clinical

outcome (positive or negative) in the same proportion as

the true assignment. In this test, the model structure and

variable subset is fixed, and multiple ‘‘randomly permuted’’

models evaluated (e.g. N = 1,000). This results in a ref-

erence distribution of the null hypothesis. The ‘‘true’’

(correctly assigned) model performance is then statistically

compared to this reference distribution and a p value cal-

culated. A p value \0.05 means that given a randomly

permuted outcome variable there is less than a 5 % chance

that a model of similar performance to the ‘‘true’’ non-

permuted model will be produced.

Cross-validation and permutation approaches offer dif-

ferent measures of a biomarker model’s utility. Permuta-

tion testing indicates whether a given model is significantly

different from a null model (random guessing) for the

sample population while CV gives an indication of how

well a given model might work in predicting new samples.

In other words, permutation testing validates the proposed

model structure; while CV validates the generalizability of

the model. For example, a biomarker model can give sig-

nificant p value in permutation tests but perform poorly in

CV tests. On the other hand, a model with reasonable

performance based on CV could fail permutation tests

(Westerhuis et al. 2008). These two measures are com-

plementary to each other and both should be performed

when evaluating a multi-component biomarker model

(Bijlsma et al. 2006; Xia and Wishart 2011).

4.6 ROC curve analysis for biomarker discovery

ROC curve analysis for model performance during bio-

marker discovery differs from the ROC curve analysis of a

fixed biomarker score (as described earlier in this tutorial)

in one fundamental way. During CV not only are the

optimal subset of metabolites being selected, but also the

optimal parameter values for the associated modelling

procedure are estimated. In particular, each iteration of the

CV process produces different model parameter values,

and hence potentially a different range of model prediction

values. So when ROC curve analysis is performed on the

multiple CV test sets, for a given candidate biomarker

model, a family of ROC curves are produced, which can

then be averaged to produce a smooth curve. Figure 6

shows a set of ROC curves for SVM models created using

different subsets of metabolites selected using the filter
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approach. As with the fixed biomarker ROC curve analysis,

confidence intervals can also be generated for the cross-

validated models using a variation of the bootstrap meth-

odology described earlier. In this instance the averaged CV

predicated ROC curve is used as the test metric, rather than

the ROC curve generated by using all the data on a fixed

model. In this way the confidence interval reflects both the

uncertainty in the sampling procedure and also the uncer-

tainty in the parameter optimization.

4.7 Model creation

Once the biomarker discovery phase is complete, and

hopefully a suitably robust and effective set of metabolites

has been defined, then the last stage of the process is to

generate the final fixed biomarker model (or computer

algorithm). This is done using all the available data for the

metabolite subset, applied to the optimal model structure.

Essentially it is a process of finalizing, or fixing, the opti-

mal model parameters. It is possible that the modeling

method used to ‘‘discover’’ the metabolite biomarkers is

not the best method to ‘‘translate’’ the biomarkers into

clinical practice. For example the optimal subset of bio-

markers may be determined by PLS-DA, but more effec-

tively translated (i.e. improved performance) using a

simpler model such as logistic regression. Additionally, a

researcher may find it preferable to change the analytical

platform used to measure the chosen final metabolite list.

For example the discovery phase experiment may have

been performed using an untargeted LC–MS protocol;

whereas once the metabolites have been definitively iden-

tified it may be preferable to measure the metabolite

responses using a more sensitive targeted instrument such

as a triple quadrupole LC/MS/MS system. Changes in both

technology and model selection are perfectly acceptable in

practice, as long as a suitable validation experiment is

performed. This validation process is discussed in the next

section.

Once the model parameters are fixed, a final ROC curve

analysis can be performed to define its performance. It is at

this point that one may wish to define the optimal decision

boundary for classifying samples as either being positive or

negative outcome. This should be done under close con-

sultation with physicians, disease-specific experts, health

economists and other end users. This decision boundary

will then be used to define the final model’s specificity and

sensitivity (with confidence intervals).

4.7.1 Parameter confidence intervals

Great care must be taken to make sure that the final bio-

marker model is mathematically robust, particularly if the

sample size is small. In other words, the final model

parameter values must be very stable. This assumption can

be tested using bootstrap resampling of the complete data

set. Here, for each resample the model is optimized and its

parameter values recorded. Then, based on multiple res-

amples (e.g. N = 1,000), 95 % confidence intervals for

each of the parameter values are estimated. Evaluation of

these confidence intervals can be somewhat subjective.

However, if the standardized variance is high ([20 %) and

the confidence range close to zero, then one may want to

reassess the biomarker discovery process as a whole before

moving forward. After all the required statistical analysis

has been performed, and all confidence intervals have been

determined to be within a given tolerance, then the final

model needs to be validated experimentally. A detailed

discussion of this process is beyond the scope of this

tutorial, however the various kinds of experiment valida-

tion are worth introducing.

Note For publication it is imperative that the results of

the nested CV be reported, as this provides the most real-

istic indication of the biomarker utility. The final model

creation step is used to simply fix the final model param-

eters and to assess whether the model is robust enough for

further repeat experiment validation. Once repeat experi-

ments have been conducted then the performance of the

final model on this new data must be reported and used as

the realistic measure of clinical utility.

4.8 Repeat and replicate biomarker validation

Validation experiments can be performed in several ways,

or more exactly, with several levels of imposed experi-

mental variability. The simplest is a lab repeatability study,

Fig. 6 Comparison of different models based on ROC curves. Six

biomarker models were created using a linear SVM with different

numbers of features. ROC curves were generated using the predicted

class probabilities from repeated cross validation for each model. The

legend shows the feature numbers and the AUCs of the six models
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where replicate specimens are used. In this kind of study

the metabolite measurements are performed on the identi-

cal instrument, by the same observer, in the same lab. The

degree of agreement of the ROC curves can then be

compared between the two repeat studies. If quantified

metabolite concentrations are measured then the degree of

agreement in biomarker concentration for a given test

subject can be compared.

The second level of validation is a lab replication study.

Here independent samples are drawn from the same target

population. The number of samples should be no fewer,

than the ‘‘discovery’’ experiment. Then these samples

should be analysed on the same instrument as the discovery

study and, if possible, using the same observer. Compari-

sons at this stage can be used to remove false positives.

The third level of validation is an inter-lab repeatability

study that again uses replicate specimens from the indi-

viduals that were measured in the discovery experiment,

but the validation experiment is performed in a different

lab using a different instrument (potentially the same

manufacturer) and a different observer. Comparisons to the

previous studies can determine any increased variability

due to independent lab practices.

The fourth level of validation is an inter-lab replication

study. Again, a new set of test subjects are drawn from the

target population; however, this time, as with level three,

the experiment is performed in an independent lab. If the

comparison of ROC curves, and measures of reproduction

of individual metabolite concentrations, are within a

specified tolerance and remain at a level that indicates

clinical benefit then the selected biomarkers can be con-

sidered strong enough to withstand scrutiny of a formal

clinical trial. If the inter-lab variability is outside the tol-

erance limits then it may be worth investigating an alter-

native, potentially more stable, analytical platform or assay

for the discovered biomarkers.

5 Comments and common pitfalls

5.1 Potential issues in data filtering a feature selection

Due to the high-dimensional nature of most ‘omics’ data,

including that coming from metabolomics experiments,

data filtering procedures are often used before a biomarker

model is created. In the data pre-processing section, we

described some standard methodologies based on using the

intensities or relative variances of features. In these

methods, no outcome information is used in the filtering

process (non-specific filtering). However, improper use of

data filtering proved to be a very problematic issue during

the early days of microarray data analysis (Ambroise and

McLachlan 2002). This issue has also been frequently seen

in metabolomics. A typical example is that a t test is first

used to filter out non-significant features and then the

remaining features are used to build a predictive model.

This approach can easily produce very good results. It is

then claimed the model can be used to for disease diagnosis

with very high accuracy. This assertion is not justified

because the model was essentially evaluated on the same

dataset that was used to select biomarkers. In other words,

information about the class labels was already ‘‘leaked’’

during the filtering step without any sort of validation to

avoid false discoveries. To correct for this bias, a predictive

model must be evaluated using different datasets that have

not been used at either the feature selection stage or the

model training stage. We suggest that one first perform

non-specific filtering as described earlier, and then perform

an embedded feature selection procedure inside each iter-

ation of CV.

5.2 Implications of normalization procedures

Data scaling (and centering) procedures involve the use of

population parameters estimated from the data (i.e. mean or

standard deviation) to improve data conformity to yield

better performance. This approach works very well in CV,

when all the data (training or testing in each split) are more

likely drawn from the same distribution. However, this is

not necessarily the case in the real-world applications in

which the entire population is usually more diverse than the

samples. Therefore, centering and scaling can have a rather

negative impact on overall model performance. This issue

does not exist for transformation (i.e. log transform) pro-

cedures, which can be applied directly on the new values.

5.3 Issues with AUC-based performance evaluation

There are a few common pitfalls associated with ROC

based metrics (Obuchowski et al. 2004; Berrar and Flach

2010). In particular, using AUC as the only performance

measure for a biomarker model can sometimes be mis-

leading. As discussed earlier, the AUC essentially quanti-

fies the ranking ability of a biomarker model. If all positive

samples are ranked before the negative samples, the AUC

is 1.0. This only suggests that the model can potentially

give a perfect prediction on these new samples. In practice,

when predicting the outcome for new samples, the decision

boundary calculated from the training data may still not be

optimal for the new samples. This will lead to errors, even

though the rankings are correct. Similarly, two models with

different error rates can sometimes give the same AUC.

This situation is illustrated in Fig. 7.

When comparing the performance of different models

using AUC, a common mistake is to check if the CIs of the

AUC overlap. However, the difference between two AUC
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may be statistically significant even when their CIs overlap.

The correct procedure, especially when comparing two

groups, is always to calculate the CI for the difference

between the underlying ROC curves-i.e. an estimate of the

difference in AUC. If the lower bound of the resulting CI is

less than zero then there is no significant difference.

5.4 Improper performance evaluation

It is often the case that the performance of a biomarker

model reported in the literature cannot be validated in

independent studies. Although population heterogeneity

can be an important factor leading to poor reproducibility,

it is more often the case that improper procedures used in

performance evaluation in the original study led to an

overoptimistic or misleading assessment of the test’s per-

formance. For instance, CV is often used to determine the

best subset of features that give the maximal discrimination

for a given modelling algorithm. One common pitfall is

that both the feature selection and model evaluation are

performed using the same data set; thus the model has been

optimized and tested on the same data, which usually leads

to unrealistically good performance measures. The correct

approach is to have the performance of the model evaluated

on independent data. In practice, as described in this

tutorial, performing nested CV can approximate external

validation. When doing this, one needs to be aware that this

result is not actually the performance measure of the final

global, fully optimized model. Rather, it reflects the aver-

age performance of multiple local optimal models created

in each fold based on the training data. These models can

be very different especially if the sample size is small or

very heterogeneous. As the sample size increases, the local

optimal models created in each fold will gradually con-

verge, and the performance will be close to the actual

performance of the final optimal model.

6 A list of recommendations for biomarker reporting

Throughout most of this tutorial we have provided advice,

commentary and explanations regarding the selection and

analysis of both single and multiple biomarkers for disease

diagnosis and/or prediction. However, we also think it is

important to provide some recommendations on how to

implement these ideas, especially with regard to reporting,

publishing and implementing biomarkers or biomarker

models. Here is a list of nine recommendations that sum-

marize some of the key points of this tutorial.

(1) Record and report absolute concentration data where

possible. Remember that nearly all approved clinical

tests require absolute concentration data.

(2) Biomarkers must consist of positively identified

compounds. Unknowns or tentatively identified fea-

tures cannot (and never will) be approved for clinical

laboratory testing.

(3) Report details on the sample size (i.e. the size of

testing, training and validation samples), population

characteristics and features of the diseased and

healthy populations along with any relevant meta-

bolomics data.

(4) Report the classification or biomarker modelling

method(s) used, the validation steps performed and

confidence intervals of the final biomarker model.

(5) Minimally, report the sensitivity/specificity of the

biomarker(s) or biomarker model. Ideally ROC

curves with confidence intervals should be provided

and plotted.

(6) If possible provide the equation(s), rules, algorithm

parameters or software code (as supplementary

material) used to generate the biomarker model.

(7) Compare the performance of your biomarker(s) or

biomarker model to previously existing methods

using appropriate quantitative or statistical methods.

(8) Recent court decisions suggest that biomarkers derived

from naturally existing genes, proteins or metabolites

are not very patentable. In other words, no research

group is likely to get rich from discovering a bio-

marker—but they may become famous. The best way

of getting a useful biomarker or set of biomarkers into

practice is to collaborate with clinical chemists or

clinical microbiologists and to work with them to

rigorously validate and verify the biomarker(s) on

Fig. 7 Difference between ranking and classification. The two scatter

plots show the predicted class probabilities for 50 new samples by

two biomarker models. Both models are able to rank all new samples

correctly. Therefore, they both will have the same AUC (1.0) but

exhibit different error rates (3/50 and 1/50 respectively) due to their

different decision boundaries, which were determined during the

model creation process
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‘‘approved’’ (Clinical Laboratory Improvement

Amendments, CLIA or other regulatory bodies) equip-

ment. Once suitably validated, biomarkers can be used

in the clinic. Hiding key information about biomarkers

or biomarker models will inevitably slow down their

translation to the clinic and limit their benefits to the

intended population.

(9) Given that suitable ethical consent is granted, and given

any intellectual property rights have been secured (i.e.

upon publication of results), we strongly encourage

researchers to deposit their raw quantitative (or semi-

quantitative) metabolite data onto an online repository

such as Metabolights (www.ebi.ac.uk/metabolights/)

(Sansone et al. 2012) so that other researchers can

verify, or improve upon, the presented research.

7 ROCCET: an online tool for ROC based biomarker

analysis

Given the complexities and challenges of biomarker anal-

yses, it is highly recommended that trained bioinformati-

cians or biostatisticians familiar with the field should carry

out biomarker analysis. However, many clinicians and

bench researchers who are interested in conducting bio-

marker analysis do not have ready access to these resour-

ces. Likewise, there are many who would like to learn how

to perform these kinds of analyses themselves or at least

have enough knowledge to ask the right questions or go to

the right people. This tutorial was developed to help these

individuals. In particular, we have tried to give a simplified

overview of the common methods, suggestions and pitfalls

associated with clinical biomarker analysis, especially with

regard to multi-biomarker analysis. Some of the techniques

may be simple to grasp, but hard to implement—especially

if one is not a computer programmer or statistician. Other

concepts may need to be seen, explored or tested interac-

tively to really come to a full understanding of their

strengths or limitations. To this end, we have developed a

relatively simple and user-friendly online tool—ROCCET

(ROC Curve Explorer & Tester, http://www.roccet.ca) to

help readers better understand the methods and ideas

described in this tutorial. ROCCET is intended to serve as a

teaching/training tool as well as to assist researchers and

clinicians who are new to biomarker analysis and who are

interested in performing some basic exploratory biomarker

selection and modelling.

7.1 Data input and processing

ROCCET has a number of pre-collected, pre-processed and

pre-tested data sets (MS and NMR) derived from our own

metabolomics research. These data sets are designed to

help users test the concepts or visualize the methods

described in this tutorial. Users are free to upload their own

data as well. ROCCET accepts a compound concentration

table (or aligned peak intensity table) with the sample

values/concentrations in rows and the feature labels in

columns. The second column must always be a set of class

(healthy or disease) labels. The data table should be

uploaded as a text file in comma separated value (.csv)

format that can be easily generated from any spreadsheet

program. In order to improve its utility and efficiency in

handling different omics data types, a number of utilities

have been implemented to perform basic data processing.

These include a variety of functions for filtering non-

informative features, functions for missing value imputa-

tion, as well as various data transformation and scaling

procedures. Detailed descriptions of these functions are

available on the data processing page and ROCCET’s

FAQs page. ROCCET supports (1) classical ROC curve

analysis, (2) multivariate or multi-marker ROC curve

exploration and (3) ROC curve testing. These modules are

described in more detail below:

7.2 Classical ROC curve analyses

This module allows users/readers to explore, visualize and

perform the ROC analytical methods described in Sect. 3

of this tutorial including classical ROC curve analyses for

single biomarkers or features, as well as: (1) calculation of

AUC and CI, (2) identification of optimal thresholds, (3)

calculation of sensitivity, specificity, as well as the CIs for

any given threshold. The user can interactively adjust many

output parameters and display options.

7.3 Multivariate ROC curve explorer

This module aims to help users/readers identify multiple

biomarkers and assess their classification performance as

outlined in Sect. 4 of this tutorial. ROCCET offers three

well-established machine learning or statistical algorithms

with built-in feature importance measures: (1) linear sup-

port vector machine (SVM), (2) PLS-DA and (3) RF. To

estimate the predictive performance as well as the stability

of the selected features, a balanced Monte-Carlo cross-

validation (MCCV) procedure with 50 iterations is used. In

each MCCV, two-thirds of the samples are randomly

selected to evaluate the feature importance and the most

important features are selected with different cut-offs to

build models which are validated on the remaining 1/3 of

the samples. These models are assessed by AUC or pre-

diction accuracies. The results are presented in various

graphical ‘‘views’’ such as the ROC view, the Prob(ability)
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view, the Sig(nificant) Feature view, etc. to facilitate their

understanding.

7.4 ROC curve tester

This module allows users/readers to manually select one or

more features and to create a ‘‘custom’’ classifier using one

of the three algorithms described above. The performance

of the model can then be evaluated using MCCV proce-

dure. The significance of the model can be further validated

using permutation tests. Users can also manually specify

‘‘hold-out’’ sample subsets to test the performance of the

model created using the CV procedures.

7.5 Example analysis

Here we present the analysis on a subset of the data from a

recently published metabolomics study on early pre-

eclampsia (Bahado-Singh et al. 2012). The data contains 42

metabolite concentrations measured on 90 human plasma

samples collected from 30 patients and 60 healthy controls.

The purpose of the study was to identify a small number of

metabolites that could be used to reliably predict the

eventual onset of the disease. This data set is available as

one of the test data sets on ROCCET’s web site.

7.5.1 Data upload and processing

First, go to the ROCCET home page (http://www.roccet.ca).

On the ‘‘Data Upload’’ page, select the first test data set and

click ‘‘Submit’’. The next page shows the summary of

ROCCET’s data integrity check. Click ‘‘Next’’ to enter the

‘‘Data Processing’’ page. Use the default selections and

click ‘‘Submit’’. The next page shows a graphical summary

of data normalization process. Click ‘‘Next’’ to enter the

‘‘Data Analysis’’ page.

7.5.2 Data analysis

The ‘‘Data Analysis’’ page allows users to choose among

the three analysis modes which we will explore below.

Select the univariate ROC curve analysis and click ‘‘Sub-

mit’’. The page shows all features ranked by their AUC.

Click on any compound name, the corresponding ROC

curve will be generated. In addition, a box plot overlaid

with the optimal cut-off is also displayed. Users can click

the ‘‘Next’’ button to view the detailed sensitivity, speci-

ficity and confidence intervals for the current selected

feature. Using the left navigation tree to return to the ‘‘Data

Analysis’’ page, select multivariate ROC curve explorer

and then click ‘‘Submit’’ to start ROCCET’s automatic

feature selection and performance assessment. The result

will return in a few seconds. Various views are displayed

through multiple tabs. For example, the default ‘‘ROC

view’’ shows the ROC curves of all models under inves-

tigation. The ‘‘Sig(nificant) Features’’ view shows impor-

tant features associated with these models. The default

classification algorithm is linear SVM. Users can also

choose PLS-DA or RF. Return to the ‘‘Data Analysis’’

page, select the ROC curve tester option and click ‘‘Sub-

mit’’. In the next page, select the top five metabolites then

click ‘‘Submit’’. The performance of linear SVM (the

default) is AUC *0.98 with 95 % CI [0.971–1.00]. Per-

mutation tests show that the model is very significant

(p \ 0.002 based on 500 permutations).

8 Summary and conclusions

Most metabolomics researchers are quite familiar with

using various multivariate statistical approaches to analyze

and interpret their metabolomics data. Biomarker analysis,

however, requires a different approach. Based on our

review of the literature, our assessment of numerous pre-

sentations at many conferences and our discussions with

many metabolomics scientists, it appears that when it

comes to biomarkers, many researchers are using subopti-

mal methods with improper performance measures and

incomplete reporting standards. To help remedy this situ-

ation we decided to write this tutorial and to prepare the

ROCCET web-server.

In sect. 1 we discussed some of the key differences and

shared similarities between functional metabolomics and

biomarker discovery. In sect. 2 we described some of the

successes and challenges with regard to biomarker discov-

ery and biomarker implementation in metabolomics. In

sect. 3 we introduced ROC curves and discussed their utility

in evaluating single biomarker (classical clinical chemistry)

tests. In sect. 4 we summarized the advantages and descri-

bed the methods used for generating and assessing multi-

biomarker models. In sect. 5 we discussed the pitfalls and

potential shortcomings of some of these biomarker analysis

methods. We also provided some examples of common

errors seen in many biomarker studies. In sect. 6 we tried to

summarize some of these points into a set of eight recom-

mendations regarding the measurement, reporting and

implementation of metabolomics biomarkers. Finally in

sect. 7 we introduced ROCCET, a web-based tool to help

readers visualize, interact and better understand the con-

cepts introduced in sects. 1–5.

Although this tutorial is written with metabolomics and

metabolite concentration data in mind, most of the

approaches are equally applicable to non-targeted meta-

bolomics data (using relative concentrations instead of

absolute concentrations) and to other omics (transcripto-

mics and proteomics) data as well. This tutorial is not
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meant to be exhaustive, covering all aspects of biomarker

selection or disease risk assessment. Rather, it was

designed to focus on the most common approaches and the

most practical solutions. We are hopeful that this document

and the accompanying software resources will further

inspire and educate the metabolomics community. We also

hope that this information may help lead to the discovery,

validation and clinical implementation of newer or better

disease biomarkers that may eventually have a long-lasting

impact on human health and quality of life.
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