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Abstract
Depression	is	the	most	frequent	psychiatric	disorder	in	the	world.	Recent	evidence	
has	 shown	 that	 stress‐induced	GABAergic	 dysfunction	 in	 the	 nucleus	 accumbens	
(NAc)	 contributed	 to	 the	 pathophysiology	 of	 depression.	 However,	 the	molecular	
mechanisms	underlying	these	pathological	changes	remain	unclear.	In	this	study,	mice	
were	constantly	treated	with	the	chronic	unpredictable	mild	stress	(CUMS)	till	show‐
ing	depression‐like	 behaviours	 expression.	GABA	 synthesis,	 release	 and	uptake	 in	
the	NAc	tissue	were	assessed	by	analysing	the	expression	level	of	genes	and	proteins	
of	Gad‐1,	VGAT	and	GAT‐3	by	qRT‐PCR	and	Western	blotting.	The	miRNA/mRNA	
network	regulating	GABA	was	constructed	based	on	the	bioinformatics	prediction	
software	and	further	validated	by	dual‐luciferase	reporter	assay	in	vitro	and	qRT‐PCR	
in	vivo,	respectively.	Our	results	showed	that	the	expression	level	of	GAT‐3,	Gad‐1	
and	VGAT	mRNA	and	protein	significantly	decreased	in	the	NAc	tissue	from	CUMS‐
induced	 depression‐like	mice	 than	 that	 of	 control	mice.	However,	miRNA‐144‐3p,	
miRNA‐879‐5p,	miR‐15b‐5p	and	miRNA‐582‐5p	that	directly	down‐regulated	the	ex‐
pression	of	Gad‐1,	VGAT	and	GAT‐3	were	increased.	In	the	mRNA/miRNA	regulatory	
GABA	network,	Gad‐1	and	VGAT	were	directly	regulated	by	binding	seed	sequence	of	
miR‐144‐3p,	and	miR‐15b‐5p,	miR‐879‐5p	could	be	served	negative	post‐regulators	
by	binding	to	the	different	sites	of	VGAT	3′‐UTR.	Chronic	stress	causes	the	impaired	
GABA	synthesis,	release	and	uptake	by	up‐regulating	miRNAs	and	down‐regulating	
mRNAs	and	proteins,	which	may	reveal	the	molecular	mechanisms	for	the	decreased	
GABA	concentrations	in	the	NAc	tissue	of	CUMS‐induced	depression.

K E Y W O R D S

depression,	GABA,	nucleus	accumbens,	stress

www.wileyonlinelibrary.com/journal/jcmm
https://orcid.org/0000-0003-4942-9281
mailto:
mailto:
https://orcid.org/0000-0002-7873-1343
http://creativecommons.org/licenses/by/4.0/
mailto:znbalooch@yahoo.com
mailto:pathology@163.com


7022  |     MA et Al.

1  | INTRODUC TION

Major	depressive	disorder	 (MDD),	which	 is	characterized	by	an‐
hedonia	or	depressed	mood,	is	a	common	and	debilitating	mood	
disorder	in	the	world.1	In	terms	of	its	pathogenesis,	different	re‐
ports	had	 suggested	 that	 the	environmental	 stresses	 to	 the	ge‐
netically	vulnerable	individuals	were	attributed	to	the	depression	
onset	or	relapse.2	Moreover,	the	evidence	from	many	clinical	tri‐
als	 showed	 that	 the	 early	 life	 stress	 could	 influence	 the	 neural	
development	and	lead	to	the	deficiency	in	brain	reward	and	cog‐
nitive	circuits,	subsequently	resulting	in	the	increased	risk	in	de‐
pression.3	However,	 the	cellular	and	molecular	changes	 induced	
by	adverse	stressor	 leading	 to	defect	 in	 the	cognitive	and	emo‐
tional	circuits	have	not	yet	elucidated.

The	hypothesis	of	GABA	dysfunction	has	long	been	considered	
as	the	important	pathological	mechanism	of	depression.4,5 The ev‐
idence	from	clinical	trials	indicated	that	GABAergic	neurotransmis‐
sion	and	GABA	content	were	substantially	decreased	in	depressed	
patients.6‐8	Additionally,	GABAergic	 interneuron	 is	a	 leading	cause	
of	alteration	in	depressed	patients	and	is	beneficial	to	the	increased	
of	self‐focus	and	cogitation	in	depressive	patients.9,10	Our	previous	
electrophysiological	study	showed	that	inhibitory	synaptic	transmis‐
sion	was	down‐regulated	in	NAc	GABAergic	neurons	in	the	depres‐
sion	model.11	The	lower	GABA	content	from	presynaptic	terminals	
in	the	NAc	tissue	may	be	conferred	to	the	aetiology	of	chronic	un‐
predictable	mild	 stress	 (CUMS)‐induced	 depression.	 Accumulating	
evidences	 indicate	 that	 GABA	 neurotransmission	 alterations	 are	
associated	with	the	pathophysiology	of	major	depression	disorder.	
However,	 the	 molecular	 mechanisms	 about	 the	 reduced	 levels	 of	
GABA	in	major	depression	have	yet	to	be	fully	elucidated.

This	study	was	performed	to	explore	the	 influences	of	chronic	
mild	stress	on	the	expression	of	different	GABAergic	neurons	mark‐
ers	 in	 the	mice	NAc	following	CUMS	exposure.	NAc	 is	considered	
as	a	neural	interface	between	motivation	and	action,	which	is	char‐
acteristically	 disrupted	 in	 major	 depression	 disorders,12‐15	 as	 well	
as	 for	 the	 depression‐related	 GABAergic	 deficits.16‐18	 The	 GABA	
release	associated	genes	and	proteins	(Gad‐1,	VGAT	and	GAT‐3)	 in	
the	 NAc	 tissue	 were	 detected	 by	 qRT‐PCR	 and	Western	 blotting	
(WB).	The	miRNA/mRNA	networks	regulating	GABA	were	created	
based	on	the	bioinformatics	analysis	and	further	validated	using	the	
method	 of	 dual‐luciferase	 reporter	 assay	 in	 vitro	 and	 qRT‐PCR	 in	
vivo,	 respectively.	This	study	could	 reveal	 the	pathogenic	chain	of	
the	miRNA/mRNA	network	regulatory	GABA	concentrations	in	the	
NAc,	which	is	associated	with	depression‐like	behaviours	induced	by	
chronic	mild	stress.

2  | MATERIAL S AND METHODS

2.1 | Chronic unpredicted mild stress paradigm

The	 CUMS	 paradigms	 experiment	 was	 conducted	 following	 the	
previously	 published	 protocol.19,20	 All	 mice	were	 adapted	 to	 daily	
handling	 during	 the	 week	 after	 delivery	 prior	 to	 the	 experiment. 

Next,	mice	were	 randomly	 divided	 into	 control	 and	CUMS	 group.	
The	control	 group	mice	were	kept	uninterrupted	during	 the	 treat‐
ment	period.	However,	CUMS	group	mice	were	 treated	by	 a	 vari‐
ety	of	mild	stressors	(Table	S1).	Animal	ethics	committee	of	Shandong	
University	 of	 Traditional	Chinese	Medicine	 approved	 the	 protocol	
used	in	this	study	(SDUTCM201805311223).

2.2 | Behavioural assessments

The	behavioural	test	was	performed	to	evaluate	whether	the	mice	
following	 exposure	 to	 different	 stressors	 presented	 depression‐
like	behaviour	(anhedonia	and	behavioural	despair).	The	paradigm	
of	the	sucrose	preference	test	(SPT)	and	novelty	suppressed	feed‐
ing	 test	 (NSF)	 was	 used	 to	 assess	 the	 anhedonia	 behaviour.21,22 
The	behavioural	despair	was	assessed	by	the	forced	swimming	test	
(FST)	and	tail	suspension	test	(TST).19,23	All	the	behavioural	experi‐
ments	were	conducted	in	the	sound‐proof	behavioural	facility	with	
the	light	cycle.

2.3 | Quantitative RT‐PCR

After	behavioural	tests,	mice	were	euthanized	and	whole	NAc	tis‐
sue	was	 immediately	collected	as	previously	described.	qRT‐PCR	
was	performed	to	determine	GABAergic	neuron‐associated	genes	
and	its	corresponding	miRNAs	expression	in	NAc	from	CUMS‐in‐
duced	depression‐like	behaviour	and	control	group	mice.	The	prim‐
ers	used	for	Gad1,	VGAT	and	GAT3,	and	β‐actin	are	listed	in	Table	
S2.	 The	 specific	 qRT‐PCR	 procedures	 referenced	 our	 previous	
study.19	The	comparative	cycle	threshold	(CT)	was	used	to	calcu‐
late	the	relative	expression	of	mRNA	and	miRNA.	All	samples	were	
prepared	in	triplicate.

2.4 | Western blot analyses

Western	blot	analyses	were	performed	using	standard	methods.24 
The	primary	antibodies	were	used	as	follows:	VGAT	(A3129,	ABclonal	
Technology),	 Gad‐1	 (ab26116,	 Abcam),	 GAT‐3	 (AB1574,	Minipore)	
and β‐actin	(AC004,	ABclonal	Technology).	The	protein	signals	were	
visualized	using	an	enhanced	chemiluminescence	detection	system.	
The	optical	densities	of	each	band	relative	to	measured	values	of	β‐
actin	bands	were	determined	using	Image‐J	software.

2.5 | Dual‐luciferase reporter assay

The	potential	target	genes	of	miRNAs	were	predicted	with	the	use	
of	a	bioinformatics	database	(TargetScan,	RNA22,	and	miRDB).	The	
wild	 and	 site‐directed	 mutation	 of	 the	 detected	 miRNA‐targeting	
site	 in	mRNAs	 3′‐UTR	 vector	 (primer	 sequences	 in	 Table	 S3)	was	
constructed	by	following	previous	protocol.19	For	the	reporter	assay,	
cells	were	seeded	 into	24‐well	plates	one	day	before	transfection.	
The	generated	luciferase	reporter	plasmids,	along	with	the	miRNAs	
mimics	 or	 miR‐negative	 control	 (miR‐NC),	 were	 transfected	 into	
cells	with	the	use	of	Lipofectamine	2000	and	then	subjected	to	the	
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dual‐luciferase	reporter	assay	(Promega)	for	the	measurement	of	the	
luciferase	activity	after	48	hours	of	transfection.	Each	experiment	
was	performed	in	the	triplicates.	The	relative	rate	of	firefly	luciferase	
activity	to	Renilla	luciferase	activity	was	calculated.

2.6 | Statistical analyses

All	data	were	expressed	as	means	±	the	SEM.	The	differences	be‐
tween	 groups	 were	 analysed	 using	 two‐tail	 Student's	 t	 test	 and	
ANOVA	P	values	<	.05	were	considered	as	statistically	significant.

3  | RESULTS

3.1 | The behavioural responses to CUMS

The	depressive	behaviours	of	CUMS‐treated	mice	were	assessed	
by	TST,	FST,	SPT	and	NST.	Compared	to	control	group,	mice	ex‐
posed	to	CUMS	displayed	significant	increase	in	immobility	time	
by	 TST	 (123.77	 ±	 1.39	 vs	 160.68	 ±	 1.66,	 P	 <	 .001;	 Figure	 1A)	
and	 FST	 (140.77	 ±	 1.34	 vs	 171.51	 ±	 2.1,	 P	 <	 .001;	 Figure	 1B).	
Furthermore,	 mice	 exposed	 to	 CUMS	 exhibited	 significantly	

F I G U R E  1  Chronic	unpredictable	mild	stress	(CUMS)‐induced	depression‐like	mice.	Following	exposure	to	different	stressors	for	five	
weeks,	the	behaviour	tests	showed	the	significant	decreases	significantly	increased	immobility	time	in	TST	(A)	and	FST	(B),	as	well	as	
exhibited	reduced	sucrose	preference	(C)	and	increased	the	feed	latency	in	the	NST	(D)	between	controls	and	CUMS‐induced	depression‐
like	mice.	The	data	are	expressed	as	mean	±	SEM.	n	=	10‐14	per	group,	**P	<	.01,	***	P	<	.001

F I G U R E  2  Chronic	unpredictable	
mild	stress	(CUMS)	exposures	decrease	
GABAergic	neuron‐associated	gene/
protein	expression	level	in	the	NAc	
tissue.	Mice	were	exposed	to	CUMS	for	
consecutive	five	weeks	and	received	
behavioural	tests.	Then,	the	levels	of	
GABAergic	neuron‐associated	genes	in	
NAc	were	determined	by	qRT‐PCR.	A,	
The	relative	levels	of	Gad1,	VGAT	and	
GTA3	genes	expression	in	NAc	relative	
to	control.	B,	Representative	Western	
blot	images	of	Gad1,	VGAT	and	GTA3	
were	shown.	C,	Statistical	analysis	of	
each	band	relative	to	measured	values	
of	β‐actin	bands.	All	data	are	presented	as	
mean	±	SEM.	n	=	8‐10	per	group,	**P	<	.01,	
***P	<	.001
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lower	sucrose	preference	(83.74	±	0.68	vs	56.39	±	1.6,	P	<	.001;	
Figure	 1C)	 and	 increased	 the	 feed	 latency	 time	 (351.3	 ±	 7.5	 vs	
555.2	 ±	 10.76,	 P	 <	 .01;	 Figure	 1D)	 compared	 to	 control.	 Our	
data	indicate	that	chronic	mild	stress	can	induce	depression‐like	
behaviours.

3.2 | GABA synthesis, release and uptake associated 
genes expression

In	CUMS‐induced	depression‐like	group,	the	Gad‐1,	VGAT	and	GAT‐3	
mRNA	expression	in	the	NAc	tissue	were	significantly	decreased	than	
that	of	control	mice	(both	P	<	.01;	Figure	2A).	Furthermore,	the	level	
of	Gad‐1,	VGAT	and	GAT‐3	protein	has	been	illustrated	in	Figure	2B	
and	2C.	The	expression	level	of	Gad‐1,	VGAT	and	GAT‐3	proteins	was	
also	 significantly	decreased	compared	 to	 control	mice.	There	was	a	
significant	statistical	difference	among	Gad‐1,	VGAT	and	GAT‐3	pro‐
teins	expression	in	the	NAc	tissue	between	two	groups	(both	P	<	.01).

3.3 | The mRNA/miRNA regulatory GABAergic 
neurons network

Three	 miRNA	 targeted‐gene	 databases	 (miRDB,	 RNA22	 and	
TargetScan)	 were	 used	 to	 predict	 the	 VGAT,	 GAT‐3	 and	 Gad‐1	
mRNAs.	 The	 3′‐UTRs	 of	 Gad1	 (two	 areas),	 VGAT	 (one	 area)	 and	
GAT‐3	 (two	 areas)	 were	 targeted	 by	miR‐144‐3p.	 The	 3′‐UTRs	 of	
GAT‐3	 (two	 areas)	 were	 targeted	 by	miR‐15b‐5p.	 The	 3′‐UTRs	 of	
GAT‐3	(one	area)	were	targeted	miR‐879‐5p.	The	3′UTRs	of	VGAT	
(one	area)	were	targeted	by	miR‐582‐5p	(Figure	3).	Through	bioin‐
formatics	analysis,	we	successfully	constructed	an	epigenetic	regu‐
latory	network	for	GABA	neuron	function.

3.4 | miRNA‐associated GABA were rise in NAc of 
CUMS depression mice

In	order	to	verify	the	regulatory	network,	we	quantified	four	miR‐
NAs	 among	 the	 two	 groups.	 Our	 results	 showed	 that	 levels	 of	
miRNAs	 were	 significantly	 increased	 in	 the	 NAc	 tissue	 from	 the	
CUMS‐induced	depression‐like	mice	than	that	of	control	mice	(both	
P	<	.01,	Figure	4).	The	regulatory	relationships	between	the	up‐reg‐
ulated	miRNAs	and	down‐regulated	GAT‐3	Gad1	and	VGAT	mRNAs	
were	presented	in	Figure	3.

F I G U R E  3  The	interaction	between	mRNAs	and	miRNAs.	miRNAs	targeted	to	mRNAs	that	encode	Gad1,	VGAT	and	GAT‐3	were	
predicted	by	using	three	miRNAs	target	prediction	databases,	in	which	the	principle	of	miRNAs	target	prediction	includes	seed	match,	
conservation,	free	energy	and	site	accessibility.	The	interactive	networks	of	miRNAs	and	mRNAs	associated	with	GABA	release	and	uptake	
are	made	by	using	Cytoscape	software.	Green	symbols	denote	mRNAs	that	are	actually	down‐regulated	in	the	NAc	tissue.	Red	symbols	
denote	miRNAs.	Their	negative	regulation	of	mRNAs	by	miRNAs	is	represented	by	light	blue	line

F I G U R E  4  miRNAs	of	regulating	genes	associated	GABA	tone	
were	increased	in	the	NAc	tissue	of	chronic	unpredictable	mild	stress	
(CUMS)	depression‐like	mice.	qRT‐PCR	was	used	to	test	the	relative	
expression	of	miR‐144‐3p,	miR‐15b‐5p,	miR‐879‐5p	and	miR‐582‐5p	
from	the	controls	and	CUMS‐induced	depression‐like	behaviour	mice.	
The	relative	values	for	control	mice	were	normalized	to	be	one.	Data	
were	expressed	as	mean	±	SEM.	n	=	10‐14	per	group,	**P	<	.01,	***	
P	<	.001
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3.5 | Verification of mRNA/miRNA regulatory 
GABAergic neurons network in vitro

Compared	 to	 the	 negative	 control	 miRNAs,	 the	 miR‐144‐3p	
(Figure	 5A)	 mimic	 significantly	 decreased	 the	 luciferase	 activ‐
ity	 by	 bearing	 the	wild	 or	 two	 separate	 binding	 regions	mutant	
in	 3′‐UTR	 of	 Gad1	 (769‐775	 and	 902‐908).	 While	 this	 suppres‐
sive	 effect	was	 abolished	 by	 both	mutations	 in	 the	 binding	 site.	
Interestingly,	 miR‐144‐3p	 also	 directly	 regulated	 VGAT	 mRNA	
expression	 (Figure	5B).	Unfortunately,	 there	was	no	direct	 inter‐
action	 between	miR‐144‐3p	 and	GAT‐3	 (Figure	 5D).	miR‐15b‐5p	
and	 miR‐879‐5p	 worked	 as	 regulators	 by	 combing	 with	 3′‐UTR	
of	VGAT	mRNA	 (Figure	5C	and	5).	The	 luciferase	activity	of	 the	
VGAT	 mRNA	 3′‐UTR	 wild‐type	 was	 significantly	 diminished	 ap‐
proximately	35%	with	the	introduction	of	miR‐582‐5p	(Figure	6F),	
while	 the	mutant	 reporter	was	able	 to	maintain	 this	suppression	
effect	rather	than	revising	it.

3.6 | Linear regression analysis of mRNA/miRNA 
regulatory GABAergic neurons network

To	confirm	in	silico	prediction,	we	performed	Pearson's	correlation	
test	of	mRNA/miRNA	regulatory	GABAergic	neurons	network.	The	
linear	 regression	 analysis	 showed	 that	miR‐144‐3p	was	 negatively	

correlated	with	 the	expression	of	VGAT,	Gad1	and	GAT‐3	mRNAs	
in	the	NAc	tissue	(Figure	6A‐C).	Additionally,	there	was	also	a	nega‐
tive	correlation	between	miR‐15b‐5p,	miR‐879‐5p	and	GAT‐3	mRNA	
expression	 between	 the	 two	 groups	 (Figure	 6D‐E).	While	 the	 ex‐
pression	 of	miR‐582‐5p	 significantly	 correlated	with	VGAT	mRNA	
expression	(Figure	6F).

4  | DISCUSSION

Our	 previous	 studies	 have	 highlighted	 the	 distorted	 dynamics	 of	
neural	 transmission	at	 the	synaptic	end	of	maladapted	GABAergic	
system	in	the	limbic	system	and	been	ascribed	as	the	common	de‐
nominator	of	major	depression.11,25	Especially,	GABA	releases	and	
terminals	were	 significantly	 decreased	 in	 the	NAc	 tissue	 from	 the	
CUMS‐induced	depression	model	 (Figure	S1).	This	 impairment	was	
caused	by	the	aberrantly	expressed	level	of	VGAT,	GAT‐3	and	Gad‐1	
mRNAs	or	proteins;	therefore,	it	decreased	GABA	synthesis,	release	
and	 uptake	 (Figure	 2).	 In	 addition,	 miR‐15b‐5p,	 miR‐144‐3p	 and	
miR‐879‐5p,	which	were	predicted	to	bind	the	3′‐UTR	of	VGAT	and	
Gad‐1	mRNAs	(Figure	3),	were	significantly	up‐regulated	(Figure	4).	
The	 mRNA/miRNA	 regulatory	 GABAergic	 tone	 network	 was	 as‐
sessed	by	dual‐luciferase	 assay	 in	 vitro	 (Figure	5)	 and	qRT‐PCR	 in	
vivo	(Figure	6),	respectively.

F I G U R E  5  Experimental	validation	miRNAs	targeting	genes	related	to	GABA	tone.	A‐D,	The	luciferase	reporter	assay	verification	
association	between	miR‐144‐3p	or	miR‐15b‐5p	mimic	or	NC	and	3′‐UTR	of	Gad1,	VGAT	and	GAT‐3	mRNAs.	E,	The	luciferase	reporter	
assay	verification	association	between	3′‐UTR	of	GAT‐3	mRNA	and	miR‐879‐5p	mimic	or	negative	control.	F,	The	luciferase	reporter	assay	
verification	association	between	3′‐UTR	of	VGAT	mRNA	and	miR‐582‐5p	mimic	or	negative	control.	**P	<	.01,	***P	<	.001
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Recently,	several	studies	have	shown	that	GABA	tone	substantially	
decreased	 in	 depressive	 patients	 or	 animal	 model.6,26‐28	 GABAergic	
neurons	dysfunction	may	be	as	the	primary	factor	for	the	depression	
prognosis	and	pathogenesis.29‐31	Thus,	the	understanding	of	molecular	
and	epigenetic	mechanisms	underlying	GABAergic	neuron	impairment	
in	depression	will	be	useful	for	the	development	of	novel	therapeutics.

In	the	current	study,	we	investigated	the	GABAergic	marker	ex‐
pression	 in	the	NAc	to	reveal	molecular	mechanisms	underlying	re‐
duced	GABA	release.	GABA	is	synthesized	by	Gad1/2.	While	Gad1	is	
mainly	responsible	for	the	GABA	synthesis	in	the	brain.32	The	VGAT	
biological	function	was	mainly	involved	in	GABA	uptake	into	synap‐
tic	vesicles	 in	the	presynaptic	vesicular	membranes.33	Furthermore,	
GABA	 transporter	 proteins	 can	 either	 be	 expressed	 on	 neurons	
or	glial	cells,	which	can	mediate	uptake	of	GABA	from	the	synaptic	
cleft.34	The	consistent	results	from	our	study	suggested	that	GABA‐
associated	mRNAs	and	proteins	expression	were	decreased	in	CUMS‐
induced	 depression	 mice.	 The	 decreased	 level	 of	 Gad1	 and	 VGAT	
expression	has	already	been	reported	in	either	depressed	patients	or	
depression	animal	model,35‐37	which	are	in	line	with	our	observations.	
Interestingly,	the	decrease	GAT3‐expression	subsequently	decreased	
GABA	uptake	might	be	served	as	an	impaired	glial	cell	indication	for	

depression.38	Our	finding	proved	that	the	production,	release	and	re‐
uptake	contribute	to	GABA	dysfunction	in	depression.

miRNAs	 are	 a	 negative	 regulator	 of	 translation	 by	 binding	 to	
mRNAs	 3′‐UTR.39	 Emerging	 evidence	 suggested	 that	 miRNAs	
might	play	 the	 key	 role	 in	 regulating	 the	process	of	 neurotrophin,	
serotonergic	 signalling	 and	 synaptic	 plasticity	 process.40‐43 Our 
results	 showed	 that	 chronic	 stress	 could	 up‐regulate	 the	 levels	 of	
miR‐15b‐5p,	 miR‐144‐3p	 and	miR‐879‐5p	 expression	 (Figures	 3,4)	
as	well	as	down‐regulate	the	expression	of	Gad1,	VGAT	and	GAT‐3	
genes	 and	 proteins,	 which	 impaired	 GABA	 tone.	 We	 validated	
mRNA/miRNA	regulatory	GABAergic	neurons	network	by	dual‐lu‐
ciferase	 assay	 and	 qRT‐PCR	 in	 vitro	 or	 vivo,	 respectively	 (Figures	
5,6).	At	present,	the	role	of	miR‐144‐3p	in	the	depressive	disorders	
remains	 unclear.	 However,	 there	 are	 a	 few	 biological	mechanisms	
that	can	endorse	our	 finding.	miR‐144‐3p	has	enriched	expression	
and	in	the	brain,	as	well	as	 in	normal	and	malignant	hematopoietic	
cells	 and	 tissues.44	Many	 studies	have	 suggested	 that	miR‐144‐3p	
was	 involved	 in	 the	 response	 to	 stress,	 ageing	diseases	and	mood	
stabilizer	 treatment.19,45,46	 In	 addition,	 miR‐144‐3p	 can	 regulate	
ataxin	1	(ATXN1)	mRNA	expression	in	human	cells,	and	a	search	of	
the	Genetic	Association	Database	shows	that	ATXN1	is	associated	

F I G U R E  6  Correlation	between	miRNAs	and	their	target	mRNAs	expression	in	the	NAc	tissue.	The	relationships	between	miRNAs	and	
its	corresponding	target	prediction	were	assessed	by	Pearson's	correlation	coefficients.	A,	shows	the	correlation	between	Gad1	mRNA	
and	miR‐144‐3p	expression	(r =	−.8749;	P	<	.001).	B,	shows	the	correlation	between	VGAT	mRNA	and	miR‐144‐3p	(r =	−.9267;	P	<	.001).	
C,	shows	the	correlation	between	GAT‐3	mRNA	and	miR‐144‐3p	(r	=	−.9028;	P	<	.001).	D,	shows	the	correlation	between	GAT‐3	mRNA	
and	miR‐15b‐5p	(r	=	−.8632;	P	<	.001).	E,	shows	the	correlation	between	GAT‐3	mRNA	and	miR‐879‐5p	(r	=	−.8575;	P	<	.001).	F,	shows	the	
correlation	between	VGAT	mRNA	and	miR‐582‐5p	(r	=	−.8227;	P	<	.001).	The	data	of	qRT‐PCR	of	miRNAs	and	mRNAs	were	analysed	in	
10‐14	per	group.	Blue	dots	indicate	congregation	of	the	control	group,	and	red	dots	indicate	congregation	of	the	depression	group
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with	 mental	 disorders.47	 miR‐144‐3p‐targeted	 genes	 includes	
Wnt/β‐catenin,	Nrf2	and	MAKP	signalling	pathways,48‐50 which have 
been	verified	in	the	physiology	of	depression.

Our	 study	 suggested	 the	potential	 efficient	 connection	between	
GABAergic	 pathway	 and	 miR‐144‐3p	 and	 miR‐15a/b,	 which	 share	
the	same	seed	region	(nucleotides	2‐8)	of	AGCAGCA,	and	as	such	are	
known	 as	 the	miR‐15	 family.	 This	miRNA	 family	 also	 can	 target	 the	
3’	UTR	of	BDNF,	cholinergic	 receptor,	muscarinic	1	and	methyl‐CpG	
binding	protein	1.51,52	All	of	these	targetings	have	been	confirmed	in	
the	process	of	depression	pathophysiological	mechanism.53	These	data	
provided	evidence	that	the	miR‐15	family	played	an	important	role	in	
the	pathogenesis	of	depression	by	mediating	GABA	release	and	uptake.

In	 summary,	 chronic	 stress	 leads	 to	 the	 impaired	 GABAergic	
deficit	by	increased	miRNAs	and	corresponding	decreased	mRNAs	
and	proteins,	which	reveals	sub‐cellular	and	molecular	mechanisms	
underlying	 GABAergic	 dysfunction	 in	 the	 nucleus	 accumbens	 of	
CUMS‐induced	depression.
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