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Representations of naturalistic 
stimulus complexity in early and 
associative visual and auditory 
cortices
Yağmur Güçlütürk   , Umut Güçlü, Marcel van Gerven & Rob van Lier

The complexity of sensory stimuli has an important role in perception and cognition. However, its 
neural representation is not well understood. Here, we characterize the representations of naturalistic 
visual and auditory stimulus complexity in early and associative visual and auditory cortices. This is 
realized by means of encoding and decoding analyses of two fMRI datasets in the visual and auditory 
modalities. Our results implicate most early and some associative sensory areas in representing the 
complexity of naturalistic sensory stimuli. For example, parahippocampal place area, which was 
previously shown to represent scene features, is shown to also represent scene complexity. Similarly, 
posterior regions of superior temporal gyrus and superior temporal sulcus, which were previously shown 
to represent syntactic (language) complexity, are shown to also represent music (auditory) complexity. 
Furthermore, our results suggest the existence of gradients in sensitivity to naturalistic sensory 
stimulus complexity in these areas.

Early research in perception identified stimulus complexity as one of the most important stimulus properties that 
affect task performance1. In the visual domain, stimulus complexity has been shown to influence time percep-
tion2, speed and accuracy of shape recognition3, amodal completion4,5 the reaction time of search, discrimination 
and recognition tasks6–10, as well as affecting memory11,12 and perceptual learning13,14 performance. Furthermore, 
complexity relates to interestingness, pleasantness, liking and similar subjective aesthetic evaluations of art15, nat-
ural images of scenes16 and architecture17. It has been much studied in the domain of art perception and empirical 
aesthetics18–22 as well as environmental psychology16,23 for its role in preferences. Recently, its effect on neural 
decoding of visual stimuli from brain activity has also been investigated24. Similarly in the auditory domain, 
complexity plays an important role in stimulus perception with its modulatory effects on attention, arousal and 
memory25. Furthermore, as is the case with its visual counterpart, music complexity highly influences whether a 
song will be liked or not19,26–29.

Borrowing ideas from information theory30, complexity of a stimulus is commonly thought as the amount of 
information contained in it31. However, moving away from information theory, when the perceptual limitations 
of humans are embedded into its definition, complexity becomes a subjective and multi-faceted concept1,18,32. In 
the case of visual complexity, the dimensions making up the complexity of a stimulus include properties such as 
regularity, number of elements, and diversity15. Similarly, according to structural information theory, complexity 
(or simplicity) is defined in terms of the regularity of patterns, which depends on iteration, symmetry and alterna-
tion properties33–35. However, for natural images such as photographs of scenes, objects or works of art, it is diffi-
cult to correctly determine such properties. In these cases, computational measures of complexity become useful 
and can be evaluated automatically instead of using the aforementioned elements to define an intractable com-
plexity measure. Specifically, measures related to information content such as Kolmogorov complexity estimated 
as compressed file size of images9,19,36,37, self-similarity and fractal dimension38–41, and Pyramid of Histograms 
of Orientation Gradients (PHOG) derived measures20,42 have been frequently used to automatically obtain an 
estimate of subjective complexity of images. In the context of music, complexity is a highly subjective term that 
encompasses several properties31, such as tempo, predictability, variety of instruments, harmony and rhythm43. 
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However, recent models of music complexity suggest that the best predictors of subjective complexity of a song 
are the event density and Kolmogorov complexity estimated as the compressed file size of the song19.

Despite its importance, functional neuroimaging studies investigating the neural correlates of stimulus com-
plexity have been limited, especially for naturalistic stimuli. In the visual domain, electrophysiological investi-
gations showed that the amplitude of the N2 event-related potential and late positive potential increased with 
increased complexity of randomly generated polygons44. One of the first functional brain imaging studies that 
measured cerebral metabolic rate for glucose using positron emission tomography (PET) determined that as 
stimulus complexity increased (from white light to an alternating checkerboard pattern) the glucose metabolic 
rate also increased in both the primary and associative visual cortices, but faster in the associative visual cortex45. 
Similarly, using PET, it was shown that cerebral blood flow velocity in the occipital cortex increased as visual 
stimuli from different categories with increasing complexity (diffuse light, checkerboard pattern and movie) is 
presented to subjects46. In the case of auditory stimulus complexity, a meta-analysis investigated where the differ-
ent categories of sounds such as pure tones, noise, music and vocal sounds caused activations across the human 
brain47. In a different study, it was shown that brain connectivity patterns of people listening to their favorite songs 
were consistent with each other, despite the differences between their favorite songs in terms of complexity48.

The current study aims to provide a comprehensive account of representations of naturalistic sensory stimulus 
complexity in sensory cortices by establishing a direct, predictive relationship between objective stimulus com-
plexity measures and stimulus-evoked brain activations as well as characterizing the properties of this relation-
ship under the framework of neural encoding and decoding in functional magnetic resonance imaging (fMRI)49. 
That is, we develop several neural encoding and decoding models, which embody specific hypotheses about 
certain stimulus features modulating stimulus-evoked brain activations, to test alternative hypotheses about what, 
if any, stimulus complexity measures are represented in different brain regions as well as analyzing these models 
to characterize the properties of these representations. To this end, we present the results of two different fMRI 
experiments; one with naturalistic image stimuli to characterize the representations of visual complexity and 
another with music stimuli to determine the those of auditory/music complexity in the brain. Our results reveal 
four core findings regarding the processing of stimulus complexity in the sensory cortices: i) Stimulus complexity 
was shown to modulate visual and auditory cortices. ii) A quantification of the complexity sensitivity of individual 
regions of interest (ROIs) demonstrated a change of sensitivity (from fine grained to coarser) in a gradient from 
lower to higher areas. iii) It was shown that parahippocampal place area (PPA) has distributed representations 
of complexity comparable to or better than the ROIs in the early visual cortex, supporting the notion that global 
scene properties such as complexity plays an important role in scene processing. iv) It was shown that regions of 
the auditory cortex, which represent syntactic language complexity such as posterior regions of superior temporal 
gyrus (STG) and superior temporal sulcus (STS), also represent music complexity.

Methods
Ethics Statements.  Experiment 1 was approved by the Ethics Committee of ATR and the subjects provided 
written informed consent. Experiment 2 was approved by the local ethics committee (CMO Regio Arnhem-
Nijmegen) and the subjects provided written informed consent in accordance with the Declaration of Helsinki. 
All experiments were performed in accordance with the relevant guidelines and regulations.

Experiment 1.  Dataset.  In the first experiment, we used a preexisting dataset50. Here, we report only the 
most pertinent details. Additional details can be found in the original publication. The dataset comprises visual 
stimuli (photographs) and fMRI data of five healthy adult subjects (23–38 year old one female and four male 
subjects with normal or corrected-to-normal vision).

Design. The dataset comes in two parts [The dataset contains also an imagery set, which is not considered 
here.]:

	 i)	 A training set that was collected in 25 unique runs over multiple sessions, which consist of 50 unique and 5 
repeated trials per run. In one training run, 51 different images were presented. Fifty of these images were 
repeated only once within the run. One of these images were repeated five times within the run. Each of the 
25 training runs used a different set of images.

	 ii)	 A test set that was collected in 35 repeated runs over multiple sessions, which consist of 50 unique and 5 
repeated trials per run. Like the training set, in one test run, 51 different images were presented. Fifty of 
these images were repeated only once within the run. One of these images were repeated five times within 
the run. Unlike the training set, each of the 35 test runs used the same set of images.

The repeated images were used to facilitate a one-back task and were not included in the final data set. After 
the exclusion of the repeated images, the training set ended up with 1250 different images repeated once each, 
while the test set ended up with 50 different images repeated 35 times each.

Each image was presented at 12° × 12° and 5 Hz for 9 s, which was followed by the one-back repetition detec-
tion task. Subjects fixated a central point throughout each run.

Visual stimuli. The stimuli were drawn from the subset of the original ImageNet dataset51 that was used in the 
Large Scale Visual Recognition Challenge 201152 (ILSVRC2011). The subset comprises 1350000 photographs, 
each of which belongs to one out of 1000 categories. The training set contains 1200 stimuli that belong to 150 
representative categories (eight photographs per category). The test set contains 50 stimuli that belong to 50 
representative categories (one photograph per category). The categories are mutually exclusive. A list of these 
200 categories are available as Supplementary Information. Example categories include bathtub, chimpanzee, 
fire truck, human being, hot-air balloon, watermelon, etc. Each stimulus was center cropped to the largest square 
possible and resized to 500 px × 500 px with antialiasing and bicubic interpolation.
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MRI data. MRI data were acquired with a Siemens 3 T MAGNETOM Trio scanner. Anatomical scans were 
collected with T1-weighted MP RAGE and T2-weighted turbo spin echo pulse sequences. Functional scans were 
collected with a T2*-weighted gradient echo echo planar imaging pulse sequence (voxel size: 3 mm3; slices: 50 
for localizer and task scans, and 30 for retinotopy scans; distance factor: 0%; FoV read: 192 mm; TR: 3000 ms for 
localizer and task scans, and 2000 ms for retinotopy scans; TE: 30 ms; flip angle: 80 degrees; multi-slice mode: 
interleaved).

The fMRI data were preprocessed as follows: The functional scans were realigned to one another and coregis-
tered to the anatomical scans. The realigned and coregistered functional scans in each run were linearly detrended 
and standardized along the time axis. The realigned functional scans in each trial were shifted by 3 s (one TR), 
cropped to the first 9 s (3 TRs) and averaged along the time axis. This resulted in one time point per trial per voxel.

Seven ROIs in the lower visual cortex and the higher visual cortex were defined based on retinotopic mapping 
and functional localizers. Table 1 shows the details of these ROIs.

Visual complexity measures.  The complexity of the visual stimuli was parameterized with three different meas-
ures. These computational visual complexity measures are objective measures of complexity, which are estimates 
of subjective complexity. These exact measures have been shown to reflect the subjective complexity levels of 
images in earlier behavioral studies20,22,42.

•	 Mean maximum magnitude gradient (Gradient): This measure was based on the ‘Complexity’ measure as 
described in a previous study42. It measures the maximum rate of change in the Lab color space channels of 
an image. It was computed as follows42:

∇ S x ymeanmax ( , )
(1)x y c

c
,

where Sc(x, y) is the pixel (x, y) in the channel c of the stimulus in the Lab color space such that c ∈ {L, a, b}, 
x ∈ {1, …, 256} and y ∈ {1, …, 256}.

•	 Portable Network Graphics (PNG): The PNG-based complexity measure of a stimulus was computed as the 
compressed (lossless) file size (bytes) of the stimulus in the RGB color space. This measure can be thought of 
as a surrogate for the Kolmogorov complexity of the image, which is defined as the length of the shortest com-
puter program or algorithm that can be used to represent the object53. It essentially gives an indication of the 
information content of the image. PNG encoding was carried out using Pillow 4.1.1 (https://python-pillow.
org/) with default parameter settings.

•	 Self-similarity: Self-similarity is a measure of how much the whole of an object resembles its parts. To esti-
mate this for each stimulus image, we compared histograms of oriented gradients (HOGs) of the whole image 
at the ground level and subregions of the image at the third level42. Specifically, the self similarity-based com-
plexity measure of a stimulus was computed as follows42:
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( )  is the feature f in the subregion (x, y) and the level l of the pyramid histogram of oriented gra-
dients54,55 of the stimulus in the Lab color space with f ∈ {1, …, 16} (16 equally spaced orientations between −π 
radians and π radians).

Note that all visual stimuli were resized to 256 px × 256 px with Lanczos interpolation and converted to the 
RGB color space (if required) prior to the computation of the visual complexity measures.

Experiment 2.  For the second experiment, we used a new dataset, which comprises auditory stimuli (music) and 
fMRI data of eight healthy adult subjects (24–38 year old four female and four male subjects with normal hearing).

Design.  Subjects participated in two sessions: one for a training set and another one for a test set. The training 
set was collected in eight unique runs, each of which consisted of 16 unique trials. The test set was collected in 
eight repeated runs, each of which consisted of 16 unique trials.

Area Also known as Region References

V1 (Primary Visual Cortex) 17, hOC1, OC, BA17 Lower Visual Cortex 78,79

V2 (Second Visual Area) 18, hOC2, OB, BA18 Lower Visual Cortex 78,79

V3 (Third Visual Area) V3d, V3v, VP, hOC3d, hOC3v Lower Visual Cortex 78,79

V4 (Fourth Visual Area) V4d, V4v, hV4, hOC4v, hOC4lp, LO1 — 78,79

LOC (Lateral Occipital Complex) LO1, LO2, hOC4la Higher Visual Cortex 80

FFA (Fusiform Face Area) FFC, FG2 Higher Visual Cortex 81

PPA (Parahippocampal Place Area) — Higher Visual Cortex 67

Table 1.  ROIs considered in the first (visual) experiment.

https://python-pillow.org/
https://python-pillow.org/
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In each trial, a stimulus was presented for 29 s with in-ear headphones, followed by a self-paced complexity 
preference rating task. Subjects fixated a central point throughout each trial. The task was used to keep the sub-
jects engaged, and the ratings were excluded from the analyses.

Prior to entering the scanner, subjects listened to three example stimuli: a very loud one, a normal one and 
a very quite one. After subjects entered the scanner and before the first run, the second example stimulus was 
presented for 29 s with in-ear headphones (while fMRI data were acquired, which were later discarded). During 
this period, subjects adjusted the volume to a comfortable level.

Auditory stimuli.  We used 144 auditory stimuli that were systematically drawn from the MagTag5k Autotagging 
Dataset56 – a preprocessed version of the original MagnaTagATune Dataset57, which solves some of the prob-
lems in the original such as duplication and synonymy. The preprocessed dataset contains 5259 29-second long, 
16000 Hz song excerpts and 136 binary tags per excerpt.

In order to create a stimulus dataset that spanned a large musical spectrum based on their associated tags, 
We used hierarchical (agglomerative) clustering with correlation distance (1 - Pearson correlation coefficient) 
and complete linkage to cluster all song excerpts to 16 clusters based on the binary tags. Among all excerpts in 
each cluster, the one with the highest within-cluster similarity was assigned to the test set. This resulted in a test 
set of 16 stimuli (=16 clusters × 1 excerpt). Among remaining excerpts in each cluster, eight with the highest 
within-cluster similarity were assigned to the training set. This resulted in a training set of 128 stimuli (=16 
clusters × 8 excerpts). A list of all 59 tags that were associated to the 144 stimuli are available as Supplementary 
Information. Example tags include ambient, electro, instrumental, female vocal, piano, strange, etc.

MRI data.  MRI data were acquired with Siemens 3 T MAGNETOM Prismafit scanner and Siemens 32-Channel 
Head Coil. Anatomical scans were collected with a T1-weighted MP RAGE pulse sequence (voxel size: 1 mm3; 
slabs: 1; distance factor: 50%; orientation: sagittal; FoV read: 256 mm; slice thickness: 1 mm; TR: 2300 ms; TE: 
3.03 ms; PAT mode: GRAPPA; accel. factor PE: 2; flip angle: 8 degrees; multi-slice mode: single shot). Functional 
scans were collected with a T2*-weighted gradient echo echo planar imaging pulse sequence (voxel size: 2 mm3; 
slices: 64; distance factor: 0%; orientation: transversal; FoV read: 210 mm; slice thickness: 2.4 mm; TR: 735 ms; TE: 
39 ms; multi-band accel. factor: 8; flip angle: 75 degrees; multi-slice mode: interleaved).

The fMRI data were preprocessed as follows: The functional scans were realigned to the first functional scan 
and the mean functional scan, respectively. Realigned functional scans were slice time corrected. The realigned 
and slice time corrected functional scans in each run were linearly detrended and standardized along the time 
axis. The realigned and slice time corrected functional scans in each trial were shifted by 2.94 s (four TRs), 
cropped to 29.4 s (40 TRs; approximately one stimulus) and averaged with a window size of 8.82 s (12 TRs) and a 
hop size of 0.735 s (one TR) along the time axis. This resulted in 28 time points per trial.

Thirteen ROIs in the early auditory cortex and the auditory association cortex were defined based on the 
HCP MMP 1.0 parcellation58 after projecting it to the native volumetric space via HCP MMP 1.0 parcellation → 
fsaverage surface space → native surface space → native (anatomical) volumetric space → native (functional) 
volumetric space. Table 2 shows the details of these ROIs.

Auditory complexity measures.  The complexity of the auditory stimuli was parameterized with three different 
measures. These computational auditory complexity measures are objective measures of complexity, which are 
estimates of subjective complexity. These exact measures have been shown to reflect the subjective complexity 
levels of songs in an earlier comprehensive behavioral study analyzing the relationship between various subjective 
and objective stimulus complexity measures19.

•	 Free Lossless Audio Codec file size (FLAC): The compressed file size (in bytes) of the stimuli with a lossless 
audio codec. This measure can be thought of as the Kolmogorov complexity of the stimuli, similar to the PNG 
measure in the case of the visual stimuli. FLAC encoding was carried out using ffmpeg (https://ffmpeg.org/) 
with 16000 samples per second and 16 bits per sample.

•	 Ogg Vorbis file size (Ogg): The compressed file size (in bytes) of the stimuli with a lossy audio codec. This is 
another type of Kolmogorov complexity estimate. While FLAC utilizes a lossless compression method, Ogg 
Vorbis uses an audio coding format which results in lossy compression. Ogg encoding was carried out using 
ffmpeg (https://ffmpeg.org/) with 16000 samples per second and 75 quality.

•	 Event density: The mean frequency (in hertz) of simultaneous harmonic, melodic and rhythmic events in the 
stimuli. As an example, a song with a fast rhythm would have a higher event density compared to a song with 
a slow rhythm. Event density was estimated with MIRtoolbox (https://www.jyu.fi/hytk/fi/laitokset/mutku/en/
research/materials/mirtoolbox).

All measures were extracted from each 29-second long, 16000 Hz stimuli using a sliding window analysis with 
a window size of 8.82 s (12 TRs) and a hop size of 0.735 s (one TR). This resulted in 28 time points per stimulus 
per measure.

Decoding analysis.  In the decoding analysis, we used ridge regression to predict complexity measures from 
stimulus-evoked responses of voxels in ROIs. Let ∈x  and ∈y q be a pair of a complexity measure and 
stimulus-evoked responses of q voxels in an ROI. We are interested in predicting x as a linear function of y:

β= Τx y (3)

https://ffmpeg.org/
https://ffmpeg.org/
https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/mirtoolbox
https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/mirtoolbox
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where β is a vector of regression coefficients. Without loss of generality, we assume that x and y have zero mean 
and unit variance. We minimized the L2 penalized least squares loss function to estimate β:

∑β β βλ λ=




 − +





 = +

β =

Τ Τ − Τ
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where λ ≥ 0 is a regularization coefficient and {x, Y} with x = (x(1), …, x(n))Τ and Y = (y(1), …, y(n))Τ is a training 
set consisting of n x-y pairs.

We used grid search to optimize λ as follows59: First, 100 linearly spaced values between 0.1 and min(n, 
q) − 0.1 were used to specify a set of effective degrees of freedom of the ridge regression fit. Then, Newton’s 
method was used to solve each value for λ. Finally, leave-one-out cross-validation on the training set was used to 
choose λ.

We estimated a separate decoding model for each complexity measure and all voxels in each ROI. We vali-
dated the decoding models on a held-out test set, which was at no point used for model estimation. We used the 
Pearson correlation coefficient between the ground truths and the predictions on the test set (r) as the validation 
metric.

Encoding analysis.  In the encoding analysis, we used linear regression to predict stimulus-evoked responses 
of voxels in ROIs from complexity measures. Let ∈x  and ∈y  be a pair of a complexity measure and a 
stimulus-evoked response of a voxel in an ROI. We are interested in predicting y as a linear function of x:

β= Τy x (5)

where β is a scalar regression coefficient. Without loss of generality, we assume that x and y have zero mean and 
unit variance. We minimized the least squares loss function to estimate β:

∑β β= − =
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where {x, y} with x = (x(1), …, x(n))Τ and y = (y(1), …, y(n))Τ again denotes a training set.
We estimated a separate encoding model for each complexity measure and each voxel in each ROI. We vali-

dated the encoding models on a held-out test set, which was at no point used for model estimation. We used the 
Pearson correlation coefficient between the ground truths and the predictions on the test set (r) as the validation 
metric.

Statistical analysis.  We used permutation test to test the null hypothesis that r of a model is not different 
than the chance level as follows: First, the order of the ground-truths in the training and test sets were randomly 
shuffled. Then, a new model was estimated on the new training set and validated on the new test set. These steps 
were repeated 1000 times. The chance level was taken to be mean r of the new models. The p-value was taken to 
be the fraction of the new models whose r was greater than or equal to r of the old model. The null hypothesis was 
rejected if the p-value was less than or equal to 0.05.

Hyperalignment.  We performed the analyses on mean hyperaligned fMRI data60, which were obtained via 
the following iterative process: Before the first iteration, the training set fMRI data of the subject who has the larg-
est number of voxels are assigned to a common representational space. At each iteration, i) the training set fMRI 
data of each subject are transformed to the common representational space with Procrustes transformation, ii) 
averaged along the subjects and iii) reassigned to the common representational space. After the final iteration, i)  
the training and test set fMRI data of each subject is transformed to the common representational space with 

Area Also known as Region References

A1 (Primary Auditory Cortex) Core, R1, TC, TE1.0, TE1.1, 41 Early Auditory Cortex 58,82–85

LBelt (Lateral Belt Complex) Belt, TB Early Auditory Cortex 58,83–85

MBelt (Medial Belt Complex) Belt, TB Early Auditory Cortex 58,83–85

PBelt (ParaBelt Complex) ParaBelt, TA1 Early Auditory Cortex 58,83–85

RI (RetroInsular Cortex) reI, reIt, RetroInsular, Belt, TD Early Auditory Cortex 58,82,84–87

A4 (Auditory 4 Complex) TE3 Auditory Association Cortex 58,88

A5 (Auditory 5 Complex) Auditory Association Cortex 58

STSdp (Area STSd posterior) Auditory Association Cortex 58

STSda (Area STSd anterior) Auditory Association Cortex 58

STSvp (Area STSv posterior) Auditory Association Cortex 58

STSva (Area STSv anterior) Auditory Association Cortex 58

STGa (Area STGa) Auditory Association Cortex 58

TA2 (Area TA2) TE1.2 Auditory Association Cortex 58,84,85,89

Table 2.  ROIs considered in the second (auditory) experiment.
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Procrustes transformation and ii) averaged along the subjects. Note that the fMRI data from different experi-
ments and/or ROIs were hyperaligned separately (Tables 3 and 4).

In other words, this process minimizes the Procrustes distance between fMRI data of different subjects with 
geometric transformations (rotation, translation and/or uniform scaling), which change the placement and the 
size but preserve the shape of the fMRI data of the different subjects. For example, consider the following toy 
three-trial fMRI data of two subjects who have two voxels each: {(1, 2), (3, 4), (5, 6)} and {(−24, 16) (−45, 35), 
(−66, 54)}. The former can be aligned to the latter with these transformations while keeping the shape of the 
former (line) intact as follows:

•	 Uniform scaling by 10: {(1, 2), (3, 4), (5, 6)} → {(10, 20), (30, 40), (50, 60)}
•	 Translation by 5: {(10, 20), (30, 40), (50, 60)} → {(15, 25), (35, 45), (55, 65)}
•	 Rotation by π/2 radians: {(15, 25), (35, 45), (55, 65)} → {(−25, 15) (−45, 35), (−65, 55)}

which results in a Procrustes distance (root sum square) of 2.

Implementation details.  Our fMRI preprocessing and analysis pipeline made use of standard analysis 
packages and custom scripts. Specifically, the following tools were used: Realignment and slice time correction 
were performed in SPM 12 (http://www.fil.ion.ucl.ac.uk/spm/) by using the default parameters for realignment, 
and scanning parameters and “Reference Slice” = 0 s for slice time correction. Detrending and standardization 
were performed in MATLAB. Note that the fMRI data from Experiment 1 are already provided in preproc-
essed format. We refer the reader to the original publication1 for more details on preprocessing of this data. 
Hyperalignment was performed in PyMVPA (http://www.pymvpa.org/) with default parameters. Encoding and 
decoding models as well as permutation tests were implemented with custom Python scripts (the relevant param-
eters are reported in the corresponding subsections). Projection of HCP MMP 1.0 parcellation to native space was 
done with Freesurfer (https://surfer.nmr.mgh.harvard.edu/) supplemented with custom scripts.

Data availability.  The dataset analysed during the current study (Experiment 1) is available in the ATR 
brainliner repository, http://brainliner.jp/data/brainliner/Generic_Object_Decoding. The dataset generated 
and analysed during the current study (Experiment 2) is available from the corresponding author on reasonable 
request.

Results
Experiment 1.  We first examined the relationship between the measures of visual complexity by calculating 
bivariate Pearson correlation coefficients between each measure (Table 5). All three measures were significantly 
correlated with each other (p < 0.05). Highest correlation was between gradient and PNG (r = 0.86), whereas the 
lowest correlation was observed between gradient and self-similarity (r = 0.48).

Next, we performed the decoding analysis on the hyperaligned data of the five subjects. For each visual com-
plexity measure, we predicted the value of the complexity measure from the stimulus-evoked responses of voxels 
in the ROIs from the visual cortex (Table 2) using ridge regression. Note that this is a multivariate analysis, such 
that in order to predict the values of a complexity measure of stimuli, all voxel responses in a ROI are used at the 
same time. Figure 1 shows the visual complexity decoding results. Remarkably, from all ROIs in the visual cortex, 
it was possible to predict all three visual complexity measures significantly above chance level (p  0.001) with a 
maximum correlation between the predicted values and actual complexity measure values of r = 0.75 for PNG 
measure in PPA and a minimum correlation of r = 0.40 for self-similarity measure in FFA. Among all three com-
plexity measures, PNG had the highest (r = 0.67) and self-similarity had the lowest (r = 0.56) average correlation 
over the ROIs. For all three measures, LOC and FFA regions had the lowest decoding performance, and among 
the ROIs in the higher visual cortex, all complexity measures could be predicted with highest accuracy from PPA 
(r = 0.65, 0.75, 0.62 for gradient, PNG and self-similarity measures, respectively).

Then, we evaluated how well the stimulus-evoked responses in ROIs could be predicted from the visual com-
plexity measures using linear regression (Fig. 2). Note that unlike the decoding analyses which were multivariate, 
encoding analyses are univariate, such that we estimate a separate encoding model for each complexity measure 
and each voxel in each ROI. For all complexity measures, we observed that the encoding performance decreased 
along the visual hierarchy such that the percentage of voxels whose responses were predicted significantly above 
chance (p < 0.05) was highest in V1 (65%, 62% and 55% for gradient, PNG and self-similarity measures, respec-
tively) and the lowest in PPA (11% for the gradient measure), LOC (12% for the PNG measure) or FFA (7% for 

V1 V2 V3 V4 LOC FFA PPA

S1 1004 1018 759 740 540 568 356

S2 757 944 810 544 834 435 316

S3 872 1031 861 754 996 928 496

S4 719 855 929 704 668 725 398

S5 659 891 907 860 566 929 550

SH 1004 1031 929 860 996 929 550

Table 3.  Number of voxels in ROIs of the subjects from Experiment 1. SH denotes mean hyperaligned fMRI 
data.

http://www.fil.ion.ucl.ac.uk/spm/
http://www.pymvpa.org/
https://surfer.nmr.mgh.harvard.edu/
http://brainliner.jp/data/brainliner/Generic_Object_Decoding
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the self-similarity measure). Furthermore, for all of the investigated visual complexity measures, the encoding 
performance was higher in the ROIs in the lower visual cortex and relatively low in the ROIs in the higher visual 
cortex and V4. Compared to the gradient measure, the stimulus-evoked voxel responses in the PPA region could 
be better predicted from the PNG and self-similarity measures.

Next, we investigated the overlap between different visual complexity measures in terms of the number of vox-
els whose responses were significantly predicted in the lower and higher visual cortices (Fig. 3). In the lower visual 
cortex, the amount of overlap between the significantly predicted voxel responses of all three visual complexity 
measures was relatively high with 46% of all significant voxels. This overlap reduced to 20% in ROIs in the higher 
visual cortex and V4. Furthermore, the amount of overlap between the gradient and PNG measures was very 
high (73%) in the lower visual cortex. This overlap reduced to 44% in the ROIs in the higher visual cortex. Out of 
all the significantly predicted voxels in the higher visual cortex, 17% were only sensitive to the gradient measure, 
whereas this number was 13% for the PNG measure and 17% for the self-similarity measure.

Finally, we investigated the sensitivity of the voxels whose responses were significantly predicted (p < 0.05) 
in each ROI to the measures of visual complexity by calculating the mean absolute beta coefficient (i.e. slope) 
of the regression models for each ROI. The beta coefficients show the extent to which the response of a voxel is 
modulated per one standard deviation change in the complexity value of the stimulus. Figure 4 shows the results 
of these analyses. We observed that while in V1 the mean slope was the highest, it decreased almost gradually 
as we moved to higher visual areas, suggesting that the representations of complexity became coarser along the 
visual hierarchy. Since this pattern was very similar to the encoding performance, we further calculated the slopes 
controlled for the encoding performance by dividing the beta coefficients by the corresponding correlation coef-
ficients (Panel B in Fig. 4). This did not change the observed pattern, confirming that the slopes of betas were 
indeed indicative of the sensitivity of complexity representations of voxels rather than just reflecting the encoding 
performance. Another interesting result that we found was that large portions of the voxels in all ROIs of the 
visual cortex had negative slopes, such that their response increased as the complexity of the image decreased. 
While a majority of the voxels in the lower visual areas and V4 had positive slopes, in the higher visual areas vox-
els selective to simplicity rather than complexity were more common.

Experiment 2.  First, to understand the relationship between the auditory complexity measures, we calcu-
lated bivariate Pearson correlation coefficients between each measure (Table 6). All three measures were signif-
icantly correlated with each other (p < 0.05). Highest correlation was between the two compression measures 
FLAC and Ogg (r = 0.66), whereas the lowest correlation was observed between event density and Ogg (r = 0.23).

Next, we performed the decoding analysis on the hyperaligned data of the eight subjects. That is, for each one 
of the auditory complexity measures, we predicted the value of the complexity measure from the stimulus-evoked 
responses of voxels in the ROIs from the early auditory and auditory association cortices (Table 2) using ridge 
regression. The results of these analyses are presented in Fig. 5. The most striking (but not unexpected) result was 
that for the two file compression measures FLAC and Ogg, the general pattern of the decoding performances in 
ROIs were very similar with each other, but not very similar to the event density measure. For the event density 
measure, decoding performance was worse than those of the compression measures in all ROIs except for the 
STSda region. Overall, the highest decoding performance was obtained for the FLAC measure with the highest 
correlation results in the PBelt region (r = 0.74, p  0.001) followed by MBelt (r = 0.70, p  0.001) and A1 (r = 
0.70, p  0.001) regions. For the two compression measures, all ROIs in the early auditory cortices were decoded 
significantly above chance, with all r values above 0.57. In the early auditory cortex, largest differences between 

A1 LBelt MBelt PBelt RI A4 A5 STSdp STSda STSvp STSva STGa TA2

S1 40 71 73 119 87 241 269 177 288 201 191 183 117

S2 39 67 71 87 92 162 172 131 142 153 138 138 112

S3 81 90 128 163 111 320 285 206 197 274 200 154 165

S4 70 103 109 173 102 322 288 197 220 227 199 143 147

S5 54 95 89 142 93 244 254 151 198 189 180 146 126

S6 33 59 87 104 71 221 173 144 131 187 118 132 128

S7 51 91 88 129 82 258 249 139 207 251 164 183 99

S8 62 83 98 132 89 254 281 163 205 181 156 139 140

SH 81 103 128 173 111 322 288 206 288 274 200 183 165

Table 4.  Number of voxels in ROIs of the subjects from Experiment 2. SH denotes mean hyperaligned fMRI 
data.

Gradient PNG Self-similarity

Gradient 1.00 0.86 0.48

PNG 0.86 1.00 0.65

Self-similarity 0.48 0.65 1.00

Table 5.  Experiment 1 - Bivariate correlations (r) between visual complexity measures.
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Figure 1.  Experiment 1 - Results of decoding visual complexity measures from the ROIs in the visual cortex. 
(A) Gradient. (B) PNG. (C) Self-similarity. Bars and error bars show decoding performance and ±1 SEM, 
respectively. Dashed line and shaded region show chance level and ±1 SEM around r = 0, respectively. SEM is 
computed with bootstrapping (1000 iterations).

Figure 2.  Experiment 1 - Distributions of encoding performance over individual voxels in visual ROIs. (A) 
Gradient. (B) PNG. (C) Self-similarity. Boxes show interquartile range. Notches show second quartile. Whiskers 
show ±1.5 interquartile range. Points show encoding performance of individual voxels. Colors show p-values 
(black: outlier; gray: p ≥ 0.05; dark: p < 0.05; light: p < 0.001).
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the decoding performance were observed in the RI region between the event density and both of the compression 
measures, where for event density the predictions were not better than chance and for FLAC and Ogg, correla-
tions were rather high (r = 0.69, p  0.001 and r = 0.59, p  0.001 for FLAC and Ogg, respectively). Conversely, 
in STSda, neither FLAC nor Ogg measure could be predicted significantly above the chance level, whereas event 
density was decoded significantly (r = 0.19, p < 0.05). Among the ROIs in the auditory association cortex, the 
compression measures could be best predicted from the voxels in A4 (r = 0.62, p  0.001 and r = 0.49, p  0.001 
for FLAC and Ogg, respectively) and TA2 (r = 0.53, p  0.001 and r = 0.44, p  0.001 for FLAC and Ogg, respec-
tively) regions. The only ROI that none of the auditory complexity measures could be predicted from was STGa.

Following the decoding analyses, we performed encoding analysis, again on the hyperaligned data of the eight 
subjects, to evaluate how well the stimulus-evoked responses in ROIs could be predicted from the auditory com-
plexity measures using linear regression. The results of the encoding analyses are presented in Fig. 6. Similar to 
the decoding results, the general pattern of the encoding performances of the two compression measures were 
very high and resembled each other. A large majority of the voxel responses in the early auditory cortices could be 
predicted significantly above chance level (p < 0.05) using FLAC and Ogg measures. The percentage of the signifi-
cantly predicted voxel responses ranged from 72% to 91% for the FLAC measure and from 71% to 87% for the Ogg 
measure. Among the ROIs in the auditory associative cortex best encoding performance was in A5 for FLAC and 
A4 for Ogg, whereas the worst performance was in STSva for both compression measures. The encoding perfor-
mance of the regression models using the event density measure was relatively low in all ROIs with the highest per-
centage of significantly above chance level (p < 0.05) predictions in PBelt (43%), A4 (34%) and TA2 (41%) regions.

Figure 3.  Experiment 1 - Overlap between different visual complexity measures in the visual cortex. (A) Ratio 
of overlapping voxels whose responses were significantly predicted in the lower visual cortex. (B) Ratio of 
overlapping voxels whose responses were significantly predicted in the higher visual cortex and V4.

Figure 4.  Experiment 1 - (A) Mean absolute beta coefficients over the significant voxels in the visual ROIs. 
Percentages show the percentage of positive beta coefficients corresponding to each complexity measure: 
Gradient, PNG and Self-similarity, from top to bottom, respectively. (B) Mean absolute normalized beta (beta/ r) 
over the significant voxels in the visual ROIs. Error bars show ±1 SEM.
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Next, we investigated the overlap between different auditory complexity measures in terms of the number 
of voxels whose responses were significantly predicted in the early auditory and auditory association cortices 
(Fig. 7). The amount of overlap between the significantly predicted voxel responses of FLAC and Ogg measures 
was very high (77%) in the early auditory cortex. This overlap reduced to 47% in the ROIs in the auditory associa-
tive cortex. Out of all the significantly predicted voxels in the auditory associative cortex, 29% were only sensitive 
to the FLAC measure, whereas this number was 10% for the Ogg measure and 12% for the event density. The 
voxels that were significantly predicted by all three measures made up 15% of all significant voxels in the early 
auditory cortex and 11% in the auditory associative cortex.

Finally, we looked at how the mean beta coefficients varied between different ROIs (Fig. 8). We observed that 
there was a large difference between the early auditory cortex and the auditory association cortex for the FLAC 
and Ogg measures, such that the early regions had a finer sensitivity to complexity and the associative regions had 
a coarser sensitivity to changes in complexity levels. For the event density measure, the mean beta levels were low 
in all ROIs. When controlled for the encoding performance (Panel B in Fig. 8) the differences between the early 
and associative auditory cortices remained similar except for in the STSva region for the Ogg measure which had 
a large variability. This analysis also revealed that the STSda region showed high sensitivity to the event density 
measure. Overall, the mean betas of the event density measure showed relatively larger variability both between 
and within ROIs. Regarding the direction of the relationship between complexity and voxel responses, for the 
compression complexity measures FLAC and Ogg (unlike in the visual cortex) the majority of voxels in all audi-
tory ROIs had positive beta coefficients, i.e they responded more as the stimulus complexity increased. However 
for the event density measure, most voxels had negative slopes.

Discussion
In this study, we investigated the neural representations of image and music complexity in the human visual and 
auditory cortices. To this end, we performed univariate encoding and multivariate decoding analyses of fMRI 
data from two different experiments measuring the stimulus-evoked BOLD responses to large collections of 

Event density FLAC Ogg

Event density 1.00 0.45 0.23

FLAC 0.45 1.00 0.66

Ogg 0.23 0.66 1.00

Table 6.  Experiment 2 - Bivariate correlations (r) between auditory complexity measures.

Figure 5.  Experiment 2 - Results of decoding auditory complexity measures from the ROIs in the auditory 
cortex. (A) Event density. (B) FLAC. (C) Ogg. Bars and error bars show decoding performance and ±1 SEM, 
respectively. Dashed line and shaded region show chance level and ±1 SEM around r = 0, respectively. SEM is 
computed with bootstrapping (1000 iterations).
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photograph and music stimuli. In Experiment 1, we found that visual complexity was represented throughout the 
visual cortex with decreasing sensitivity from lower to higher visual areas. While all regions in the lower visual 
cortex were highly responsive to stimulus complexity, in the higher visual cortex, PPA was the most responsive 
region to visual complexity of photographs. Voxels representing complexity in the lower visual cortex mostly 
showed increased activity with increased complexity, whereas approximately half of those in the higher visual 
areas showed decreased activity as image complexity increased. In the case of representations of auditory com-
plexity, in Experiment 2, we found that encoding and decoding performances and sensitivity of voxels were high 
for the early auditory cortex and on average lower for the regions in the auditory association cortex. Among the 
ROIs in the auditory association cortex, A4 and TA2 were the most responsive regions to stimulus complexity. 
Furthermore, we determined that representations of event density in music were less pronounced compared to 
those of Kolmogorov complexity measures throughout the auditory cortex.

The differences between the neural representations of different complexity measures, which are also sug-
gested by varying degrees of correlations between these measures, became more pronounced after a fine-grained 

Figure 6.  Experiment 2 - Distributions of encoding performance over individual voxels in auditory ROIs. (A) 
Event density. (B) FLAC. (C) Ogg. Boxes show interquartile range. Notches show second quartile. Whiskers 
show ±1.5 interquartile range. Points show encoding performance of individual voxels. Colors show p-values 
(black: outlier; gray: p ≥ 0.05; dark: p < 0.05; light: p < 0.001).

Figure 7.  Experiment 2 - Overlap between different auditory complexity measures in the auditory cortex. (A) 
Ratio of overlapping voxels whose responses were significantly predicted in the early auditory cortex. (B) Ratio 
of overlapping voxels whose responses were significantly predicted in the auditory association cortex.
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analysis of the results. In both visual and auditory cortices, we showed that in the earlier sensory areas, the overlap 
between voxels representing different complexity measures were higher than the overlap in the areas higher in 
the sensory hierarchy. This result implies that voxels coding for different complexity dimensions become more 
specialized along the visual and auditory hierarchy.

Furthermore, both in the auditory and the visual cortices, the sensitivity of voxels to changes in complexity – 
measured by the magnitudes of the regression slopes of the voxel encoding models – decreased along the sensory 
hierarchy. While this decrease was gradual in the visual cortex, it was more abrupt starting at the A4 region in 
the auditory association cortex, and in the auditory cortex was only observed for the Kolmogorov complexity 
measures. These results are reminiscent of the representational gradients of other sensory stimulus features such 
as semantic features of movies61 and speech62, and task-optimized features of images63, movies64 or music65, which 
further suggest a functional organization in terms of gradients rather than patches.

Another difference between the complexity representations in the two sensory cortices was observed between 
the number of voxels showing increased activity with increased complexity. In the auditory cortex, the responses 
of voxels were mostly positively correlated with complexity, whereas in the higher visual cortex, around half of 
the voxels had negative beta coefficients indicating increased activity in response to increased stimulus simplicity 
rather than complexity.

We found that from PPA, all of the tested complexity measures could be decoded with a very high accuracy 
but this was not the case for the encoding analysis. We believe that this suggests the presence of distributed rep-
resentations of complexity in PPA (cf. Park et al.66) rather than single voxels encoding for information regarding 
scene complexity. Possibly, our multivariate decoding approach allowed us to make accurate predictions about 
the complexity of the stimulus, whereas our univariate encoding analysis did not allow to capture the distributed 
representations of complexity.

The decoding accuracy in PPA was on par with the regions in the early visual cortex and was much better than 
other higher level regions such as FFA and LOC. This result might seem surprising at first glance, however it is 
actually not unexpected given that PPA is primarily responsible for representing scenes67,68, for which complex-
ity is one of the defining properties that allows identifying different scene categories69. On the other hand, such 
a relationship has not been established to the same extent for objects and faces. Our results are in line with the 
accepted functional role of the PPA in scene processing and support previous behavioural results showing that 
scene identification utilizes global image properties70,71.

The auditory association regions that we identified to represent music complexity largely overlapped with the 
regions that have been shown to activate during story listening and auditory math tasks, whereas we observed 
no strong correspondences with the story - math contrast58. As seen in Fig. 5 decoding of complexity levels from 
anterior STS and STG regions were rather unsuccessful, i.e. these regions performed either not or merely signif-
icantly different from chance. For example, in STSda, only event density could be significantly decoded and this 
was with a low amount of correlation. Similarly in STSva only FLAC and Ogg could be decoded with a perfor-
mance that was merely significantly above chance and no measure could be predicted from STGa. Moving from 
anterior to posterior regions, the decoding performance of the ROIs increased, such that performance in both 
STSvp and STSdp was significant, and in A4 and A5 regions, which lie on posterior STG, it was the highest among 
the areas in the auditory association cortex. (Left) posterior STG and STS regions have been shown to process 
syntactic complexity of language in several previous studies (for a review, see72). In most of these studies syntactic 
complexity is investigated by comparing list of words to sentences, sentences with simple syntactic structures to 

Figure 8.  Experiment 2 - (A) Mean absolute beta coefficients over the significant voxels in the auditory ROIs. 
Percentages show the percentage of positive beta coefficients corresponding to each complexity measure: Event 
density, FLAC and Ogg, from top to bottom, respectively. (B) Mean absolute normalized beta (beta/ r) over the 
significant voxels in the auditory ROIs. Error bars show ±1 SEM.
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those with complex ones72. Our results show that posterior STG and STS regions not only process syntactic com-
plexity, but also they represent music complexity.

In the auditory association cortex, besides the ROIs on posterior STG and STS, we identified TA2 (which lies 
on planum polare) as a region that represents complexity well. In terms of speech and other complex sounds, the 
function of this region has not been well established, however it is known to show greater activity in response to 
music, compared to vocal and speech sounds47. Our results demonstrate that TA2 is a region which also repre-
sents complexity of music.

Event density has been suggested as a good measure of the complexity of songs19,73. However, based on our 
results, event density showed different neural representations than the Kolmogorov complexity measures in the 
auditory cortex. Furthermore, event density was less well encoded and decoded by our approaches compared to 
the FLAC and Ogg measures.

We have used three different complexity measures per sensory modality so as to not overlook the multifac-
eted nature of complexity as discussed in the Introduction section. Both in the visual and auditory domains, this 
multifaceted nature of complexity makes it difficult to perfectly define complexity and select a “best” measure, 
especially when estimating the complexity levels of naturalistic stimuli. By reporting the results of our analysis for 
a selection of computational complexity measures, we aimed to provide a greater insight into how different meas-
ures of complexity are processed in the human brain. We hope that the differences among the different measures 
that we report here will be a useful resource for future studies.

In this study, our goal was to establish a direct, predictive relationship between objective stimulus complexity 
and stimulus-evoked brain activations at single subject level rather than making inferences at population level 
in accordance with previous neural encoding and decoding studies in the literature49,63,74,75. As such, we used 
data sets with a very large number of data points per subject (approximately 3 h and 9 h per subject) but a small 
number of subjects in total (eight and five subjects in total) for training and testing predictive models on separate 
datasets. Therefore, we performed statistical analyses and tests at single subject level. As a result, we were able to 
establish such a direct, predictive relationship. However, it should be noted that making inferences at population 
level would require a larger group study.

Literature in art perception suggests a strong link between complexity and aesthetic responses. A previous 
study investigating aesthetic responses to mathematical formulae indirectly provides some insight into how ele-
gance (or simplicity) of highly intellectual and abstract concepts are processed in the brain76. The authors of the 
study found that the beautiful mathematical formulae (which in many case were the formulae which were simple 
yet meaningful) activated the A1 region of the medial orbito-frontal cortex, which is known also to activate in 
response to beauty of art. However, this study investigated conceptual or mathematical elegance rather than 
perceptual simplicity. Therefore, it would still be interesting to investigate how stimulus complexity manifests 
itself throughout the brain (besides the currently investigated sensory cortices) in response to artworks, images 
and music of varying complexity levels. Moreover, an interesting next step would be to investigate the effects of 
additional factors such as scene preferences77 on the neural representations of stimulus complexity. Finally, while 
all of the objective computational complexity measures such as Kolmogorov complexity (PNG, FLAC and Ogg), 
gradient, self-similarity and event density that were employed in this study are established estimates of subjective 
complexity of auditory and visual stimuli, subjectively rated stimulus complexity can be investigated in future 
studies.
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