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Changes in gene-gene interactions associated
with cancer onset and progression are largely
independent of changes in gene expression

Zainab Arshad1 and John F. McDonald1,2,*

SUMMARY

Recent findings indicate that changes underlying cancer onset and progression
are not only attributable to changes in DNA structure and expression of individual
genes but to changes in interactions among these genes as well. We examined co-
expression changes in gene-network structure occurring during the onset and
progression of nine different cancer types. Network complexity is generally
reduced in the transition from normal precursor tissues to corresponding primary
tumors. Cross-tissue cancer network similarity generally increases in early-stage
cancers followed by a subsequent loss in cross-tissue cancer similarity as tumors
reacquire cancer-specific network complexity. Gene-gene connections remaining
stable through cancer development are enriched for ‘‘housekeeping’’ gene func-
tions, whereas newly acquired interactions are associated with established can-
cer-promoting functions. Surprisingly, >90% of changes in gene-gene network in-
teractions in cancers are not associated with changes in the expression of
network genes relative to normal precursor tissues.

INTRODUCTION

Cancer is a complex disease for multiple reasons. As with most diseases, there is an environmental and ge-

netic component to cancer, and these two components may interact through a variety of epigenetic mech-

anisms (Herceg and Vaissière, 2011). Although, in some instances, the propensity for developing cancer is

inherited in a Mendelian fashion (Goodrich, 2006), the disease is generally considered to be polygenic (Su-

gimura et al., 1992), albeit with a variety of specific genes (oncogenes and tumor suppressor genes) capable

of ‘‘driving’’ onset anddevelopment in different cellular contexts (Bailey et al., 2018;Martı́nez-Jiménez et al.,

2020). Inmore recent years, an added level of complexity has been recognized and attributed to themultiple

levels of regulatory interactions that exist between genes comprising the human genome (Ashworth et al.,

2011; Tutuncuoglu and Krogan, 2019). Thus, the changes that underlie cancer onset and progression may

not only be credited to changes in the DNA structure and expression of individual genes but to changes

in gene-gene interactions that emerging evidence (Billmann et al., 2018) indicates can contribute signifi-

cantly to functions generally considered to be hallmarks of cancer (Hanahan and Weinberg, 2000, 2011).

A number of excellent studies have been carried out in recent years supporting the significance of co-

expression network analysis in understanding cancer. These include analyzing changes in correlated

expression patterns among genes under contrasting conditions, e.g., cancer versus normal precursor tis-

sue (Hill and McDonald, 2015; Yu et al., 2017; Andonegui-Elguera et al., 2021) and cancers of different tis-

sues of origin (Yang et al., 2014; Yu et al., 2017; Paci et al., 2021) and subtypes (Costa et al., 2018; Andone-

gui-Elguera et al., 2021). However, little is currently known concerning changes in gene-network structure

associated with progression of the disease from early to late stages of development. We report here the

results of a study of changes in gene-network structure occurring during the onset and progression of

nine different cancer types. We consistently observe a drop in network complexity (reduction in number

of network nodes and edges) in the transition from normal non-cancerous tissues to corresponding primary

tumors. With the exception of thyroid cancer, cancer progression from early to later stages of development

is marked by a renewed increase in complexity but involving gene-gene connections distinct from those

observed in the transition from normal precursor cells. In addition, cross-cancer type (i.e., different tissues

of origin) network similarity was found to increase during cancer onset, followed by a subsequent loss in

similarity across different types of cancer as tumors progress.
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Although changes in gene-network structure are often assumed to be associated with significant changes

in gene expression, we find that this is frequently not the case. Indeed our results indicate that, on average,

90.5% of lost network nodes and 91.2% of acquired network nodes in cancer involve genes displaying no

significant change in expression relative to their precursor normal tissues. Network features (nodes and

edges) that remain stable through cancer development are enriched for ‘‘housekeeping’’ gene functions,

whereas newly acquired networks are enriched for functions previously associated with cancer develop-

ment, including regulation of inflammatory and immune response, as well as changes in extracellular matrix

organization facilitating migration. Collectively, our findings indicate that changes in gene-network inter-

actions associated with cancer onset and development may not only expand our understanding of the un-

derlying molecular basis of the disease but may enhance our ability to identify important new candidates

for targeted gene therapy.

RESULTS

Cancers display a significant loss in transcriptional network complexity relative to normal

precursor tissues

Gene expression levels (RNA-seq) of tumor (early and late stages combined) and control tissue samples

representing nine different cancer types (Glioblastomamultiforme, GMB; thyroid carcinoma, THCA; breast

cancer, BRCA; lung adenocarcinoma, LUAD; lung squamous cell carcinoma, LUSC; skin cutaneous mela-

noma, SKCM; kidney renal clear cell carcinoma, KIRC; ovarian cancer, OV; acute myeloid leukemia,

LAML) were downloaded from The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013) database for

the cancer samples and the Genotype-Tissue Expression (GTEx) (Ardlie et al., 2015) database for the con-

trol samples. A minimum of 100 tumor and 100 control samples were analyzed for each of the nine cancer

types to help ensure the robustness of the derived networks (Table S1).

Co-expression networks for each dataset were constructed using pairwise Pearson’s correlations comparing the

expression levels of 304.3 million pairs of genes (17,444 3 17,444) across patient samples and selecting gene

pairs displaying highly correlated (positive or negative, >0.85) changes in expression levels across samples.

Each dataset was randomly down-sampled to a hundred observations, and edges conserved over all iterations

were used to define the final networks (see co-expression network construction in STARMethods). This resulted

in 2,261 to 80,842 (Figure 1A) significantly correlated changes in expression (edges) between pairs of genes (no-

des) across the nine normal tissue-of-origin samples (Table S2). The same analyses were carried out across each

of the pre-cancer tissue types, resulting in 155 to 5,832 highly correlated changes in expression (edges) between

pairs of genes (nodes) (Table S2). Because the vast majority of conserved network changes (96.93% of normal

and 100% tumor connections) presented positive correlations between genes, positive and negative correla-

tions were treated in an identical manner in our network analysis.

For all nineof the cancers examined,weobservedadramatic loss (average96.7%) innetwork connections (edges)

relative to those present in their respective normal precursor tissues (Figure 1A). On average, only 3.27% of the

connections present in the precursor normal tissues were conserved in the cancers. The relative degree of loss

in network connections varied across cancer types with LAML (99.93%) andOV (99.48%) displaying themost pro-

nounced percent loss in connections and LUSC (96.2%) and THCA (83.2%) displaying the least (see Table S3).

While there was a large reduction in the number of connections in cancers that were present in precursor

normal tissues (96.7%), there was a concomitant gain of new connections in the cancers (69.05%) that were

not present in the normal precursor tissues. The increase of new network connections in cancer was again

observed to vary across cancer types with SKCM (94.08%) and LAML (91.16%) displaying the most signifi-

cant percent gain and OV (41.8%) displaying the least (see Table S3).

To quantify cross-tissue similarity among normal and among cancer networks, defined here as the proportion of

network nodes common between two networks, we calculated pairwise network similarity for the nine tissues in

normal and the nine tissues in disease state. Figure 1B displays heatmaps representing network similarity among

sets of normal precursor tissues (left) and among cancer tissues (right). On average, 28.8%of genes (nodes) are in

common among cancer networks, an overall increase in network similarity among cancer tissues relative to

network similarity among their respective normal precursor tissues (average 19.1%).

Using Jaccard similarity between cancer networks for reference, we built a similarity network of cancers

where each node corresponds to a distinct cancer type and each edge represents the number of genes
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shared between two cancer networks (Figure 1C). Edges for cancer network pairs with Jaccard index

greater than 0.35 (upper quantile) are labeled in the graph. Of interest, we found that four cancers

(BRCA, LUAD, LUSC, and OV) displayed pairwise Jaccard similarity scores >0.4 and contributed most to

the increase in network similarity in the cancers, relative to normal tissues. In addition to this, KIRC also dis-

played notable pairwise correlation with BRCA and LUAD, presenting 170 and 164 overlapping network

nodes, respectively.

Changes in network complexity associated with cancers are largely attributable to lost or

acquired network genes (nodes) displaying no significant change in expression

Comparing normal (Figure 2A) and cancer (Figure 2B) networks, connections are lost, conserved, or ac-

quired in cancer (Figure 2C). Loss of connections (edges) in a cancer network may result from loss of one

or both of the nodes (genes) in the cancer relative to normal precursor tissue or loss of a connection without

loss of one or both nodes (genes) between cancer and normal precursor tissue (Figure 2D). Similarly, ac-

quired connections in cancer may or may not be associated with the gain of acquired nodes (genes) be-

tween the tumor and normal precursor tissue (Figure 2E).

Figure 1. Network comparisons between nine cancer types

(A) Number of connections in gene co-expression networks for cancers and their respective normal precursor tissues. p

Values were calculated based on t test for independent samples (GBM = 3.33 10�124, THCA = 4.73 10�46, BRCA = 3.33

10�91, LUAD = 1.9 3 10�124, LUSC = 3.4 3 10�98, SKCM = 4.1 3 10�139, KIRC = 2.0 3 10�141, OV = 2.3 3 10�213, LAML =

2.7 3 10�291; * = p < 0.05; ** = p < 0.01). Networks were constructed from conserved gene-gene correlations from 100

iterations.

(B) Cross-tissue Jaccard similarity in co-expression networks, for shared network nodes (upper triangular) and edges

(lower triangular) in normal precursor networks (left) and their corresponding cancer networks (right). Numbers in the

matrix are Jaccard Similarity indexes that are ratios with value between 0 and 1.

(C) Similarity network for cancer networks. Each node corresponds to a distinct cancer type, and each edge represents the

number of genes shared between two cancer networks. Network pairs that share a substantial number of genes (Jaccard

similarity more than 0.35) are labeled with the number of overlapping genes.
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We found that most changes in gene-gene (node to node) interactions observed in cancer networks re-

sulted from the loss or gain of a node (Figure 2F i). On average, 97.01% of all lost connections had one

or both of their nodes lost in cancer, whereas acquired cancer nodes accounted for 75.99% of all gained

edges (Figure 2F ii, and lines 5 and 6 Table S4).

To determine if lost or acquired network nodes (genes) exhibit any significant expression changes between

normal and cancer, differential gene expression levels were examined for all nine tissue types. Gene

expression profiling identified 790 (GBM) to 5,919 (LAML) significantly differentially expressed genes

(mRNAs) between normal and cancer samples (see Table S5). On average, only 9.47% of lost network nodes

(Figure 2F iii) and 8.76% of acquired cancer nodes (Figure 2F iii) displayed a significant change in expression

between cancer and normal (see also Table S6). LAML displayed the highest number of network nodes that

were differentially expressed, including 32.79% lost nodes (10.5% up expressed and 22.3% down ex-

pressed) and 28.25% acquired nodes (8.25% up expressed and 20% down expressed) (f iii).

We defined the top 2% of nodes with the highest connectivity in our cancer networks as hub genes. Consis-

tent with what we found for all genes lost or gained in cancer, only a small minority of network hub genes

lost (6.01%) or acquired (4.22%) in cancer were found to display significant changes in expression in the can-

cers (Figure 2F iv; see also Table S7).

To determine if these trends remained consistent for those genes previously identified as drivers of cancer

onset and progression, we focused on genes in the COSMIC (Catalogue of Somatic Mutations in Cancer)

(Sondka et al., 2018) dataset. The COSMIC cancer gene set consists of cancer driver genes, including 315

oncogenes and 315 tumor suppressor genes. On average, only 8.09% of lost network COSMIC genes (no-

des) and 0% of acquired network COSMIC genes (nodes) (Figure 2F v) displayed a significant change in

expression between cancer and normal (see also Table S8).

Figure 2. Changes in network structure (loss/gain of connections) in cancer

Lost connections (C) are edges present in the normal precursor tissue network (A) but not in the tumor network (B); conserved connections (C) are edges

present in both the normal precursor network and the tumor network. Lost connections may arise with or without loss of associated nodes (D); acquired

connections are edges NOT present in the normal precursor tissue network (A) connecting either existing nodes or newly acquired nodes (E).

(F i-v) Total number (percentage) of connections lost, conserved, or acquired in the tumor networks; (F ii) lost connections between conserved or lost nodes,

and acquired connections between conserved or acquired nodes; (F iii) nodes lost or acquired and differentially expressed between normal and cancer

tissues; (F iv) lost or acquired hub nodes (top 2% of nodes with highest connectivity in a network) that are differentially expressed; (F v) COSMIC (cancer driver

genes) nodes lost or acquired, and differentially expressed between normal and cancer tissues.

ll
OPEN ACCESS

4 iScience 24, 103522, December 17, 2021

iScience
Article



Late-stage cancers display a net gain in network complexity relative to early-stage cancers

To explore the possibility that changes in network structure may also vary as cancers progress from early

to late stages, we divided the TCGA cancer samples into early-stage (stage I and stage II) and late-stage

(stage IIII and stage IV) samples. Datasets with less than 100 samples were removed from this analysis

(SCKM and OV). GBM and LAML were also dropped owing to missing stage information. For the remain-

ing five datasets, co-expression networks were constructed as employed above. As shown in Figure 3A,

four of the five cancer types tested displayed on average a 268.7% (BRCA = 69.47%, LUAD = 348.41%,

LUSC = 896.97%, KIRC = 60.23%) increase in the number of gene-gene associations in late-stage cancers

relative to early stage. THCA was again the outlier, displaying, in contrast, a decrease in the number of

connections in late- versus early-stage samples. Cross-tissue network comparison revealed an average of

6.1% loss in Jaccard similarity coefficient for late-stage cancers relative to early-stage cancers (Figure 3B).

Average Jaccard similarity for overlapping network nodes increased by 9.6 from 0.315 in normal tissue

(194 overlapping nodes) to 0.401 in early-stage cancer (412 overlapping nodes) across the five tissues.

Sixty-three of these cross-tissue conserved network nodes are shared between normal and early-stage

networks.

Genes lost, conserved, or acquired in cancer networks are enriched for distinct biological

functions

To determine if those genes (nodes) that were lost, conserved, or acquired in the cancer networks were

differentially enriched for biological functions, we submitted the sets of genes lost, conserved, or acquired

in cancer for pathway enrichment analysis to GSEApy (Subramanian et al., 2005). This resulted in a total of

304, 96, and 142 hits for lost, conserved, or acquired network nodes, respectively (see Table S9). The most

common significant GO hits (adjusted p value <0.05) across the nine cancers are presented in Figure 4A.

mRNA pre-processing, transcription, and translation were the biological processes most significantly en-

riched for lost nodes. Conserved nodes in cancer networks were predominantly enriched for metabolic

and immune system processes, whereas acquired cancer nodes were enriched for extracellular matrix or-

ganization and immune-related processes.

GO analysis for early-stage and late-stage cancers revealed 77 pathways for lost nodes, 78 pathways for

conserved nodes, and 113 pathways associated with network nodes acquired in late-stage cancer, a major-

ity of which are unique to individual cancers. Similar to the normal versus cancer comparison, consensus hits

for nodes lost in late stage showed enrichment for mRNA pre-processing, transcription, and translation

(Figure 4B). Early-stage network nodes conserved in late stage were predominantly enriched for metabolic

functions and immune response processes including multiple hits for antigen processing and presentation

via major histocompatibility complex (MHC) molecules. Acquired nodes in BRCA displayed enrichment for

76 pathways (of the total 113 for all cancers) that include negative regulation of G2/M transition of mitotic

cell cycle, regulation of stem cell differentiation, and regulation of signaling pathways for NIK/NF-kB and

Wnt. Genes shared across all five early-stage networks (412 in total) presented significant enrichment for

eight biological processes associated with regulation (metabolic) and development. In contrast, network

nodes common in their corresponding five precursor normal tissues did not show significant enrichment

for any biological process (see Table S10).

DISCUSSION

Cancer cells typically display a loss in regulatory control over a variety of cellular functions relative to

their normal precursor cells (Hanahan and Weinberg, 2000). On the molecular level, loss in regulatory

control has traditionally been monitored by changes in gene expression (Zhang et al., 1997; Cadenas

et al., 2014). However, because genes operate within the context of complex and highly interactive mo-

lecular networks, a fuller appreciation of the regulatory changes that underlie cancer onset and progres-

sion must also include consideration of alterations in gene-gene network interactions. Toward this end,

we constructed gene co-expression networks for nine human tissues and their derivative cancers. We

employed an unsupervised approach of network construction to uncover global changes in network

structure associated with cancer onset and progression. We found that cancer is generally associated

with an overall reduction in network complexity with 96.73% of gene-gene connections (edges) present

in normal tissues being lost in their corresponding cancer tissues. However, we also found that many new

gene-gene connections are acquired in cancer accounting for, on average, 69.05% of network connec-

tions present in these transformed cells. Our results provide quantitative evidence for the dynamic
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rewiring of normal biological pathways in cancer (Chow, 2010; Billmann et al., 2018; Hjaltelin et al., 2019),

as well as the acquisition of novel regulatory controls (Gupta and Qin, 2003; Balkwill and Coussens, 2004)

previously associated with cancer. Moreover, in examining cross-tissue network similarity between pre-

cursor normal tissues and their respective cancers, we noted a 9.7% increase in shared network genes

(nodes) (7.6% increase in shared connections [edges]) across the nine types of cancer in our study. These

findings are consistent with the hypothesis that cancer cells revert to more undifferentiated states rela-

tive to their normal precursor cells (Carvalho, 2020) as evidenced, e.g., by elevated levels of progenitor

(stem cell) markers and lower expression of differentiation markers (Friedmann-Morvinski et al., 2012).

This hypothesis is further supported by our downstream analysis of early-stage networks, which pre-

sented twice as many network nodes conserved across early-stage cancers as their precursor normal tis-

sues, with an overall 9.7% increase in cross-tissue network similarity.

Four cancers (BRCA, LUAD, LUSC, and OV) were found to contribute most to the increase in network sim-

ilarity in cancer, with pairwise Jaccard indexes >0.4 each. These results provide confirmatory evidence for

previously reported genetic correlations between breast, lung, and ovarian cancers (Jiang et al., 2019),

along with previously unreported common genetic features of KIRC with BRCA, LUAD, and LUSC, as indi-

cated by significant overlap of network nodes (Jaccard indexes >0.35).

Large sample sizes of five TCGA datasets allowed us to further explore network properties of early-stage

and late-stage cancers. Although our results indicate reduced gene-gene interaction networks in cancers

relative to their precursor normal tissues, they also reveal an increase in network complexity as cancers

progress from early stage to late stage (268.7% increase). The significance of this increase in network

complexity in later-staged cancers remains to be determined but may reflect a gain in regulatory control

of cellular functions (e.g., metastasis, angiogenesis) characteristic of late-stage cancers. This possibility is

consistent with our gene ontology analysis (Figure 4 and see below). Collectively, our results suggest that

network complexity may complement current efforts to utilize stage-specific differences in gene expres-

sion in cancer staging (Sun et al., 2017; Yu et al., 2020). Furthermore, we found that late-stage cancers

displayed 6.1% loss in shared network nodes relative to early stage, suggesting an increase in tissue-spe-

cific differentiation with cancer progression to late stage. The observation that increased tissue speci-

ficity is associated with cancer progression may be significant in view of previously reported divergence

in mutational landscape of cancer evolution, from an initial set of common mutations in driver genes to

rare mutations in a broad spectrum of genes at late stages of cancer development (Gerstung et al.,

2020).

In contrast to the majority of cancers analyzed in our study, thyroid cancers were found to display a further

drop in number of network connections in later stages of cancer progression. Although the reason for this

dichotomy is currently unknown, the fact that patients with thyroid cancer in the TCGA database are less

Figure 3. Increase in co-expressed genes in late-stage cancer

(A) For each tissue, the number of connections in networks representing early-stage (stages I and II) and late-stage (stages III and IV) samples. p Values were

calculated based on t test for independent samples (THCA = 4.8 3 10�39, BRCA = 8.4 3 10�14, LUAD = 1.5 3 10�70, LUSC = 6.0 3 10�9, KIRC = 9.5 3 10�1; *

= p < 0.05; ** = p < 0.01).

(B) Cross-tissue Jaccard similarity in co-expression networks, for shared networks nodes (upper triangular) and edges (lower triangular) in early-stage

networks (left) and late-stage networks (right) across pairs of tissues.
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likely to have received neo-adjuvant therapy than patients with other types of cancer (see Figure S1) sug-

gests that therapeutic treatment per se may contribute to changes in gene-network interactions. Further

studies will be required to rigorously test this hypothesis.

As noted above, changes in the levels of gene expression are currently widely employed to monitor puta-

tive regulatory changes associated with cancer onset and progression. Interesting, we found that genes

displaying significant changes in gene-gene connections in the transition from normal to cancer cells

were often not differentially expressed. DEGs were also found to be largely depleted in network hub no-

des. In addition, we found nearly equal numbers of cancer driver genes (COSMIC database) to be associ-

ated with changes in gene-gene connections (52) and significant changes in gene expression (57); however,

the two groups of genes were largely non-overlapping (only six in common). This observation highlights the

combined power of gene-network analysis and differential expression analysis to uncover unique sets of

disease-associated genes. Overall, our results suggest that changes in network structure in cancer

onset/development represent a clinically significant dynamic that may go undetected in standard gene

Figure 4. Pathway enrichment in network nodes lost, conserved, or acquired

(A) In cancers compared with their respective normal precursor tissues

(B) In late-stage cancers compared with their respective early-stage cancers. p Values for consensus GO hits (x axis) found to be enriched for lost, conserved,

or acquired network nodes for cancers of different tissues of origin. (n = the number of overlapping genes [between network nodes and the annotated

pathway] over total number of genes associated with the pathway).
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expression analysis. Genes not differentially expressed in cancer but playing a critical role in newly acquired

gene networks may constitute novel candidates for targeted gene therapy.

To explore the functional significance of changes in gene-network structure in cancers, we conducted

detailed gene ontology (GO) analyses for those genes (nodes) lost, conserved, or acquired in cancer.

Our results indicate that genes lost in cancer are enriched for functions associated with mRNA pre-process-

ing and translational regulation. These findings are consistent with the view that cancer reflects an overall

loss of regulatory control (Hartwell and Kastan, 1994; Wang et al., 2019). In contrast, genes acquired in can-

cer networks are enriched for functions associated with inflammation and extracellular matrix organization,

two established hallmarks of cancer (Hanahan and Weinberg, 2000, 2011). Those genes conserved in

normal and cancer networks are enriched for functions associated with metabolic activity, immune

response, and other basic housekeeping cell functions.

Collectively, our findings reinforce the view that changes in gene-network interactions are playing a signif-

icant role in cancer onset and progression. We believe such system-level approaches to cancer may not

only help unify and complement our understanding of the significance of the vast array of individual struc-

tural and regulatory variants associated with the disease but may also facilitate identification of potential

new targets for chemotherapy.

Limitations of the study

There are limitations that need to be noted. For example, co-expression networks are sensitive to sam-

ple sizes with small datasets potentially giving rise to false positives. To minimize this possibility, we

limited our networks to include conserved edges from multiple iterations of down-sampled equally

(>100) sized datasets. In addition, it is important to keep in mind that, although correlated changes

in the expression of genes associated with the onset and development of cancer are reliable system-

level indicators of changes in network structure, this does not imply that each correlation is necessarily

indicative of a direct (gene-to-gene) regulatory change on the molecular level. Indeed, it is likely that a

number of the significantly correlated changes computationally identified between genes (represented

as edges between nodes in the network) are the result of indirect regulatory interactions on the molec-

ular level.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Request for further information should be directed to and will be fulfilled by the lead contact, John F.

McDonald (john.mcdonald@biology.gatech.edu)

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data: This paper analyzes existing, publicly available data. Details of these datasets are listed in the key

resources table.

Code: This paper does not report original code.

Additional information requests: Any additional information required to reanalyse the data used in this

study is available from the lead contact upon request.

METHOD DETAILS

Data pre-processing

Nine cancer types, including carcinoma, melanoma, and leukemia, were selected from The Cancer Genome

Atlas (TCGA) (Cerami et al., 2012; Weinstein et al., 2013) Glioblastoma multiforme-GMB, thyroid carcinoma-

THCA, breast-BRCA, lung adenocarcinoma-LUAD, lung squamous cell carcinoma-LUSC, skin cutaneous mela-

noma-SKCM, kidney renal clear cell carcinoma-KIRC, ovarian-OV, acute myeloid leukemia-LAML. Healthy tissue

data for each tissue type were obtained from the Genotype-Tissue Expression (GTEx) (Ardlie et al., 2015) data-

base. Batch-corrected data from the two projects was downloaded together with Recounts2 project (Mounir

et al., 2019) The RNA-seq counts values were normalized and processed with TCGAbiolinks package (Mounir

et al., 2019). A summary of sample sizes for each dataset can be found in Table S1.

For stage specific cancer analysis, we required that each cancer type, with stage information available, had

at least one hundred samples for early-stage and late-stage each, which left us with only five cancer types:

BRCA, THCA, LUAD, LUSC and KIRC.

To investigate trends in co-expressed gene pairs for cancer driver genes, 315 oncogenes and 315 tumor

suppressor genes were obtained from Cancer Gene Census, COSMIC (Sondka et al., 2018). Out of these,

72 genes are labeled both oncogene and tumor suppressor gene in COSMIC.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

TCGA GTEx data Mounir et al., 2019. https://doi.org/10.1371/

journal.pcbi.1006701.

https://bioconductor.org/packages/release/

bioc/html/TCGAbiolinks.html

COSMIC Sondka et al., 2018. https://doi.org/10.1038/

s41568-018-0060-1.

https://cancer.sanger.ac.uk/cosmic

Software and algorithms

Python Python Software Foundation https://www.python.org/

TCGAbiolinks Mounir et al., 2019. https://doi.org/10.1371/

journal.pcbi.1006701.

https://bioconductor.org/packages/release/

bioc/html/TCGAbiolinks.html

GSEApy Subramanian et al., 2005. https://doi.org/10.

1073/pnas.0506580102.

https://github.com/zqfang/gseapy
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Co-expression network construction

Pearson correlations between gene pairs were calculated using pandas.DataFrame.corr function. Based on

our previous work where we evaluated different values of correlation thresholds (0.70–0.99), it was found

that networks of random signals could appear to be connected for values of r < 0.85 (Hill and McDonald,

2015). Thus, to minimize false positives, the absolute value of r was limited to values >0.85. Baseline rela-

tionships (correlations) between pairs of genes were established by correlating the expression of 304.3

million pairs of genes (17,4443 17,444) across normal samples for each tissue, and selecting pairs satisfying

r > 0.85, p value < 0.05. Because on average 96.93% of baseline relationships (correlations) observed in

GTEx normal tissue datasets and 100% correlations in TCGA cancer datasets, all relationships (correlations)

were treated as unsigned in all downstream analyses.

The number of edges was found to be highly dependent on the number of samples. Therefore, to ensure

fair comparison between tissues with variable sample sizes, each dataset was randomly down-sampled to a

100 and consensus interactions from a hundred iterations were used to define the final networks. For down-

stream analysis, network nodes were divided into: lost nodes representing genes displaying significant cor-

relations across normal samples only, conserved nodes with connections in both normal and cancer sam-

ples and acquired nodes that develop gene-gene correlations in cancer samples.

Network similarity measures

Toevaluate network conservation amongprecursor normal samples andamong cancer samples, we calculated a

Jaccard Index using sklearn.metrics.jaccard_score, for network nodes and edges shared between two networks

as shown in Figure 1B. The analysis was repeated for different stages of cancer to obtain results in Figure 3B.

Differential expression analysis

DEGs are identified using TCGAanalyze_DEA function from TCGAbiolinks that utilizes the edgeR package

(Robinson et al., 2009). The thresholds of p value <0.05 and |log2 FC (fold change)| R1 were set to define

DEGs (Figure S2). DEGs were further divided into up-regulated DEGs with log2 FCR1 and down-regulated

DEGs with log2 FC %�1.

Gene ontology enrichment analysis

Lists of genes lost, conserved or acquired for each cancer were submitted to genome ontology (GO) enrich-

ment analysis by using the Gene Set Enrichment Analysis in Python (GSEApy version 0.9.12; https://github.

com/zqfang/gseapy) (Subramanian et al., 2005). Biological process terms having adjusted P < .05 were

considered significant. GO hits for all nine cancers were consolidated to determine the mostly highly

conserved biological processes across the nine cancers, for lost, conserved or acquired network nodes.

GO parent terms with most enriched descendants for each node set were also mentioned in Figure 4A

(see Table S9). The analysis was repeated for different stages of cancer in Figure 4B.

QUANTIFICATION AND STATISTICAL ANALYSIS

A summary of sample sizes for each dataset used in this work can be found in Table S1. For gene co-expres-

sion analysis, Pearson coefficient (r) > 0.85 and the corresponding p values <0.05 were used. Table S2 lists

the number of significantly correlated changes in expression between pairs of genes (network edges) in

normal and cancer networks. p values for the loss in number of interactions between normal and cancer

samples, per tissue, were calculated based on T test for independent samples and are provided within

the Figure 1A legend. Jaccard index for network similarity was calculated with sklearn.metrics.jaccard_-

score, for network nodes and edges shared across tissues in normal and cancer samples, shown in Figure 1B.

For differential expression of genes analysis, we used the TCGAanalyze_DEA function from TCGAbiolinks

that utilizes the edgeR package. Thresholds of p value <0.05 and |log2 FC (fold change)| R1 were set to

define DEGs, that have been provided in Table S5 for each tissue type. p values for the difference in number

of interactions between early-stage and late-stage samples, per tissue, were calculated based on T test for

independent samples and are provided within the Figure 3A legend. Significant GO hits for networks nodes

were identified using GSEApy, p values <0.05. Hits enriched in more than one cancer are plotted in Figures

4A and 4B and the complete lists of results are included in Table S9. Statistical test results (i.e., p values) are

provided for all comparisons in figures, and p values < 0.05 were considered significant.

ll
OPEN ACCESS

12 iScience 24, 103522, December 17, 2021

iScience
Article

https://github.com/zqfang/gseapy
https://github.com/zqfang/gseapy

	ISCI103522_proof_v24i12.pdf
	Changes in gene-gene interactions associated with cancer onset and progression are largely independent of changes in gene e ...
	Introduction
	Results
	Cancers display a significant loss in transcriptional network complexity relative to normal precursor tissues
	Changes in network complexity associated with cancers are largely attributable to lost or acquired network genes (nodes) di ...
	Late-stage cancers display a net gain in network complexity relative to early-stage cancers
	Genes lost, conserved, or acquired in cancer networks are enriched for distinct biological functions

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Data pre-processing
	Co-expression network construction
	Network similarity measures
	Differential expression analysis
	Gene ontology enrichment analysis

	Quantification and statistical analysis




