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ABSTRACT
Background. Grassland plays an important role in the ecosystem, but overgrazing
harms the grassland system in many places. Grazing prohibition is an effective method
to restore grassland ecosystems, and it plays a great role in realizing the sustainable
development of grassland systems. Therefore, it is necessary to carry out research on
the influence of regional grazing prohibition on the physical and chemical properties
of different grassland systems.
Methods. In Potatso National Park, Southwest China, we selected experimental plots
in the artificial grazing meadow area to study the effects of grazing prohibition on
plant and soil indexes in subalpine meadows and swampmeadows. We investigated the
biomass and species diversity of grazing prohibition treatment and grazing treatment
plots and sampled and tested the soil index. The variation percentage was used
to remove the original heterogeneity and yearly variation, allowing us to compare
differences in plant index and soil index values between grazing prohibition and grazing
treatments.
Results. Grazing prohibition increased the aboveground biomass, total biomass, total
meadow coverage, average height, richness index, Shannondiversity index and evenness
index and reduced the belowground biomass and root/shoot ratio in the subalpine
meadow and swamp meadow. Additionally, grazing prohibition reduced the pH and
soil bulk density and increased the soil total carbon, soil organic carbon, soil total ni-
trogen, soil hydrolyzable nitrogen, soil total phosphorus and soil available phosphorus
in the subalpine meadow and swamp meadow. Nonmetric multidimensional scaling
(NMDS) analysis showed that both plant indexes and soil indexes were significantly
different between grazing and grazing prohibition treatments and between meadow
types. Short-term grazing prohibition had a great impact on improving the fertility of
meadow soil in the study area.We suggest that long-term and extensive research should
be carried out to promote the restoration and sustainable development of regional
grassland systems.
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INTRODUCTION
Grassland occupies 1/3 of the global land area (Houghton, 1994) and is a major foundation
for the development of animal husbandry in many countries; however, grassland resources
are facing tremendous pressure with continuous animal husbandry expansion. Previous
studies have shown that overgrazing changes surface vegetation and soil nutrient cycling
(Smoliak, Dormaar & Johnson, 1972; Chaneton & Lavado, 1996) and can even cause
permanent degradation of grassland productivity and ecosystem destruction (Su et al.,
2004). Therefore, researchers have conducted a wide range of studies on the impact of
grazing on grassland degradation from multiple angles. These include soil nutrients (Jeddi
& Chaieb, 2010; Xiong et al., 2014;Ma, Ding & Li, 2016; Li et al., 2016), vegetation (Zhao et
al., 2009; Jeddi & Chaieb, 2010; Cheng et al., 2011; Niu et al., 2018) and soil structure (Li et
al., 2011b; Jaweed, Saptarshi & Gaikwad, 2012; Mofidi et al., 2012). China has a grassland
area of 4.32 × 106 km2, which accounts for 40% of the country’s land area (Tong, Zhao &
Wu, 2018), and 90% of grasslands have been degraded to varying degrees. The degradation
trend continues to increase (Ren et al., 2007; Cao et al., 2013). Grazing prohibition is
considered an effective way to prevent vicious grassland degradation cycles and restore
grassland ecosystems and soil fertility (Wu et al., 2014; Bi et al., 2018). Therefore, it is
necessary to carry out grazing prohibition work in grassland areas to protect grassland
resources and maintain ecological balance.

Studies have found that the plant index is significantly correlated with grazing pressure
(Larreguy, Carrera & MB, 2014), and grazing prohibition can significantly increase
aboveground and belowground biomass (Cheng et al., 2011; Wu et al., 2014; Xiong et
al., 2014; Li et al., 2016), plant coverage, plant richness (Pei, Fu & Wan, 2008; Cheng et al.,
2011; Chen & Tang, 2016), total biomass, and average height (Pei, Fu & Wan, 2008).This
may be attributed to the grazing prohibition hindering external disturbance activities,
protecting the grassland crust structure, and providing opportunities for vegetation growth
and reproduction.Moreover, grazing prohibition significantly reduces the root/shoot ratio,
Shannon diversity index and evenness (Wang et al., 2014). This is caused by rapid growth
of the aboveground parts of the vegetation and the consumption of root nutrient reserves.
Grazing prohibition has a protective effect on dominant species, and the constructive
species compete for space and nutrients and crowd out other dwarf species. However,
studies have also found that grazing prohibition had no effect on belowground biomass
(Larreguy, Carrera & MB, 2017) or reduced (Smoliak, Dormaar & Johnson, 1972).

Studies have shown that grazing prohibition significantly reduces pH (Pei, Fu & Wan,
2008; Wu et al., 2010; Wang et al., 2014). This is likely due to grazing prohibition blocking
livestock manure and urine input, and dominant species development makes saline-
loving vegetation expansion difficult. Meanwhile, grazing prohibition eliminates the soil
compaction process caused by livestock trampling and reduces soil bulk density (Hiernaux
et al., 1999; Pei, Fu & Wan, 2008;Wu et al., 2010;Wang et al., 2014). Some studies have also
found that grazing prohibition can increase, decrease, or not significantly affect soil pH and
soil bulk density because of study area differences (Moussa, Rensburg & Kellner, 2009; Lu
et al., 2015). Furthermore, grazing prohibition can effectively increase soil organic carbon
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and soil total nitrogen (Wu et al., 2008;Xiong et al., 2014; Lu et al., 2015; Li et al., 2016), soil
total phosphorus and soil available phosphorus (Hiernaux et al., 1999; Li et al., 2011b; Ma,
Ding & Li, 2016) because grazing prohibition can largely compensate for soil index losses
caused by overgrazing and restore soil ecological indicators in pastoral areas (Raiesi &
Riahi, 2014). Studies have found that the effect of grazing prohibits on soil organic carbon
(Moussa, Rensburg & Kellner, 2009) and available phosphorus (Lu et al., 2015) without a
significant increase or decrease. The same soil index has different responses to grazing
prohibition and is related to the terrain, species composition, climate and precipitation of
the study area (Wu et al., 2010; Xiong et al., 2014; Zhang et al., 2018).

In summary, the grazing prohibition effects on grassland plant and soil indexes
are unclear, and it is necessary to carry out grazing prohibition experiments in more
meadow areas to identify the influential mechanism. Meadows, as an important part of
grasslands, require strengthened real-time monitoring of degraded areas and carry out
grazing prohibition for sustainable development. Subalpine meadow and swamp meadow
ecosystems are typical grasslands in Potatso National Park (Wang, Zhong & Yang, 2000);
however, nomadic customs have caused degradation in park grasslands. Carrying out this
research is an effective means to deeply understand the impact on soil and plant indexes
by grazing prohibition in Potatso National Park, and can provide scientific guidance for
regional grassland protection and future development.Therefore, we assume that grazing
prohibition has a positive effect on the plant and soil indexes of subalpine meadows and
swampymeadows. To verify this hypothesis, we conducted grazing and grazing prohibition
experiments in the subalpine and swampy meadow pastoral areas of Potatso National Park
to determine the effect of grazing prohibition on improving plant and soil indexes.

MATERIALS & METHODS
Site description
The study is located in Potatso National Park (27◦55′3′′N, 99◦56′33′′E; 3,601 m above
sea level) in Shangri-La County, Diqing Tibetan Autonomous Prefecture, northwestern
Yunnan, China (Fig. 1A). According to long-term meteorological monitoring data, the
annual average temperature is 5.4 ◦C, the hottest monthly average temperature is 13.2 ◦C,
and the coldest monthly average temperature is−3.8 ◦C. The average annual precipitation
is 619.9 mm, and the summer and autumn precipitation accounts for 80% to 90% of
the annual precipitation, respectively (June–September) (Tang & Yang, 2014; He et al.,
2019). The soil is mainly dark brown soil, and the bare bedrock on the surface is mostly
mica schist with crystalline limestone (Li et al., 2013). The area is rich in animal and
plant resources, including 279 species of vertebrates, 67 species of mammals, 171 species
of birds, and 13 species of amphibians. The vegetation includes six vegetation types, 11
vegetation subtypes, 34 communities, and more than 2,000 wild seed plants (Wang, Zhong
& Yang, 2000). The vegetation types of subalpine meadows and swamp meadows are both
alpine meadows (Li et al., 2020). In the subalpine meadow experimental area, Blysmus
sinocompressus is the dominant species in the community, and the community species
composition includes Blysmus sinocompressus, Carex muliensis, Polygonum viviparum,
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Figure 1 Geographical location and our experiment study site.Geographical location and our experi-
ment study site. Research location (red dot) (A); grazing prohibition experiment design (B).

Full-size DOI: 10.7717/peerj.11598/fig-1

Potentilla griffithii, Potentilla stenophylla, Stellera chamaejasme, Aletris pauciflora, Gentiana
crassula, Veratrilla baillonii and Gentiana wardii. In the swamp meadow experimental
area, Blysmus sinocompressus is the dominant species in the community too, and the
community species composition includes Blysmus sinocompressus, Carex muliensis,
Polygonum viviparum, Potentilla griffithii, Parnassia delavayi, Adonis brevistyla, Plantago
depressa, Elsholtzia ciliata, Primula sinopurpurea, Agrimonia pilosa, Prunella vulgaris.

Experimental design
With reference to a previous experimental research design, a similar experimental design
was adopted in Potatso National Park to carry out the grazing prohibition experiment
(Wu et al., 2010;Wang et al., 2014; Lu et al., 2015; Chen & Tang, 2016). In Potatso National
Park, typical subalpine meadow and swampmeadow were selected, and six 5 m× 5 m plots
were randomly selected in both subalpine meadow and swampmeadow types. The distance
between plots in the same meadow types was 2 m (Fig. 1B). In the subalpine meadow, three
plots surrounded by barbed wire fence were used for the grazing prohibition treatment,
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and three grazing treatment plots were randomly selected from free grazing areas; we
used the same method to set up the experimental plots in the swamp meadow as in the
subalpine meadow. In this experiment, the grazing plots were perennial grazing plots with
a grazing history of more than 100 years, and the grazing animals were yaks and horses.
The grazing prohibition plots were short-term complete grazing prohibition plots, and the
grazing prohibition period was 1 year (September 2019–September 2020). In this study,
the grazing pressure was the same for the subalpine meadow and swamp meadow. Every
morning, livestock departed from the swamp meadows to the subalpine meadows, passed
through the woods, and returned on the same road in the evening, passing through the
woods, subalpine meadows and swamp meadows in turn.

After the grazing prohibition treatment (the growth of the aboveground biomass was
stable), three 1 m× 1 m square sampling areas were selected in each of the 12 sample plots,
and the aboveground plants were trimmed close to the ground and dried to a constant
weight to estimate the aboveground biomass. Three 50 cm × 50 cm × 20 cm soil samples
were taken from each experimental plot, three repeated samples from each plot were dried
to constant weight, and the average value was taken to estimate the belowground biomass
in every plot. The sampling point distance was greater than 1 m, and foreign matter (soil
and stones) was washed and removed. An earth-boring drill (diameter 3.8 cm, volume
100 cm3) was used sample the following soil layers: 0–10 cm, 10–20 cm, 20–30 cm, 30–40
cm, and 40–60 cm (note: at 60 cm, the drill reached the rock layer and further sampling
could not be performed). We sampled 3 random sites in an area of approximately 1 m ×
1 m , mixed the same soil layer samples taken from 3 sampling sites, sealed them and sent
them to the laboratory for air drying and root removal treatment. Then, the samples were
analyzed for pH, soil bulk density, soil total carbon, soil organic carbon, soil total nitrogen,
soil hydrolyzable nitrogen, soil total phosphorus and soil available phosphorus. In each
treatment plot, three 1 m × 1 m square areas were delineated along the diagonal from the
upper left corner, the middle, and the lower right corner to investigate the plant index, and
the collected specimens were brought back to the laboratory for identification.

Data collection and calculations
The calculation formulas for the meadow community richness index, Shannon diversity
index and evenness index in the state of grazing prohibition and free grazing in subalpine
meadows and swamp meadows are as followsWu et al. (2009) andWang et al. (2014):
Richness index (R):

R= S (1)

Shannon diversity index (H):

H =−
∑S

i=1
(PilnPi ) (2)

Evenness index (E):

E =
H
lnS

(3)
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where S is the total number of species in the meadow community per unit area and Pi is
the proportion of the species in the total species.

Field experiment plots are prone to differences. To remove the original heterogeneity
and yearly variation, we calculated the variation percentage (V, %) of the soil indexes and
plant indexes with the following formula:

Vi = (
Final
Initial

−1)×100% (4)

where i refers to the soil indexes and plant indexes. To calculate the grazing prohibition
effects (GPE), the formula was as follows:

GPE i=Vigp−Vig (5)

where gp refers to grazing prohibition and g refers to grazing.
Then, the Vi between grazing and grazing prohibition in each meadow type was

tested by the t test or Wilcox test (when data were not normally distributed). Nonmetric
multidimensional scaling (NMDS) was used to simplify the meadow types and grazing
treatment samples to a low-dimensional space for positioning, analysis and classification
while retaining the original relationship between the objects. All data are expressed as the
mean ± standard deviation (Mean ± SD), and all statistical tests and figure drawing were
performed using R software and Rstudio (R version 4.0.3 for Windows, using packages
readxl, ggplot2, ggpubr and vegan).

RESULTS
Effects of grazing prohibition on plant indexes
In the subalpinemeadow, grazing prohibition significantly increased aboveground biomass
(p < 0.001; Fig. 2A), total meadow coverage (p < 0.01; Fig. 2E) and average height
(p< 0.001; Fig. 2F) by 324.96, 25.35 and 225.56%, respectively, and the total biomass,
richness index, Shannon diversity index and evenness index increased by 17.51, 16.67,
20.62 and 11.05%, respectively, but without statistical significance (Figs. 2C, 2G, 2H &
2I). However, grazing prohibition significantly reduced the root/shoot ratio by 101.65%
(p< 0.001; Fig. 2D), while the reduction in belowground biomass, at 22.07%, was not
significant (Fig. 2B).

In the swamp meadow, grazing prohibition significantly increased the aboveground
biomass (p< 0.001; Fig. 2A), total biomass (p< 0.01; Fig. 2C), total meadow coverage,
average height, Shannondiversity index and evenness index (p< 0.05; Figs. 2E, 2F, 2H&2I),
and these values increased by 283.92, 79.99, 4.27, 132.79, 72.89 and 54.15%, respectively.
The richness index increased by 26.98% but without statistical significance (Fig. 2G).
Grazing prohibition significantly reduced the root/shoot ratio by 54.20% (p< 0.001; Fig.
2D), but the reduction in belowground biomass of 11.54% was not significant (Fig. 2B).

NMDS analysis showed that plant indexes between grazing and grazing prohibition were
significantly different (stress= 0.097), and those between meadow types were not different
(Fig. 3A).
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Figure 2 Effect on plant indexes. Effect on plant indexes. Above-ground biomass (A), below-ground
biomass (B), total biomass (C), root-shoot ratio (D), total meadow coverage (E), average height (F), Rich-
ness Index (G), Shannon Diversity Index (H) and Evenness Index (I) in subalpine meadow and swamp
meadows between grazing and grazing prohibition treatment. significant differences between grazing and
grazing prohibition treatment are indicated by symbols: ***p < 0.001, **p < 0.01, *p < 0.05; and no sym-
bol, no significant difference.

Full-size DOI: 10.7717/peerj.11598/fig-2

Effect of grazing prohibition on soil indexes
In the subalpine meadow, grazing prohibition reduced the pH by 0.70 to 1.53% (Fig. 4A)
and the soil bulk density by 3.91 to 15.95% (Fig. 4B). Grazing prohibition increased the
soil total carbon, soil organic carbon, soil total nitrogen, soil hydrolyzable nitrogen, soil
total phosphorus and soil available phosphorus (Figs. 5A, 5B, 6A, 6B, 7A & 7B), and these
values increased by 2.02 to 28.93%, 2.10 to 16.35%, 1.09 to 11.66%, 3.35 to 13.03%, 0.64
to 5.36% and 0.17 to 3.74%, respectively. In addition, the increases in soil total carbon and
soil organic carbon were significant in the 0–20 cm and 10–20 cm layers (p< 0.05; Figs. 5A
& 5B), respectively. The other parameters were not significantly different between grazing
and grazing prohibition treatments.
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Figure 3 NMDS analyzes the community structure of plant and soil samples.NMDS analyzes the com-
munity structure of plant and soil samples. Effects on plant community index (A) and soil index (B) in
subalpine meadow and swamp meadow between grazing and grazing prohibition treatment. The shape
represents meadow types, the color represents different treatments, the soil depth is represented by the
size, and the circle represents the 95% confidence interval of the centroid position of each group. The
NMDS analysis is based on Bray-Curtis similarity, and the stress value is shown in the lower right corner.

Full-size DOI: 10.7717/peerj.11598/fig-3

Figure 4 Changes of pH and soil bulk density with soil depth in subalpine meadow and swamp
meadow between grazing and grazing prohibition treatment. Changes of pH (A) and soil bulk density
(B) with soil depth in subalpine meadow and swamp meadow between grazing and grazing prohibition
treatment. significant differences between grazing and grazing prohibition treatment are indicated by
symbols: ***p < 0.001, **p < 0.01, *p < 0.05; and no symbol, no significant difference.

Full-size DOI: 10.7717/peerj.11598/fig-4

In the swampmeadow, grazing prohibition reduced the pH and soil bulk density by 1.06
to 2.70% and 2.22 to 6.87% (Figs. 4A & 4B), respectively. Grazing prohibition increased
the soil total carbon, soil organic carbon, soil hydrolyzable nitrogen, soil total phosphorus,
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Figure 5 Changes of soil total carbon and soil organic carbon with soil depth in subalpine meadow
and swampmeadow between grazing and grazing prohibition treatment. Changes of soil total carbon
(A) and soil organic carbon (B) with soil depth in subalpine meadow and swamp meadow between graz-
ing and grazing prohibition treatment. significant differences between grazing and grazing prohibition
treatment are indicated by symbols: ***p < 0.001, **p < 0.01, *p < 0.05; and no symbol, no significant
difference.

Full-size DOI: 10.7717/peerj.11598/fig-5

soil available phosphorus and 0–30 cm soil total nitrogen (Figs. 5A, 5B, 6A, 6B, 7A &
7B), and these values increased by 25.91 to 117.23%, 9.02 to 48.30%, 19.61 to 71.80%,
8.30 to 40.50%, 17.51 to 52.87% and 8.26 to 30.85%, respectively. The increases were
significant for soil total carbon (p< 0.05 and 0.01), soil hydrolyzable nitrogen and soil
available phosphorus at 0–60 cm (p< 0.05, 0.01 and 0.001); soil organic carbon at 10–40
cm (p< 0.05); and soil total phosphorus at 20–40 cm (p< 0.01 and 0.001).

NMDS analysis showed that the soil index values were significantly different between
grazing and grazing prohibition sites (stress = 0.178) but that the soil index values were
not different between meadow types and among soil depths (Fig. 3B).

DISCUSSION
Grazing prohibition is an effective means to improve grassland vegetation parameters
(Pei, Fu & Wan, 2008; Cheng et al., 2011; Chen & Tang, 2016; Li et al., 2016). In our study,
grazing prohibition treatments increased the aboveground biomass, total biomass, total
meadow coverage, average height, richness index, Shannon diversity index and evenness
index in both the subalpine meadow and swamp meadow (Figs. 2A, 2C, 2E, 2F, 2G,
2H & 2I), consistent with the results of other studies (Jeddi & Chaieb, 2010; Cheng et
al., 2011; Chen & Tang, 2016; Oñatibia, Boyero & Aguiar, 2018). This may be because
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Figure 6 Changes of soil total nitrogen and soil hydrolyzable nitrogen with soil depth in subalpine
meadow and swampmeadow between grazing and grazing prohibition treatment. Changes of soil total
nitrogen (A) and soil hydrolyzable nitrogen (B) with soil depth in subalpine meadow and swamp meadow
between grazing and grazing prohibition treatment. significant differences between grazing and grazing
prohibition treatment are indicated by symbols: ***p < 0.001, **p < 0.01, *p < 0.05; and no symbol, no
significant difference.

Full-size DOI: 10.7717/peerj.11598/fig-6

the grazing prohibition treatment protected vegetation from gnawing and trampling by
livestock, there more grass when livestock disturbance was reduced (Wu et al., 2010).
Our grazing prohibition experiment reduced the belowground biomass (Fig. 2B), which
was different from other research results (Wu et al., 2010; Wu et al., 2014; Li et al., 2016).
Previous researchers suggested that the belowground biomass increases may be due to
the severe degradation of grassland caused by overgrazing in the study area and that
following restoration of grassland vegetation in the grazing prohibition treatment, the
vegetation root system became more developed than that prior to the grazing prohibition
(Wu et al., 2014). Our results are consistent with other study results (Smoliak, Dormaar
& Johnson, 1972): the decrease may be due to the reduction of external interference and
the transfer of soil-derived nutrients from vegetation roots to the aboveground part for
growth. In contrast, in the grazing area, vegetation is prone to exhibiting self-protection
behavior when threatened by gnawing and trampling and uses nutrients for root growth to
guarantee survival (Smoliak, Dormaar & Johnson, 1972). The grazing prohibition treatment
significantly increased aboveground biomass and reduced belowground biomass, which in
turn significantly reduced the root/shoot ratio (Fig. 2D). The increase or decrease effect of
the plant index after grazing prohibition differed between the meadow types (Fig. 3A), and
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Figure 7 Changes of soil total phosphorus and soil available phosphorus with soil depth in subalpine
meadow and swampmeadow between grazing and grazing prohibition treatment. Changes of soil to-
tal phosphorus (A) and soil available phosphorus (B) with soil depth in subalpine meadow and swamp
meadow between grazing and grazing prohibition treatment. significant differences between grazing and
grazing prohibition treatment are indicated by symbols: ***p < 0.001, **p < 0.01, *p < 0.05; and no sym-
bol, no significant difference.

Full-size DOI: 10.7717/peerj.11598/fig-7

this difference was mainly driven by the different meadow types and species compositions
(Milchunas, Lauenroth & Burke, 1998; Qiu et al., 2013;Wang et al., 2014).

Grazing prohibition reduced pH and soil bulk density (Figs. 4A & 4B), which was
consistent with other research results (Smoliak, Dormaar & Johnson, 1972; Hiernaux et
al., 1999; Wang et al., 2014; Ma, Ding & Li, 2016). This result may be because grazing
prohibition treatments isolate livestock activities, hinder the input of excrement and the
impact of livestock trampling. The dominant species supplants saline-loving vegetation
and effectively improves the soil structure, thereby reducing pH and soil bulk density (Pei,
Fu & Wan, 2008; Wang et al., 2014). Grazing prohibition is an effective means to increase
soil total carbon, soil organic carbon (Wu et al., 2008; Piñeiro et al., 2009; Wu et al., 2010;
Rui et al., 2011), soil total nitrogen (Raiesi & Riahi, 2014; Xiong et al., 2014;Ma, Ding & Li,
2016), soil total phosphorus and soil available phosphorus (Hiernaux et al., 1999; Li et al.,
2011b; Ma, Ding & Li, 2016). In our study, the grazing prohibition treatment increased
soil total carbon, soil organic carbon, soil total nitrogen, hydrolyzable nitrogen, soil total
phosphorus and soil available phosphorus in both the subalpine meadow and swamp
meadow (Figs. 5A, 5B, 6A, 6B, 7A & 7B), which was consistent with most research findings
(Pei, Fu & Wan, 2008; Lu et al., 2015; Li et al., 2016; Ma, Ding & Li, 2016). Some values of
these soil indexes show significant differences between the grazing prohibition and grazing
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treatments, such as 0–20 cm soil total carbon (Fig. 5A; p < 0.05) and 10–20 cm soil organic
carbon (Fig. 5B; p < 0.05) in the subalpine meadow and 0–60 cm total soil carbon (Fig.
5A; p < 0.05), 10–40 cm soil organic carbon (Fig. 5B; p < 0.05), 0–60 cm hydrolyzable
nitrogen (Fig. 6B; p < 0.05), 20–40 cm soil total phosphorus (Fig. 7A; p < 0.01) and 0–60
cm soil available phosphorus (Fig. 7B; p < 0.05) in the swamp meadow. Some of these
differences are significant at the p<0.001 level. These soil index changes may be due to
the grazing prohibition treatment compensating for the loss caused by grazing (Fuhlendorf
et al., 2002; Raiesi & Riahi, 2014; Larreguy, Carrera & MB, 2014). The grazing prohibition
treatment reduced the soil total nitrogen in the swamp meadow at 30–60 cm and may be
related to the higher soil gravel content of the soil layer (30–60 cm) in the swamp meadow.

Through comparison, grazing time and grazing intensity have a significant impact on
plant diversity and community structure (Niu et al., 2018), mainly due to the removal of
plants by animal gnawing and trampling (Wen et al., 2013; Wang et al., 2014). Previous
studies have shown that light and moderate grazing can effectively restore the richness
index and Shannon diversity index in degraded grasslands, while overgrazing reduces
these indexes (Zhao et al., 2009). Light grazing increases the plant coverage (Li et al., 2011a;
Larreguy, Carrera & MB, 2014), richness index (Niu et al., 2018;Oñatibia, Boyero & Aguiar,
2018), total biomass (Niu et al., 2017), aboveground biomass and plant height (Li et al.,
2011a). This likely occurs because light grazing represents a reduction in livestock gnawing
and trampling, reduces livestock destruction of the grass crust, and provides dwarf andmore
disturbed species greater chances of survival. Simultaneously, light grazing also reduces
belowground biomass and the root/shoot ratio (Li et al., 2011a), which can be attributed
to the adaptive response of grassland vegetation to changes in grazing pressure. Long-term
grazing prohibition can effectively improve the characteristics of grassland communities
(Cheng et al., 2011). Study results from the Alxa Desert indicated that the plant coverage,
grass height, and aboveground biomass increased by 47.55, 109.77 and 58.51%, respectively,
at six-year prohibition sites. The increases at the two-year prohibition sites were 21.99,
89.19 and 9.57%, respectively (Pei, Fu & Wan, 2008), and these increases were higher
than those at the grazing sites. A study in southern Tunisia produced analogous results: a
twelve-year grazing prohibition treatment allowed the plant coverage to increase by 2 times
relative to grazed sites, with a percentage increase of 71.3%, and the aboveground biomass
was 3 and 3.4 times higher in six-year and twelve-year prohibition sites, respectively, than
that at grazed sites (Jeddi & Chaieb, 2010). Obviously, differences in the study area, grazing
prohibition history, and grazing intensity result in different effects.

Grazing pressure has a large effect on soil indexes, and livestock damage and excrement
can easily lead to soil salinization, which in turn increases the spread of saline-loving plant
communities and leads to increases in soil pH (Wu et al., 2010;Wang et al., 2014). Livestock
trampling causes soil compaction (Hiernaux et al., 1999), which greatly increases soil bulk
density (Mofidi et al., 2012). Long-term (nine-year) grazing prohibition significantly
altered soil properties, and the pH and soil bulk density were reduced by 6.53 and 30.23%
when compared with the grazing treatment (Wu et al., 2010). This value was higher than
our results (Figs. 4A & 4B), likely due to the effects of grazing prohibition history. The
Alxa Desert steppe results illustrate that the soil buck density decreased by 4.08 to 5.33%
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and 3.27 to 5.52% at the six-year and two-year prohibition sites, respectively, and the
pH decreased by 2.45 to 3.21% and 1.35 to 2.24%, respectively (Pei, Fu & Wan, 2008).
There were differences in the reduction, and our results may be due to differences in the
meadow types, grazing prohibition histories, grazing intensities, species compositions and
initial index values. In this study, the mean increase in soil total carbon (11.73%) in the
subalpine meadow was less than the value of 17% observed in the Zagros Mountains in
central Iran (Raiesi & Riahi, 2014) (Fig. 5A), and the mean increase in soil organic carbon
(6.32%) was also lower than the value of 13.9% observed in the Hulunbuir grassland (Wu
et al., 2014) and the value of 22% observed in the Alxa Desert grasslands after six years
of grazing prohibition (Pei, Fu & Wan, 2008) (Fig. 5B). However, the mean increases in
the swamp meadow’s soil total carbon (83.29%) and soil organic carbon (25.03%) were
obviously higher than those observed in these other studies (Figs. 5A & 5B). Except for
individual soil depths, the grazing prohibition experiment effect on the mean increases
in soil total nitrogen in the subalpine meadow (6.72%) and swamp meadow (7.56%) was
weaker than the values observed by Pei, Fu & Wan (2008) , i.e.,14%, Raiesi & Riahi (2014),
i.e., 19%, andMa, Ding & Li (2016), i.e., 27.4% (Fig. 6A). Moreover, different conclusions
were reached regarding the impact of grazing prohibition on soil total phosphorus and
soil available phosphorus. Li et al. (2011a) concluded that light grazing can reduce soil
total phosphorus and soil available phosphorus, but most research results have shown
that grazing prohibition increases soil total phosphorus and soil available phosphorus
(Hiernaux et al., 1999; Li et al., 2011b; Ma, Ding & Li, 2016). Studies have also found that
grazing prohibition reduces soil total phosphorus (Lu et al., 2015) or has no effect (Li et
al., 2018) and has no effect on soil available phosphorus (Lu et al., 2015). In our study,
grazing prohibition increased the soil total phosphorus and soil available phosphorus in
the subalpine meadows and swamp meadows (Figs. 7A & 7B). Through our experiments,
we also found that the effects of grazing prohibition on soil indexes were different among
different meadow types (Fig. 3B). This result also showed that the grazing prohibition area
and time length were different, which led to the different effects of the grazing prohibition
treatment on the soil indexes.

Our research results differed between the two meadow types (Figs. 3A & 3B), and
there was also a certain difference between the research results from different regions.
This difference may be affected by the terrain (Zhang et al., 2018), soil structure (Jaweed,
Saptarshi & Gaikwad, 2012), surface species (Wu et al., 2010;Wang et al., 2014) and natural
precipitation conditions (Xiong et al., 2014). Our results suggested that short-term grazing
prohibition played a positive role in the plant and soil indexes in the free grazing area of
Potatso National Park. The grazing prohibition effects were weaker than those of long-term
treatments, and the results also showed that we need to carry out long-term experimental
research in the region. In short, overgrazing is unconducive to the physical and chemical
properties of soil and the sustainable development of surface vegetation, and grazing
prohibition is beneficial for improving plant and soil indexes (Bi et al., 2018). Scientific
and effective management have the potential reverse this degradation. While improving
soil fertility, grazing prohibition also protects regional species diversity. In addition, we
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suggest carrying out rotation grazing and nitrogen deposition experiments in degraded
areas to better utilize the value of limited grassland resources.

CONCLUSIONS
This study’s main purpose was to evaluate the effectiveness of a grazing prohibition
treatment on restoring degraded areas in the free pasture area of the subalpine meadow
and marsh swamp ecosystems in Potatso National Park, China. We used plant and soil
indicators as themain research objects. According to the experimental results, we found that
the grazing prohibition treatment was effective in restoring the surface plant index, and it
increased the aboveground biomass, total biomass, total meadow coverage, average height,
richness index, Shannon diversity index and evenness index in both subalpine meadows
and swamp meadows. In contrast, it reduced the belowground biomass and root/shoot
ratio. There were differences between meadow types, but the grazing prohibition effect
was more important. Meanwhile, the grazing prohibition treatment improved the soil
index, reduced the pH and soil bulk density, and increased the soil total carbon, soil
organic carbon, soil total nitrogen, soil hydrolyzable nitrogen, soil total phosphorus and
soil available phosphorus in the subalpine meadow and swamp meadow. NMDS analysis
showed that different meadow types and soil depths had an impact on the soil index, but
the impact was less than that of the grazing prohibition treatment.
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