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The impact of natural killer (NK) cell alloreactivity on hematopoietic stem cell trans-
plantation (HSCT) outcome is still debated due to the complexity of graft parameters, 
HLA class I environment, the nature of killer cell immunoglobulin-like receptor (KIR)/KIR 
ligand genetic combinations studied, and KIR+ NK cell repertoire size. KIR genes are 
known to be polymorphic in terms of gene content, copy number variation, and number 
of alleles. These allelic polymorphisms may impact both the phenotype and function 
of KIR+ NK cells. We, therefore, speculate that polymorphisms may alter donor KIR+ 
NK cell phenotype/function thus modulating post-HSCT KIR+ NK cell alloreactivity. To 
investigate KIR allele polymorphisms of all KIR genes, we developed a next-generation  
sequencing (NGS) technology on a MiSeq platform. To ensure the reliability and 
specificity of our method, genomic DNA from well-characterized cell lines were used; 
high-resolution KIR typing results obtained were then compared to those previously 
reported. Two different bioinformatic pipelines were used allowing the attribution of 
sequencing reads to specific KIR genes and the assignment of KIR alleles for each KIR 
gene. Our results demonstrated successful long-range KIR gene amplifications of all 
reference samples using intergenic KIR primers. The alignment of reads to the human 
genome reference (hg19) using BiRD pipeline or visualization of data using Profiler soft-
ware demonstrated that all KIR genes were completely sequenced with a sufficient read 
depth (mean 317× for all loci) and a high percentage of mapping (mean 93% for all loci).  
Comparison of high-resolution KIR typing obtained to those published data using exome 
capture resulted in a reported concordance rate of 95% for centromeric and telomeric 
KIR genes. Overall, our results suggest that NGS can be used to investigate the broad 
KIR allelic polymorphism. Hence, these data improve our knowledge, not only on KIR+ 
NK cell alloreactivity in HSCT but also on the role of KIR+ NK cell populations in control 
of viral infections and diseases.
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inTrODUcTiOn

Hematopoietic stem cell transplantation (HSCT) provides a 
curative therapy for many patients with hematological malig-
nancies (1). Donors for HSCT are currently selected based on 
the level of matching for HLA-A, -B, -C, -DRB1, and -DQB1 
loci. Siblings, 10/10 HLA matched, remain the gold standard. 
However, substantial risks of morbidity and mortality caused 
by disease relapse (2), graft-vs-host-disease (GvHD) (3), and 
infection (4) are still prevalent after related, or unrelated HSCT. 
Natural killer (NK) cells are the first post-HSCT cells, reconsti-
tuting antiviral and antitumoral activity (5). NK  cells are able 
to recognize the missing-self via killer cell immunoglobulin-
like receptors (KIRs) (6). Ruggeri et al. (7) were first to report 
the beneficial effect of KIR ligand mismatched donor NK  cell 
alloreactivity after T  cell-depleted HLA haplo-identical HSCT 
resulting in less relapse, less GvHD, and better overall survival 
in patients with acute myeloid leukemia. The impact of KIR+ 
NK cell alloreactivity on HSCT outcome is still controversial due 
to the heterogeneity of graft parameters, HLA class I environ-
ment, nature of KIR/KIR ligand genetic combinations studied, 
and KIR+ NK cell repertoire size (8–12).

As HLA class I genes, KIR genes are highly polymorphic 
(13). In humans, 16 KIR genes have been described including 
eight inhibitory genes (2DL1/L2/L3/L4/L5, 3DL1/L2/L3), 6 
activating genes (2DS1/S2/S3/S4/S5, 3DS1), 2 two pseudogenes 
(2DP1, 3DP1). These genes are located within the leukocyte 
receptor cluster found on chromosome 19q13.4, spanning a 
region of 150 kb. Within a population, the genotypic diversity 
of KIR genes occurs at different levels. First, the number and 
nature of KIR genes vary between individuals defining different 
KIR haplotypes. KIR haplotypes are classified into group A and 
group B (14). The group A haplotype is defined by a fixed set of 
nine KIR genes: four framework KIR genes (3DL3, 3DP1, 3DL2, 
and 2DL4) that form the centromeric and telomeric part of KIR 
locus, three inhibitory KIR (2DL1, 2DL3, and 3DL1), a pseudo-
gene (2DP1), and a single activating KIR gene (2DS4). The group 
B haplotype is defined as having a variable number of KIR genes 
(7–14) including the four framework KIR genes and specific KIR 
genes (2DS2, 2DL2, 2DL5, 2DS3, and 2DS1). Second, a variable 
number of copies [copy number variation (CNV)] of the gene 
generated by recombination and replication have also been 
described for some KIR genes particularly those of the B haplo-
type (15–17). The CNV seems to influence the licensing of KIR+ 
NK cells (18). Overall, various KIR genotypes can be observed 
in a population. All KIR genes, and especially for inhibitory 
KIR, a high degree of allelic polymorphism has been described. 
The latest KIR Immuno Polymorphism Database (IPD–KIR) 
describes 753 KIR alleles. KIR allele polymorphisms need to be 
investigated throughout the exon and the intron regions, and 
regulatory regions as shown for KIR3DL1 (19). In contrast to 
HLA class I genes, structure and length of KIR genes vary. KIR 
allele polymorphisms impact both KIR+ NK cell phenotype and 
function, as we and other groups having described for KIR3DL1 
(20–25) and for KIR2DL2/L3 (26). Differences in the intensity 
of expression (strong, weak, or null) have been described for the 
KIR3DL1 receptor, defining different allotypes according to the 

KIR3DL1/3DS1 allele combinations present in healthy individu-
als (21, 27). Furthermore, the nature of KIR3DL1 alleles does not 
only impact the KIR3DL1 cell density but also the strength of 
the KIR3DL1–HLA interactions which in turn can affect NK cell 
functions (28, 29). The recognition of KIR allotypes using anti-
KIR monoclonal antibodies also varies depending on the KIR 
allele polymorphism (30).

Taking these points into account, it is therefore necessary to 
thoroughly investigate the phenotypic and functional impact of 
KIR allele polymorphisms. Until now, potential KIR+ NK cell 
alloreactivity in HSCT was mainly evaluated depending on the 
KIR/KIR ligand genetic combinations present and analyzed 
only at a generic level (i.e., presence or absence of KIR genes 
and KIR ligand). We speculate that KIR allele polymorphisms 
may alter donor KIR+ NK  cell phenotype/function, and 
thus modulate their alloreactivity affecting HSCT outcome. 
However, the impact of KIR allele polymorphisms on HSCT 
outcome remains difficult to assess due to the lack of suitable 
allele typing methods for all KIR genes. Until recently, several 
standard methods are used to type KIR genes at allelic level. 
Those methods include sequence-specific oligoprobe hybridiza-
tion (31–37), sequence-specific primer (SSP) typing (22), SNP 
assay (38), Sanger sequence-based typing (SBT) (20, 39–42), 
high-resolution melting (43), and also combined SSP/SBT 
(21, 44). KIR allelic polymorphisms have been investigated 
for a few functional KIR genes (KIR2DL1/2DL2/2DL3/2DS1
/3DL1/3DS1). Standard methods to type KIR genes at allelic 
level are usually single KIR locus specific and/or target a 
limited polymorphism. In addition, the constant increase in 
the number of KIR alleles described generates more and more 
ambiguous KIR typing in heterozygous samples since KIR poly-
morphism can extend over the entire gene. Recent advances in 
high-throughput sequencing technology [next-generation 
sequencing (NGS)], especially in immunology and hematology 
(45), enable determination of KIR alleles and KIR gene CNV. 
The extent of KIR allele polymorphisms, as demonstrated by 
exome capture, reported 37 new KIR alleles from 15 healthy 
South African individuals (46). Recently, whole KIR genome 
sequencing by NGS was used as a control method to validate 
CNV genotyping in the KIR locus (17). An exome capture that 
focused on KIR and HLA class I loci was also recently described 
(47). In this study, we developed a reliable NGS method for high 
quality DNA samples and easily implemented for the study of 
KIR allele polymorphisms.

MaTerials anD MeThODs

samples
Thirty B-EBV cell lines from the 10th International Histo-
compatibility Workshop (IHW) were selected from a well-
characterized panel known for their KIR gene content. KIR 
genotype information, including KIR allele typing of some KIR 
genes for all these B-EBV cell lines, was obtained either from the 
IPD/KIR database or from literature for specific KIR loci. Known 
KIR genotypes and allele typing of these 30 B-EBV cell lines are 
provided in the Table S1 in Supplementary Material.
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Kir long-range (lr) Pcr and Primers
DNA genomic extractions were performed from B-EBV cell lines 
using a Nucleospin blood kit (Macherey-Nagel, Duren, Germany). 
The concentration and the purity of all DNA samples were checked 
on a NanoDrop 2000C spectrophotometer (ThermoFisher, 
Wilmington, DE, USA) by measuring the ratio of absorbance 
at 260 and 280 nm. In parallel, 1.5 µg of each DNA sample was 
loaded on an agarose gel to check the DNA integrity. For KIR LR 
PCR, five intergenic KIR primers already described (17) and one 
additional in-house designed primer including four forward prim-
ers (#1, 5′-gccaaataacatcctgtgcgctgctcagct-3′; #2, 5′-ctcacaacatc-
ctgtgtgctgctaactga-3′; #4, 5′-acggctgcctgtctgcacagacagcacc-3′, #6, 
5′-cacatcgtctgcaccggtcagtcgagccga-3′) and two reverse primers 
(#3, 5′-ttggagaggtgggcaggggtcaagtg-3′; #5, 5′-ctccatctgagggtccc-
ctgaatgtg-3′) were used to amplify the whole KIR genome.

The KIR LR-PCR protocol was optimized using the method 
described by Vendelbosch et al. (17). Briefly, KIR LR-PCR was 
performed with 2.5  U of PrimeSTAR GXL DNA Polymerase 
(Ozyme, Saint-Quentin en Yvelines, France), 1× PrimeSTAR 
GXL buffer, 200  µM of dNTP mixture (Ozyme) and 0.2  µM 
final concentration of each KIR primer. The LR-PCR reaction 
was performed in a C1000 Touch™ Thermal Cycler (Biorad, 
Marnes la Coquette, France) consisted of an initial denaturation 
of 2 min at 94°C followed by 30 cycles of 20 s at 94°C, 12 min 
at 68°C and 1 cycle of final elongation of 10 min at 72°C in the 
final 50 µL volume. This protocol enables amplification of each 
KIR gene from 5′ to 3′ untranslated regions (UTR). The final KIR 
LR-PCR product was run on 0.7% Seakem agarose gel in TBE1X 
(Lonza, Verviers, Belgium) and visualized by staining with the 
SYBR® safe (Invitrogen, Villebon sur Yvette, France) using the 
SimplyLoad™ Tandem DNA ladder size marker (Ozyme) to 
confirm the amplification and correct fragment size as well as to 
check for non-specific amplification.

library Preparation and sequencing
Qubit dsDNA High Sensitivity Assay Kit (Life Technologies, 
Villebon sur Yvette, France) was used to quantify the starting 
DNA library in the Qubit® fluorometer (Life Technologies). The 
library preparation was performed using the NGSgo GENDX 
kit (Bedia Genomics, Chavenay, France). To achieve the optimal 
insert size and library concentration, 250  ng of each genomic 
DNA was randomly fragmented according to the manufacturer’s 
instructions. Briefly, 8.25 µL of NGSgo master mix (prepared from 
2 µL of NGSgo-LibrX Fragmentase buffer plus 3.25 µL of NGSgo-
LibrX End Prep buffer plus 1.5 µL of NGSgo-LibrX Fragmentase 
Enzyme plus 1.5  µL NGSgo-LibrX End Prep Enzyme) (Bedia 
Genomics, Chavenay, France) was added to each genomic DNA 
in a final volume of 32.5  µL. The fragmentation, end-repair, 
and dA-tailing reactions were performed in a T100™ Thermal 
Cycler (Biorad, France) consisted of 20 min of fragmentation and 
end-repair at 25°C followed by 10 min of dA-tailing at 70°C. The 
dA-tailed DNA fragments of each sample were then subjected 
to adapter ligation in 9.25 µL of an NGSgo master mix contain-
ing 7.5 µL of NGSgo-LibrX Ligase mix, 0.5 µL of NGSgo-LibrX 
Ligation Enhancer, 0.25 µL of NGSgo-Indx adapter for Illumina, 
and 1 µL of nuclease free water. The adapter ligation reaction took 
place in a T100™ Thermal Cycler (Biorad, France) for 15 min at 

20°C followed by a cooling step at 15°C. The first cleaning and size 
selecting of the samples after adapter ligation were performed in 
a 0.45× beads:DNA ratio by using the Agencourt® Ampure XP 
(Beckman Coulter, Villepinte, France) according to the manufac-
turer’s instructions and eluted in 12.5 µL of 0.1× elution buffer 
(Lonza Rockland, USA). The size-selected, adapter-ligated DNA 
fragments of each DNA sample were then dual indexed with 15 µL 
of NGSgo reaction mix made from 12.5 µL of NGSgo-LibrX HiFi 
PCR mix plus 1.25 µL of NGsgo-Indx IN-5 and 1.25 µL of NGSgo-
Indx IN-7 in a final volume of 25 µL followed by a PCR reaction in 
a T100™ Thermal Cycler (Biorad). PCR cycling was performed 
as follows: an initial denaturation of 30 s at 98°C  followed by 10 
cycles of 10 s at 98°C, 30 s at 65°C, 30 s at 72°C and 1 cycle of final 
elongation step of 5 min at 72°C in the final volume of 25 µL. A 
second DNA cleaning and size selecting was performed in a 0.6× 
beads: DNA ratio by using the Agencourt® Ampure XP beads 
according to the manufacturer instructions and eluted in 16.5 µL 
of 0.1× elution buffer (Lonza Rockland, USA).

Quality control procedure for the library preparation included 
verification of fragment size before and after purification by using 
the QiAxcel Advanced System (QiAgen, Courtaboeuf, France). 
The pooled and barcoded libraries were denaturated with 0.2 M 
of NaOH and diluted in the pre-chilled HT1-buffer to obtain a 
final library concentration of 12 pM. The final denatured library 
was subsequently sequenced by using the MiSeq sequencer 
(Illumina, Biogenouest Genomics Platform Core Facility, Nantes, 
France; HLA Laboratory, EFS Nantes, France) with 500 cycles v2 
kits, which generated 250-bp end sequence reads.

sequencing Data analysis and Kir allele 
assignment
The quality of the Illumina raw data sequences obtained was 
monitored by using the Sequencing Analysis Viewer Illumina 
software. The quality of the base calling from images and 
sequences was determined by the quality score (Q30) which must 
be ≥75% for 2 × 250 bp reads. KIR reads were mapped to the 
human genome reference sequence hg19 (GRCh37) by using the 
Burrows–Wheeler Aligner Memory Efficient Mapping (BWA-
MEM) tool. The binary alignment map (BAM) files containing 
mapped reads were then visualized on Integrative Genomics 
Viewer (IGV) algorithm (48).

In parallel, raw KIR sequences were aligned and visualized 
using the Profiler software version 1.70, initially developed by 
Dr. M. Alizadeh (Research Laboratory, Blood Bank, Rennes, 
France) for NGS-based HLA typing (49). A flowchart for data 
analysis using the Profiler software is provided in Figure S1 in 
Supplementary Material. The first step of analysis consists by 
merging R1 and R2 sequences to each other when at least 10 
complementary bases were found between R1 and R2 of the 
same cluster. During this phase, for each inconsistency of base 
calling, the quality value was used to select the best assignment. 
All sequences issued from a cluster for which we could not deter-
mine complementary between R1 and R2 remained unchanged. 
All sequences were transformed to FASTA format at the end of 
this step. The second step of analysis consists of phasing each of 
the sequences obtained in step one by using Blast algorithm. The 
third step of analysis consists by merging all sequences together 
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using Blast information. In this step, the depth for each position 
and the number of sequences for each allele were calculated. 
The first three steps are managed in a Linux environment. The 
last step is presentation and assignment of each construction 
based on database information in a friendly interface for user, 
all mismatches and differences to the database are extracted and 
presented to the user.

For KIR allele assignment, a manual bioinformatic pipeline 
was first used in the absence of available softwares. This consisted 
of exporting from IGV, all exon sequences of each KIR gene and 
comparing polymorphic bases with those referenced from the 
IPD–KIR database. Then, two different bioinformatics algorithms 
were used: the first one, hereafter called “BiRD,” was developed 
by the BiRD platform (E. Charpentier, U. Guyet, Genomics and 
Bioinformatics Core Facility GenoBiRD, Nantes, France) and 
consists of an analysis pipeline built with Snakemake on the same 
logic as the manual method. A flowchart for data analysis using 
the BiRD software is provided in Figure S2 in Supplementary 
Material.

Harvesting KIR-Specific Reads
First, raw sequences from fastq files are processed through 
cutadapt (v1.8.1) in order to remove Illumina adapter sequences. 
The cleaned reads are then mapped to hg19 (GRCh37) reference 
genome using BWA-MEM (v0.7.12) with the default parameters.

Determining Presence/Absence or KIR Genes
Absence or presence of KIR genes is evaluated using GATK 
DepthOfCoverage on the BAM and using a browser extensible 
data (BED) file describing the chromosome position of each gene 
(except KIR2DP1 and KIR3DP1). Coverage mean is calculated 
on each gene position, and a threshold of 10 is applied in order to 
ascertain its absence or presence. Presence/absence of KIR genes 
defined by NGS is concordant to the KIR genotype of the 30 IHW 
samples, stratified by AA vs Bx genotypes, previously validated in 
our laboratory by PCR-SSP multiplex method (data not shown).

Determining KIR Alleles
Allele-specific nucleotide positions are extracted manually using 
IPD–KIR alignment tool.1 For every gene, the Nucleotide—CDS 
of all alleles are aligned against the default reference allele. A 
python script is then used to reformat the multipage alignments 
in order to have one allele alignment per line. A second python 
script is utilized to extract all variations from the default reference 
allele and map the exon position number of these variations to 
the chromosome position. A file is created for each gene listing 
all the variations found for every allele. Bases at these positions 
are then called using SAMTools (v1.2-2) mpileup for all samples. 
Finally, KIR alleles are determined by calculating the percentage 
of nucleotide matches between the base calls and the allele varia-
tions for each KIR allele, the highest percentage giving the most 
confident allele.

The second algorithm used for KIR allele assignment was 
the Profiler software, previously described in Figure S1 in 
Supplementary Material, version 1.70 (49), which permits to 

1 https://www.ebi.ac.uk/ipd/kir/align.html.

directly assign KIR alleles at the highest level resolution (seven 
digits) since full intron and exon sequences were considered and 
also provides quality data such as mean coverage for each KIR 
locus. The fragment size percentage of sequences for each allele/
locus was also considered as well as percentage of mapping for 
each KIR gene.

Overall, KIR allele assignment for each locus and for all 
samples corresponds to the combined KIR results obtained using 
manual pipelines, BiRD, and Profiler softwares. KIR alleles were 
assigned on the basis of the known DNA sequences identity within 
the IPD/KIR database.2 KIR alleles are named in an analogous 
fashion as the nomenclature used for HLA class I alleles. After the 
gene name, an asterisk is used as a separator before a numerical 
allele designation. The first three digits of the numerical designa-
tion are used to indicate alleles that differ in the sequences of 
their encoded proteins. The next two digits are used to distinguish 
alleles that only differ by synonymous (non-coding) differences 
within the coding sequence. The final two digits are used to 
distinguish alleles that only differ by substitutions in an intron, 
promoter, or other non-coding region of the sequence.

resUlTs

lr Kir gene amplifications
Thirty reference IHW samples with known KIR genotyping 
(Table S1 in Supplementary Material) were used to validate our 
NGS method for typing of each KIR gene at allelic resolution. 
DNA integrity, checked by loading each sample on an agarose 
gel, confirmed high quality for all samples (data not shown). In 
order to amplify all KIR genes from the 5′ UTR to the 3′ UTR, 
six intergenic KIR primers were chosen to allow the amplifica-
tion of framework KIR genes. These intergenic primers also 
amplify KIR genes located either in the centromeric or telomeric 
region, which belong to the A and/or B specific KIR haplotype 
genes (Figure 1A). A robust LR amplification of KIR genes was 
obtained for all samples as illustrated for three representative 
IHW samples (Figure 1B). One specific band between 4 and 5 kb 
for the KIR3DP1 pseudogene and another specific band between 
9 and 17 kb corresponding to a cluster of all other KIR genes were 
observed, irrespective of KIR AA or AB genotype (Figure 1B) as 
KIR genomic length varies depending on KIR genes (Table S2 in 
Supplementary Material). For some IHW samples such as BOB, 
two specific bands at 4 and 5 kb were observed for the KIR3DP1 
gene corresponding to KIR3DP1*003 and KIR3DP1*001 
variants, respectively, whereas only one band at 4  kb specific 
of KIR3DP1*003 variant was observed for OLGA and SPO010 
samples (Figure 1B).

complete sequencing of all Kir genes
In order to check the specificity of KIR LR-PCR obtained, 
amplicons were further fragmented and sequenced on paired 
end 2 × 250 bp from Illumina MiSeq platform. The sequencing 
of all amplicons yielded a total of 6.3 Gb, which was generated 
from a 755  ±  31  K/mm2 cluster density (data not shown). 
Approximately 88.2% of the clusters passed QC filters and on 

2 http://www.ebi.ac.uk/ipd/kir/alleles.html
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FigUre 2 | Full sequencing of all killer cell immunoglobulin-like 
receptor (Kir) genes. Reads were mapped to the human genome 
reference sequence hg19 using the Burrows–Wheeler Aligner Memory 
Efficient Mapping tool. The binary alignment map files containing mapped 
reads were then visualized on the Integrative Genomics Viewer as illustrated 
for KIR2DS1, KIR2DS2, and KIR3DS1 genes (a) or using Profiler software (B) 
as illustrated for KIR2DL1, KIR2DL3, and KIR3DL1 genes from one 
representative International Histocompatibility Workshop DNA sample.

FigUre 1 | long-range (lr) killer cell immunoglobulin-like receptor 
(Kir) gene amplification. (a) Six intergenic KIR primers (four forward 
primers: #1, #2, #4, and #6 and two reverse primers: #3, and #5) were used 
to perform LR PCR amplifications. These primers were able to amplify full 
length KIR genes in both the centromeric and telomeric regions belonging 
either to the A or B KIR haplotype. (B) Illustrative 0.7% agarose gel 
electrophoresis of LR PCR amplifications spanning the KIR genome of three 
representative International Histocompatibility Workshop (IHW) DNA samples. 
One IHW sample with an AA KIR genotype (i.e., SPO010) and two DNA 
samples with an AB KIR genotype (i.e., OLGA and BOB) were used. 
Amplicon lengths vary from 4 to 5 kb for the KIR3DP1 gene to 9–17 kb for all 
other KIR genes. Two specific bands of 4 and 5 kb corresponding to two 
KIR3DP1 variants were observed for BOB sample. M: Tandem ladder Lonza 
Seakem size marker; C−: H2O, negative control.
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average, 82.4% of both reads passed with a Q30  >  82% (data 
not shown). Thus, analysis of FastQ data obtained from all IHW 
samples reported an excellent quality control. The entire length 
of KIR genes was sequenced with good coverage as illustrated 
for KIR2DS1, KIR2DS2, and KIR3DS1 (Figure 2A) activating 
genes, and for KIR2DL1, KIR2DL3, and KIR3DL1 (Figure 2B) 
inhibitory genes using either IGV or Profiler software, respec-
tively. For all genes, the depth of coverage varies most at the 
beginning and at the end of the amplicons, but all key regions 
were sufficiently covered. In particular, we observed that mean 
coverage ranged from 62.5× (KIR2DS4) to 2,373.3× (KIR3DP1) 
leading to a mean coverage of 316.55× for all KIR genes except 
for KIR2DL5A genes since not analyzed using Profiler (Table 
S3 in Supplementary Material). A significant correlation was 
observed between mean coverage and genomic KIR length 
(r  =  0.85, p  <  0.0001) as illustrated Figure  3A. Indeed, the 
lower the genomic length, the higher the mean coverage is 
as illustrated for the KIR3DP1 gene. The mean percentage of 
mapping, established by the coverage of amplicon, ranged 
from 86.2% (KIR3DL2) to 98.2% (KIR2DP1 and KIR3DP1) 
(Figure  3B; Table S3 in Supplementary Material) suggesting 
that sufficient read depth was obtained for determination of all 
KIR genes. However, KIR2DL5A reads could have been mapped 

only using BWA-MEM software and BiRD algorithm. Overall, 
these results demonstrate the efficiency of our NGS-KIR allele 
typing approach to capture the full KIR genomic locus and the 
uniformity of coverage for each KIR locus confers assurance for 
KIR allele assignment.

specificity of ngs-Based Kir allele Typing
Due to the high degree of KIR polymorphisms and the fact that 
NGS technology generates a lot of sequencing reads, three differ-
ent algorithms were evaluated to increase the reliability of KIR 
allele assignment as reported for NGS-based HLA typing (50). 
KIR allele assignment was first done manually and then con-
firmed using both BiRD pipeline and Profiler software. Overall, 
resulting KIR allele assignments of the 30 reference IHW samples 
were feasible for all loci and for the majority of samples without 
remaining ambiguities (Table 1).

We further evaluated the strength of our NGS-based method 
for KIR allele assignment. For all IHW reference samples tested 
(N = 30), the number of KIR alleles previously known in the 
IPD/KIR database and those obtained by our NGS-KIR based 
typing approach was compared for each KIR locus. As an 
example, from the 30 IHW samples tested, only 5 KIR3DL3 
alleles out of 60 expected alleles for this framework gene 
were previously known in the IPD/KIR database (Table S1 in 
Supplementary Material), 54 KIR3DL3 alleles from 24 het-
erozygous and 6 homozygous samples (Table 1) were assigned 
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FigUre 3 | coverage and percentage of mapping obtained for killer 
cell immunoglobulin-like receptor (Kir) genes. (a) Correlation graph 
representing mean coverage for each KIR gene and KIR genomic length. 
Mean coverage was estimated for each KIR gene present for all International 
Histocompatibility Workshop (IHW) samples using Profiler software. Statistical 
significance was determined using the Pearson’s rank coefficient using 
GraphPad Prism version 6 software (GraphPad Software, La Jolla, CA, USA). 
A significant p-value between mean coverage and genomic KIR length was 
observed (p < 0.0001). (B) Bars representing the percentage of mapping of 
each centromeric and telomeric KIR gene present for all IHW samples 
determined using Profiler software. KIR2DL5A locus was not included since 
not analyzed using Profiler.
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by our NGS-based KIR allele typing approach (Figure 4). Our 
NGS-based KIR allele typing approach permits identification 
of additional framework KIR alleles, e.g., KIR3DP1 (n = 43), 
KIR2DL4 (n = 48), and KIR3DL2 (n = 44) (Table 1; Figure 4). 
NGS-based KIR typing method also allows the identification 
of polymorphisms of well-functionally characterized KIR 
by increasing the number of assigned KIR alleles of the 30 
IHW samples available in the IPD/KIR database (Table S1 in 
Supplementary Material), e.g., KIR2DL1 (n  =  30), KIR2DL2 
(n  =  10), KIR2DS1 (n  =  11), KIR2DS2 (n  =  12), KIR3DL1 
(n = 35), and KIR3DS1 (n = 11) (Table 1; Figure 4). The num-
ber of activating KIR2DS1, KIR2DS2, and KIR3DS1 assigned 
alleles by NGS remained low because only IHW samples with 
the corresponding activating KIR gene were included in this 
analysis. Overall, a higher number of KIR alleles were identified 
from these 30 IHW samples by our shotgun NGS methodology 
compared to those previously characterized by other less sensi-
tive methods, as referred to in the IPD/KIR database (N = 422 
vs N = 233, respectively).

The knowledge of KIR allele typing of IHW samples, recently 
updated thanks to an exome capture (47), permits to evaluate the 
concordance of our NGS-based KIR allele results (Table 1) with 

those of Norman et al. since 22 IHW samples were commonly 
used in both methods (Table S1 in Supplementary Material). 
In this case, a large number of allelic KIR typing for all loci was 
compared ensuring the reliability of our NGS-based KIR allele 
typing method. For each KIR locus and for the 22 IHW concerned 
samples, KIR allele typing results were divided into: concordant 
(one KIR allele matched for homozygous samples or two KIR 
alleles matched for heterozygous samples), semi-concordant (one 
KIR allele matched and one KIR allele mismatched), and discord-
ant (one KIR allele mismatched for homozygous sample or two 
KIR alleles mismatched for heterozygous sample). For each KIR 
allele, only the first three digits were taken into account for the 
assessment of concordance. Complete concordance (100%) of 
KIR allele typing was demonstrated in 11 KIR genes. The concord-
ant genes were KIR2DS2 (8 samples out of 8), KIR2DL5B (2 out  
of 2), KIR2DS3 (1 out of 1), KIR2DL1 (18 out of 18), KIR2DL4 
(22 out of 22), KIR3DL1 (17 out of 17), KIR3DS1 (7 out of 
7), KIR2DL5A (7 out of 7), KIR2DS5 (6 out of 6), KIR2DS1 
(6 out of 6), and KIR2DS4 (16 out of 16) (Figure 5). Concordant 
results were observed, but at a lesser frequency for KIR3DL3 
(20  out of  22, i.e., 91%), KIR2DL2 (4 out of 5, i.e., 80%), 
KIR2DL3 (7 out of 8, i.e., 88%), KIR2DP1 (16 out of 20, i.e., 80%), 
KIR3DP1 (16 out of 18, i.e., 89%), and KIR3DL2 (16 out of 18, 
i.e., 89%) (Figure 5).

Ten semi-discordant KIR allele results and two discordant 
KIR allele results between our NGS-based method and exome 
data were identified (Table  2). Except for the pseudogene 
KIR2DP1, with four IHW samples, these discrepancies were 
limited to 1 or 2 out of 22 IHW samples per locus (Table  2). 
KIR allele determinations using manual, BiRD algorithm, and 
different versions (the latest one Rev 2.0.188) of Profiler software 
were carefully reviewed. Only IHW samples sequenced on dif-
ferent runs and with the same KIR allelic results were reported 
(data not shown). These potential discrepancies (5%), possibly 
linked to the design and implementation of each algorithm, need 
to be further validated by another typing method such as SSP or 
sequencing.

Overall, our NGS-based method and exome data showed a 
rate of concordance of 95% for all loci, established for all KIR 
genes on 22 IHW samples, suggesting a reliable method.

DiscUssiOn

In this study, we developed an NGS-based KIR allele typing 
approach to characterize the sequence of all polymorphic KIR 
genes. Our method of typing all KIR genes at high resolution 
provides an alternative, easily implemented method practice, to 
study the KIR allele polymorphisms. It may be a cheaper method 
than exome capture (47). This tool is currently adapted to the 
KIR gene large-scale analysis. Using our approach, the majority 
of KIR alleles previously uncharacterized by standard methods 
were clearly identified from genomic DNA of 30 B-EBV cell lines 
from the 10th IHW. High quality DNA samples, high fidelity 
of enzyme polymerase, and a reliable library preparation were 
needed since evaluation of different Taq polymerase enzymes 
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TaBle 1 | next-generation sequencing-based killer cell immunoglobulin-like receptor (Kir) allele typings of 30 reference B-eBV cell lines from the 10th international histocompatibility Workshop.

iD centromeric Kir genes Telomeric Kir genes

3Dl3 2Ds2 2Dl2 2Dl3 2Dl5B 2Ds3 2DP1 2Dl1 3DP1 2Dl4 3Dl1 3Ds1 2Dl5a 2Ds3 2Ds5 2Ds1 2Ds4 3Dl2

AMAI *013 + *00301 + *003 *0080101 *001 *00301 *00101
*041 *004 *006 *0080102

AMALA *00402 *00101 *00301 *001 *00201 *00302 *007 *00102 *01502 *001 *00201 *00201 *001 *0020105
*00802 *00901 *00501 *01301 *0070102

BOB *00101 *00101 *00301 *00201 *00301 *00302 *002 *001 *002 *01301 *00101 *00201 *00201 *001 *0020101
*01303 *00302 *005 *0070102

BRIP *00801 *00104 *00301 + *00103 *0010201 *00302 + *0010305 *008 *01301 *00103 *00103 *002 *003 *0070102
*004 *00201 *0020101 *00501 *00501 *00201 *0070103

CALOG *00207 + *00201 *00302 *00302 *008 *001 *00301 *00101
ERO *01001 *010 *004 *00601 *00301

COX *00102 *00201 *00301 *00201 *005 *00501* *005010 *055 *00101 *00201 *00201 *010 *00103
*00103 *007 *006 *011 *007

DEU *00101 *00101 *001 *00201 *00301 *00201 *001 *00801 *00101 *003 *01001
*01402 *006 *011 *00501 *010 *01101

DKB *00101 + *00301 *00201 *00302 *0010201 *002 *00101 *0020101
*006 *006 *00103 *02001 *00902

HO301 *014 *00101 *00101 *010 *00103 *00102 *004 *003010 *00102 *002 *00103 *001 *00201
*002 *00301 *00201 *010 *004 *00201

HID *01402 *00101 *00201 *00302 *00302 *00102 *01502 *00101 *00201
*018 *010

HOM-2 *00101 + *00201 *00302 *00302 *00801 *001 *00301 *0010102
*0090101 *005 *006 *00802 *004 *00601 *00501

HOR *001 + *00301 *00201 + *00501 *01301 *00101 *002 *00201 *007
*048 *021

JHAF *00901 *00101 *002 *00302 *00302 *011 *00501 *010 *001
*026 *01001

JVM *007 *00101 *00301 + *005 *00302 *001 *00103 *00101 *003010 *00101
*00801 *00302 *00801 *008 *009

KAS011 *00901 + *002 *00201 *00302 *00103 *008 *01301 *00101 *00201 *00201 *00301 *01001
*01302 *00301 *00302 *006 *005 *019

KAS116 *013 + *002 *00302 + *011 *00501 *010 *0103
*01501 *010

LBUF *00301 + + *001 *002 + *00302 *00102 + + +
*0090101 *0090102 *011

LUY *001 *00101 *00201 *00302 *00302 *00801 *00401 *00601 *001
*02701 *00501 *00301 *011 *00501 *010 *00501

MOU *00207 *001 *00201 *00302 *00302 *00801 *00101 *00301 *010
*00801 *005 *00401 *00601 *01101

(Continued)
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iD centromeric Kir genes Telomeric Kir genes

3Dl3 2Ds2 2Dl2 2Dl3 2Dl5B 2Ds3 2DP1 2Dl1 3DP1 2Dl4 3Dl1 3Ds1 2Dl5a 2Ds3 2Ds5 2Ds1 2Ds4 3Dl2

OLGA *00201 *00101 *00201 *00302 *00302 *005 *001 *01301 *00103 *002 *002 *010 *00701
*00902 *006 *011 *00501

PE117 *00101 *00101 *00201 *00201 *00901 *00501 *00401 *01301 *001 *00201 *00201 *00601 *00701
*01002 *00201 *00301 *00302 *00802 *018

PF04015 *01402 *00101 *00101 *001 *011 *00501 *010 *00103
*003

RSH *0040202 *00101 + + *004 *00201 *00302 *00304 *0010307 *00501 *006 + +
*00901 *009 *01201 *008 *011 *017

SAVC *00801 *00101 *008 *00302 *00302 *00102 *00401 *006010 2*00202
*00202 *00201 *00802 *01502 *00301

SPO010 *00206 + *00201 *00302 + *011 *0050101 *010 *001

T7526 *0090101 *00101 *00201 *00302 *00302 *00501 *01502 *013 *00101 *00201 *002 *001 *0020105
*00102 *0070102

VAVY *002 *00101 *002 *002 *00302 *011 *00501 *010 *0010302
*017 *00201 *003 *00302 *006

WT51 *00103 *00101 + + *00201 + *001 + + *00501 *01301 *00101 + *002 *002 +
*036 *004 *00501

WDV *00301 *00101 *003 + *002 *002 *00302 *00302 *00501 *01301 *00501 *002 *00201 *0070103
*0090101 *00901

YAR *00102 + *002 + *00302 *0010201 + + +
*003 *006 *011

Results are presented according to the centromeric or telomeric localization of KIR genes on human genome. KIR alleles were named according to the last nomenclature available on the IPD/KIR database (http://www.ebi.ac.uk/ipd/
kir/). + indicates the presence of a specific KIR gene. ID, sample identification.

TaBle 1 | continued
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FigUre 4 | number of killer cell immunoglobulin-like receptor (Kir) 
allele assigned by next-generation sequencing (ngs). Number of KIR 
alleles assigned for each centromeric and telomeric KIR gene of 30 
International Histocompatibility Workshop samples obtained by our NGS 
method. KIR allele assignment for each locus and for all samples 
corresponds to the combined KIR allelic results obtained using manual 
pipelines, BiRD, and Profiler software.
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and library preparation kits gave conflicting results (data not 
shown).

Our study evaluated the performance of different algorithms 
for KIR allele assignment. Reliability of the manual, BiRD pipe-
line, and Profiler software was tested since neither algorithm alone 
was able to provide 100% accuracy for all KIR loci. Our results 
showed that the Profiler software was reliable to assign KIR alleles 
through the full length of each KIR gene, excluding KIRDL5A 
variants. In this case, KIR2DL5A and KIR2DL5B sequences were 
too closed, and Profiler software failed to accurately analyze both 
sequences. Since all coding, non-coding, and regulatory regions 
were explored, one could expect that a lot of new KIR alleles will 
soon be described. Analysis with Profiler consists of two distinct 
parts. The first part is performed in three steps in a Linux environ-
ment: the first step corresponds to the merging of each R1 and R2 
issued from the same cluster to each other, each time that a com-
plementarity of at least 10 bases is found, with correction or base 
calling inconsistencies using a quality value for each nucleotide. 
There are two interests in this step: longer sequences and lower 
sequences number were analyzed. The second step corresponds 
to the phasing of each sequence based on KIR databases using 
Blast algorithm. Third, the data file from Blast was used to merge 
all sequences together to construct each allele. In this step, cal-
culation for depth of each position and the number of sequences 
used for each allele are determined. The second part is done on a 
Windows environment. A friendly interface presents graphics of 
all sequences for all studied loci. Assignment of all sequences is 
done using a database, highlighting all mismatches compared to 
reference and also differences between KIR alleles selected. Each 
allele is scored for quality control as per the European Federation 
for Immunogenetics guideline.

Killer cell immunoglobulin-like receptor alleles of all genes 
including KIR2DL5A, but excluding the pseudogenes KIR2DP1 
and KIR3DP1, were assigned using BiRD algorithm. However, 
many allelic ambiguities remained when this pipeline was used 
alone (data not shown). It is likely that this is due to the fact that 
only coding regions (CDS) were taken into account for allele vari-
ation comparison. Analysis of all exon/intron polymorphisms, 
CNV detection, summary statistics of call accuracy for KIR 
gene content (presence/absence) and for KIR allele identifica-
tion needs to be completed. Furthermore, the two pseudogenes 
KIR2DP1 and KIR3DP1 could be manually added to the BED file 
describing the gene positions on the genome in order to include 
them in the analysis pipeline.

Due to the time-consuming nature of manual KIR allele 
assignment, two different algorithms are needed to ensure the 
reliability of NGS-based typing methods for the identification of 
KIR allele polymorphisms.

Until now, KIR genetic population studies have often been 
restricted to the identification of KIR gene content, or of A and/
or B KIR haplotypes (51, 52). Determination of KIR alleles in 
healthy individuals of a given population may provide a bet-
ter definition of KIR haplotypes (52) and KIR gene linkage 
disequilibrium (53) and will considerably increase the IPD/KIR 
database.

The implementation of our suitable NGS.KIR method will 
enable analysis of all allelic polymorphism within KIR genes 
extending to all coding, non-coding, and regulatory regions. A 
link between KIR allelic polymorphism and the expression level 
and/or function of the corresponding KIR+ NK cells is necessary 
for all KIR genes as previously established for the expression level 
of HLA-A and HLA-Cw molecules (54–56). We speculate that 
KIR allelic polymorphisms may affect not only the distribution 
and function of these gene products but also the licensing of NK 
subpopulations as described for HLA class I molecules (57, 58). 
Deep analysis of KIR+ NK cell phenotype and function depend-
ing on KIR and HLA class I alleles present is needed to assess 
the diversity of KIR+ NK cell repertoire (21, 59), as well as the 
specificity of anti-KIR antibodies (30, 60). Overall, the analysis of 
KIR allelic polymorphisms combined with the autologous HLA 
class I environment will enable better evaluation of KIR+ NK cell 
functional subpopulations (61). This functional KIR+ NK  cell 
repertoire will be better defined by taking into account the nature 
of KIR alleles present in addition to the autologous HLA class I 
environment.

Investigation of KIR allelic polymorphism may be of an 
immunological interest in the context of viral infections such as 
those related to CMV (62), HIV (63), HCV (64), and of human 
reproduction (65). In the context of HSCT, inclusion of KIR 
allele typing in addition to HLA typing may provide a better 
evaluation of HSC donor’s KIR+ NK cell repertoire (21, 59, 60, 
66, 67). An identification of those with the best antileukemic 
potential will provide a potential tool to determine an early 
posttransplant hematopoietic chimerism when donor and 
recipient have identical KIR genotypes (68) as well as the impact 
of KIR+ NK cell alloreactivity on HSCT outcome (69–73). The 
functional relevance of typing both KIR and HLA genes at 
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TaBle 2 | Discordant killer cell immunoglobulin-like receptor (Kir) typing of international histocompatibility Workshop samples observed between 
typing obtained by exome capturea (47) and those obtained by next generation sequencing (ngs) in this study.b

iD centromeric Kir genes Telomeric Kir genes

3Dl3 2Dl2 2Dl3 2DP1 3DP1 3Dl2

exome Kir 
typinga

ngs 
typingb

exome 
Kir 

typinga

ngs 
typingb

exome 
Kir 

typinga

ngs 
typingb

exome Kir 
typinga

ngs  
typingb

exome 
Kir 

typinga

ngs 
typingb

exome 
Kir 

typinga

ngs 
typingb

AMAI *003, *013 *00301, *004

CALOGERO *00207, *017 *00207, 
*01001

*002, 
*00302

*00302, 
*010

*00101, 
*076

*00101, 
*00301

COX *002 *00201, 
*007

DKB *015 *00302, 
*006

KAS011 *002 *002, *00301 *00701, 
*00902

*01001, 
*019

LUY *002, *016 *00201, *00301

PF04015 *003 *00101, 
*003

WT51 *004, *018 *004, *001

YAR *00102, *044 *00102

Discrepancies are shown in italics for each KIR locus concerned. Allelic typing in bold represent concordant alleles. KIR alleles were named according to the last KIR nomenclature. 
ID, sample identification.

FigUre 5 | specificity of next-generation sequencing (ngs)-based killer cell immunoglobulin-like receptor (Kir) allele typing. Bars representing the 
numbers of KIR allele typing obtained by our NGS-based method from 22 International Histocompatibility Workshop (IHW) samples compared with those assigned 
by exome analysis (47). In this case, KIR allele typing for each locus and for all samples corresponds to the combined KIR allelic results obtained using manual 
pipelines, BiRD, and Profiler softwares. Each bar represents one specific centromeric or telomeric KIR gene. Concordant (one KIR allele matched for homozygous 
typing or two KIR alleles matched for heterozygous typing), semi-discordant (one KIR allele mismatched for heterozygous typing), and discordant KIR allele typing 
(one KIR allele mismatched for homozygous typing or two KIR alleles mismatched for heterozygous typing) were highlighted by a specific color code. Representative 
KIR3DL2 typing of IHW samples obtained by exome analysis compared to those assigned by NGS method is provided in the right of the graphs. Concordances are 
highlighted in bold and discordances in italics.
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high resolution may help determine their combined effects on 
outcome of HSCT.
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