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Abstract: Introduction: Postoperative respiratory failure is a serious problem in patients who undergo
general anesthesia. Approximately 90% of mechanically ventilated patients during the surgery
may develop atelectasis that leads to perioperative complications. Aim: The aim of this study
is to determine whether it is possible to optimize recruitment maneuvers with the use of chest
ultrasonography, thus limiting the risk of respiratory complications in patients who undergo general
anesthesia. Methodology: The method of incremental increases in positive end-expiratory pressure
(PEEP) values with simultaneous continuous ultrasound assessments was employed in mechanically
ventilated patients. Results: The study group comprised 100 patients. The employed method
allowed for atelectasis reduction in 91.9% of patients. The PEEP necessary to reverse areas of
atelectasis averaged 17cmH2O, with an average peak pressure of 29cmH2O. The average PEEP
that prevented repeat atelectasis was 9cmH2O. A significant improvement in lung compliance
and saturation was obtained. Conclusions: Ultrasound-guided recruitment maneuvers facilitate
the patient-based adjustment of the process. Consequently, the reduction in ventilation pressures
necessary to aerate intraoperative atelectasis is possible, with the simultaneous reduction in the risk
of procedure-related complications.

Keywords: atelectasis; intensive care; respiratory failure; chest ultrasonography

1. Introduction

Despite extensive advances in regional anesthesia methods, general anesthesia still re-
mains indispensable for some surgical procedures—approximately 90% of surgical patients
develop disturbances of lung aeration following positive pressure mechanical ventila-
tion [1,2]. The risk of perioperative atelectasis depends on many factors, such as the
type and duration of surgery, surgical technique and patient’s general status (obesity,
comorbidities). The manner of anesthesia administration and mechanical ventilation is
also of significance [3–5]. The extent and severity of perioperative disturbances of lung
aeration may vary from small and clinically insignificant local hypoventilation areas to the
appearance of large areas of completely nonaerated lung tissue. This may contribute to
the development of intra- and post-operative complications [4,6], including gas exchange
pathologies (mainly hypoxia), and may potentially trigger a local inflammatory response
leading to lung damage (VILI—ventilator-induced lung injury) [7–9]. Recruitment ma-
neuvers are a routine procedure for reducing aeration disturbances. Many recruitment
techniques have been described in the literature [10–14]. However, irrespective of how
the recruitment is administered, this procedure involves the risk of complications (e.g.,
barotrauma, volutrauma, hemodynamic destabilization).

Lung ultrasonography is a modality facilitating bedside, quick and accurate diagnosis
of atelectasis during general anesthesia [15–19]. The major advantage of ultrasound assess-
ment is that it can be done in the operating room, repetitively and noninvasively, without
the necessity to transport the patient to the radiology unit.
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The aim of the study is to determine whether the application of chest ultrasonography
allows optimizing intraoperative recruitment maneuvers that reduce atelectasis in me-
chanically ventilated patients under general anesthesia. The question was asked whether
it is possible to determine patient-specific pressure necessary to open collapsed alveoli
and pressure that prevents repeat alveolar collapse, and further whether such a proce-
dure allows reducing pressure during recruitment maneuvers (as compared to traditional
methods), thus increasing the safety of the procedure both in the context of hemodynamic
disturbances and the development of volutrauma.

2. Material and Methods
2.1. Ethic Statement

The study was approved by the Bioethical Committee of the Regional Medical Cham-
ber in Warsaw (no KB/1154/19, approval date 19 September 2019).

2.2. Patient Qualification

Adult patients undergoing general anesthesia during elective and emergency surgery,
who were able to provide their written informed consent for the participation in the study
were qualified. They were assessed as ASA1, ASA2, ASA3 or ASA4 according to the ASA
score (the American Society of Anesthesiologists physical status classification system).
Exclusion criteria included: age below 18 years, risk of ASA5, pregnancy, patients with
increased intracranial pressure and the inability to provide conscious informed consent for
participation in the study. Patients undergoing chest surgeries were also excluded.

2.3. Ultrasound Technique and Settings

Ultrasound examinations were performed and recorded with Philips Sparq ultrasound
unit (Philips, Bothell, WA, USA), with a convex transducer (2–6 MHz) and linear transducer
(5–12 MHz). The type of transducer was individually selected depending on the patient’s
constitution. The examination was performed with the LUNG preset (characterized by
speckle reduction, compound imaging, and tissue harmonic imaging filters switched off).
The examination was performed by one anesthesiologist, with 10 years’ experience in lung
ultrasonography. Patients were always examined in the supine position. The transducer
head was applied at 6 points over the anterior and lateral part of the chest, symmetrically
at 3 assessment points on each side and evaluated repeatedly. The first point was localized
subclavically in the midclavicular line; the second point was located at the level of the
4th intercostal space in the anterior axillary line, and the third point was in the posterior
axillary line at the level of the costodiaphragmatic recess (Figure 1).

Figure 1. Lung ultrasound assessment points in the study.

The transducer head was preferably placed along the intercostal space to visualize the
longest possible section of the pleura. The obtained image was qualified to a specific group
(A profile—normal image, B profile—presence of B-line artifacts typical of the interstitial
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syndrome, C profile—subpleural consolidations characteristic for atelectasis, P profile—
pleural effusion), and the result was recorded in the examination protocol, providing
also current mechanical ventilation parameters and transcutaneous oxygen saturation
levels (SaO2).

2.4. Initial Mechanical Ventilation Parameters

All patients qualified for the study were monitored and administered with general
anesthesia depending on age, comorbidities and the extent of surgery. After intubation,
mechanical ventilation was performed in the volume control ventilation (VCV) mode in a
uniform manner (Philips IntelliSave AX700 anesthesia machine). Tidal volume (Vt) was
set at 7 mL/kg of body mass, and the frequency of breaths was regulated so that end-tidal
CO2 (EtCO2) was at the level of 35–40 mm Hg. Additionally, FiO2 was 0.35, and the initial
positive end-expiratory pressure (PEEP) was always 5cmH2O.

2.5. Intraoperative Ultrasound Assessment Protocol

The first ultrasound assessment was performed before the induction of general anes-
thesia, and the second 10 min after intubation and the beginning of mechanical ventilation.
When features of atelectasis were detected during the first or second assessment, the pa-
tient was qualified for the recruitment maneuver to be administered as quickly as possible.
When ultrasonographic features of atelectasis were absent during the initial assessment,
depending on the patient’s status during anesthesia and the results of taken measurements
(transcutaneous blood gas monitoring, lung compliance), the decision concerning ultra-
sound reassessment was made. It was assumed that the decrease in transcutaneous oxygen
saturation (SaO2) below 94% or decrease in lung compliance by a minimum of 15% would
indicate the necessity of repeated lung assessment for atelectasis (compliance determined
automatically by the anesthesia machine).

When areas of atelectasis were visualized in the lungs, having excluded contraindi-
cations, the recruitment algorithm was introduced entirely guided by ultrasound. The
patient’s hemodynamic instability was the contraindication for the maneuver [20,21].

2.6. Recruitment Protocol in the Study Group

The suggested recruitment method involved an incremental increase in positive end-
expiratory pressure (PEEP) with simultaneous continuous ultrasound assessments. During
the entire procedure, the transducer head was placed over one point of the chest, selected
by the operator, where the area of atelectasis was detected intraoperatively. After each
increase in the PEEP value by 2cmH2O, the area of atelectasis was observed for a minimum
of 5 consecutive respiratory cycles. The PEEP value was increased until the aeration of
the area of atelectasis (max. value of 19cmH2O, which resulted from the limitations of the
anesthesia machine) or until peak pressure values of 40cmH2O were obtained. When the
aim was achieved (i.e., aeration of the area of atelectasis was visualized in the ultrasound
image), ventilation with patient-specific pressure was maintained for a minimum of 60 s,
with a simultaneous monitoring of hemodynamic stability. Next, the PEEP was reduced by
2cmH2O every 5 respiratory cycles until detecting the first features of atelectasis—then the
last PEEP value was increased by 2cmH2O and ventilation was continued at such pressure.
The last ultrasound assessment was performed 2 h after extubation (Figure 2).
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Figure 2. Recruitment maneuver algorithm employed in the study (modified Tusman’s protocol [22]).

2.7. Statistical Analysis

The collected data were analyzed statistically using IBM SPSS Statistics 25.0 software.
To compare the two groups for qualitative data (nominal or categorical), Pearson’s chi-
squared test was used, or Fisher’s exact test when the expected number was smaller than 5.
For quantitative data, Student’s t-test was used for independent variables or Mann–Whitney
U test when the numbers in the compared groups were different. To compare the results
of lung ultrasound assessment at 6 points (normal vs. abnormal) during one assessment,
Cochran’s Q test was employed. To establish correlations between quantitative/ordinal
data, correlation analysis was performed with the use of Spearman’s rank correlation
coefficient. To assess changes in compliance within the stages of assessments, repeated
measures analysis of variance was performed, and to assess changes in saturation—its
non-parametric equivalent—the Friedman test was used. The level of significance was
α = 0.05.

3. Results
3.1. Analysis of the Study Group and the Control Group

The study group was composed of 100 patients. The average age of patients was about
64 years, and the average BMI value was about 28. Arterial hypertension was the most
frequent chronic coexisting disease (55% of patients). In the majority of cases, surgery was
elective, and its duration usually did not exceed 4 h (Table 1).
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Table 1. Clinical characteristics of study group.

Variable Data (n = 100)

Gender n (%)

Females 66 (66.0)
Males 34 (34.0)

Age M(SD) 63.90 (11.34)
BMI M(SD) 28.31 (5.08)

ASA Score n (%)

1 1 (1.0)
2 27 (27.0)
3 66 (66.0)
4 6 (6.0)

MRC Score n (%)

0 49 (49.0)
1 40 (40.0)
2 11 (11.0)

Coexisting chronic disease n (%)

Hypertension 55 (55.0)
Ischemic heart disease 13 (13.0)

COPD 1 (1.0)
Asthma 6 (6.0)
Diabetes 24 (24.0)

Atherosclerosis 12 (12.0)
Type of surgery n (%)

Elective 90 (90.0)
Emergency 10 (10.0)

Method n (%)

Classic 82 (82.0)
Laparoscopy 18 (18.0)

Surgery duration n (%)

<2 h 45 (45.0)
2–4 h 44 (44.0)
>4 h 11 (11.0)

3.2. Preoperative Ultrasound Assessment

In the preoperative ultrasound assessment, a normal lung image was obtained in
81 patients (81%). Eight patients (8%) had features of pulmonary congestion (bilaterally,
multiple B-line artifacts in lower lung fields). The presence of atelectasis affecting areas
of lung parenchyma was detected in 11 patients (11%) at this stage, in one case with the
accompanying anechoic fluid in the pleural cavity. Additionally, decreased transcutaneous
oxygen saturation when breathing air (93% or lower) was detected in nine patients (the
lung image had features of abnormalities in six patients in this group).

3.3. Intraoperative Ultrasound Assessment

Perioperative atelectasis was found in ultrasound images of 87 patients (87%) in to-
tal. In 11 cases (11%), atelectasis was detected already in the preoperative assessment,
in 14 patients (14%) it was visualized after 10 min of mechanical ventilation. Due to de-
creased values of transcutaneous oxygen saturation and/or decreased lung compliance by
a minimum of 15% in relation to the initial value, ultrasound reassessment was performed
in 62 patients. In all cases, areas of atelectasis were revealed. Decreased saturation, as
an isolated parameter qualifying for lung ultrasound reassessment, only occurred in two
cases. In 13 patients (13%), the first two ultrasound assessments did not visualize areas
of atelectasis, and decreased oxygen saturation and lung compliance were not observed
during anesthesia.
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Eventually, 86 patients were qualified for the ultrasound-guided recruitment maneu-
ver. One patient, despite detected atelectasis accompanied with decreased compliance,
was disqualified from the recruitment maneuver due to hemodynamic instability and
the necessity to administer noradrenaline infusion. In all qualified patients (100%), areas
of atelectasis were visualized. Decrease in saturation occurred in 12 patients (14%), and
significant decrease in compliance in 77 patients (89.5%).

3.4. Effect of Ultrasound-Guided Recruitment Maneuver

Recruitment maneuvers followed the adopted protocol. In 79 patients (91.9%), the
recruitment was effective, i.e., aeration of the areas of atelectasis was achieved. Completely
normal lung ultrasound images were revealed in 29 patients (33.7%) (Figure 3, Figure 4).
Improvement of aeration, but with persistent interstitial syndrome, was found in 50 patients
(58.1%) (Figure 4), and lack of improvement, that is persistent atelectasis, was observed in
7 patients (8.1%). In six patients (7%), mild hypotension was observed during PEEP de-
escalation. Due to the clinical status of these patients, recruitment protocol was modified.

Figure 3. Recruitment process with a positive ultrasound effect. (a) Lung ultrasound (LUS) image before anesthesia—
normal, hyperechoic pleural line (↓) and A-line artifacts (→), normal image; (b) control assessment during anesthesia, at
positive end-expiratory pressure (PEEP) 5cmH2O—abnormal, fragmented pleural line (↓), subpleural consolidation (↑),
A-line artifacts not visible, image characteristic for atelectasis; (c) when increasing PEEP to 15cmH2O —ultrasound features
of atelectasis persist; (d) when achieving PEEP value of 17cmH2O—normal, hyperechoic pleural line (↓) and A-line artifact
(→) visible again; (e) when reducing pressures, PEEP 7cmH2O—segmental disturbances in the pleural line continuity (↓)
visible again and vertical artifacts reappear (←)—initial image of atelectasis; (f) after increasing end-expiratory pressure by
2cmH2O, disturbances in lung aeration reversed and normal pleural line and A-line artifacts were visualized.

Figure 4. Recruitment process with an incomplete ultrasound effect. (a) LUS image before anesthesia—normal, hyperechoic
pleural line (↓) and small abnormalities within the pleural line (↑) with small subpleural consolidations, as in segmental
atelectasis; (b) control assessment after the induction of anesthesia, at PEEP 5cmH2O—blurred fragmented pleural line
(↓) with hypoechoic subpleural consolidations (↑), image typical of atelectasis; (c) when increasing PEEP to 17cmH2O—
persistent ultrasound features of atelectasis with a visible reduction in subpleural consolidations (↑); (d) when achieving
PEEP value of 19cmH2O—continuous pleural line (↓) with multiple B-Line artifacts B (←); (e) when reducing pressures,
PEEP 9cmH2O—segmental disturbances in the pleural line continuity (↑) visible again—initial image of atelectasis; (f) after
increasing end-expiratory pressure by 2cmH2O, to 9cmH2O, improvement in the pleural line image and better lung aeration
were achieved.
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3.5. Postoperative Ultrasound Assessment

In postoperative ultrasound assessment, the lung image was normal in 52 patients
(52%), in 43 patients (43%) interstitial syndrome was visible, and atelectasis was detected
in only 13 patients (13%). The percentage distribution of ultrasound assessment results at
consecutive stages of the procedure are presented in Figure 5.

Figure 5. Percentage distribution of results at consecutive stages of lung ultrasound assessment.

The localization of the ultrasound-detected areas of atelectasis during the entire
procedure was analyzed. Statistically, significantly more frequent abnormal results (areas
of atelectasis) were found bilaterally in the lower fields of the lateral chest (assessment
points 3 and 6) at each stage of the assessment as compared to the remaining points
(p ≤ 0.001) (Table 2). Consequently, it may be assumed that points 3 and 6 were crucial
because they indicated the largest percentage of examined patients with abnormal results.

Table 2. Frequency of atelectasis depending on localization.

Assessment
Atelectasis (N) n (%)

1 2 3 4 5 6 Q(5) p

preoperative 1% 3% 9% 1% 3% 9% 30.59 <0.001
10 min after induction 1% 3% 20% 1% 5% 23% 85.17 <0.001

before recruitment 2% 10% 92% 2% 13% 92% 343.00 <0.001
recruitment 2% 2% 6% 2% 2% 7% 21.15 0.001

final PEEP settings 2% 2% 6% 2% 2% 7% 21.15 0.001
2 h after extubation 2% 2% 10% 2% 2% 13% 40.33 <0.001

Legend. 1—right side—upper field; 2—right side—middle field; 3—right side—lower field; 4—left side—upper field; 5—left side—middle
field; 6—left side—lower field. Q—Cochran’s Q test value; p—test probability.

3.6. Analysis of Intraoperative Mechanical Ventilation Parameters

Next, mechanical ventilation parameters were analyzed. The following data were
considered: peak pressure, PEEP, lung compliance, and, additionally, oxygen saturation.
Detailed results are presented in Table 3.
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Table 3. Basic statistics for peak pressure, PEEP, saturation and compliance at consecutive stages of
the procedure.

Assessment Me IQR Min. Max.

preoperatively

Saturation 96.00 2.00 88.00 99.00
10 min after
induction

Saturation 99.00 1.00 92.00 100.00
Peak pressure 15.50 3.00 12.00 25.00
Compliance 42.00 11.00 20.00 70.00

PEEP 5.00 0.00 5.00 5.00
before

recruitment

Saturation 99.00 2.00 92.00 100.00
Peak pressure 18.00 3.00 12.00 26.00
Compliance 34.00 11.25 19.00 60.00

PEEP 5.00 0.00 5.00 5.00
recruitment

Saturation 99.00 0.00 96.00 100.00
Peak pressure 29.00 4.00 19.00 34.00

PEEP 17.00 2.50 9.00 19.00
final ventilation

settings

Saturation 99.00 0.00 98.00 100.00
Peak pressure 18.00 4.00 13.00 26.00
Compliance 47.00 15.50 29.00 89.00

PEEP 9.00 2.00 5.00 11.00
2 h after

extubation

Saturation 99.00 0.00 97.00 100.00
Legend. Me—median; IQR—interquartile range; Min.—minimum value; Max.—maximum value.

Statistical analyses revealed that the mean PEEP at which atelectasis reversed in the
ultrasound image was 17cmH2O. In the case of one patient (1.1%), sufficient PEEP resulting
in the reduction in atelectasis was 9cmH2O, for three patients (3.4%) the PEEP value was
11cmH2O, and for nine patients (10.4%) it was 13cmH2O. The mean end-expiratory pressure
preventing the alveoli collapse was 9cmH2O (the minimal value: 5cmH2O, the maximum
value: 11cmH2O). During the performed recruitment process, no patient achieved peak
pressure higher than 34cmH2O, and mean peak pressure was 28cmH2O. The difference
between peak pressure and the value of end-expiratory pressure remained low during
the entire recruitment process, and in the final stage it was lower than at the beginning
of anesthesia.

3.7. Analysis of Transcutaneous Oxygen Saturation in the Perioperative Period

The analysis revealed that the saturation level at the preoperative assessment was
significantly lower than during other measurements (p < 0.001). In the 2 h postoperative
period, saturation levels did not decrease, including those patients who had abnormal
saturation before surgery. In the entire study group, SaO2 ranged between 97 and 100%.
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3.8. Analysis of Changes in Lung Compliance in the Perioperative Period

Repeated measures analysis of variance was performed to establish changes in com-
pliance at consecutive stages of the procedure. Statistically significant differences were
revealed between all taken measurements (p < 0.001). The lowest compliance level occurred
before recruitment (M = 35.81; SE = 0.94), and the highest in the measurement taken after
recruitment maneuvers (M = 49.91; SE = 1.33).

4. Discussion

Recruitment maneuvers are a routine intervention procedure in mechanically ven-
tilated patients. Irrespective of whether they are administered for patients undergoing
surgery or patients with acute respiratory distress syndrome (ARDS) treated at the ICU,
they require monitoring to assess their effectiveness. Apart from clinical monitoring (e.g.,
assessment of lung compliance dynamics, assessment of arterial blood gas), it is also
possible to assess the effectiveness of the performed maneuvers using ultrasound [23].
Numerous publications concerning the employment of computed tomography (CT) [24,25]
and electrical impedance tomography [12,26,27] have been published. CT requires the
patient to be transported to the radiology unit, which is not always possible due to the
patient’s status, and is actually impossible for patients for whom recruitment is performed
intraoperatively. Despite common access to ultrasound devices in operating rooms and
ICUs, the number of publications devoted to the use of ultrasonography in monitoring
recruitment maneuvers is scarce and studies refer mostly to patients with ARDS [28–30]. In
a healthy lung, in a dynamic ultrasound image, an aerated lung is characterized by the nor-
mal pleural line, mirror-image artifact and A-line artifacts with simultaneously preserved
lung sliding [31]. Along with the reduction in aeration, single, and with the exacerbation
of atelectasis, multiple overlapping B-lines appear. The next stage is the appearance of
subpleural consolidations with a static air bronchogram or without bronchogram, with
frequent B-lines coexisting marginally. When the aeration of pulmonary alveoli improves,
the changes are observed in the reverse order: the initial subpleural consolidations will
turn into B-line artifacts, and with further improvement—it is possible to obtain the normal
lung image, i.e., A-line artifacts [31–35].

From the publications discussing this topic, Tusman’s paper [22] merits attention
as he proposes and justifies the use of ultrasound during recruitment. The algorithm
suggested by him, after modification, was implemented in this study. The study published
by Généreux [36] reported that areas of atelectasis were significantly less frequently visu-
alized in ultrasound in patients who underwent recruitment maneuvers; however, this
effect disappeared after extubation. In our study, the permanent effect of improved lung
aeration was achieved, and the recruited status did not lessen after the discontinuation
of mechanical ventilation. We associate this with retaining patient-specific PEEP after the
completed recruitment maneuver. We believe that the continuation of ventilation with indi-
vidually determined end-expiratory pressure level prevents the worsening of lung aeration
and improves the final outcome of the procedure. The study published by Song [37] is
interesting in this context as it discusses the employment of lung ultrasound in preventing
anesthesia-induced atelectasis in infants. It reported that the PEEP level of 5cmH2O did
not prevent the development of atelectasis. We obtained similar results in our study—at
the initial PEEP of 5cmH2O, in 87% of patients we detected subpleural areas of atelectasis.
The mean pressure that prevented disturbances in aeration was 9cmH2O. Considering the
specificity of mechanical ventilation in the pediatric population and significant differences
in lung compliance in children, these results, we believe, are not directly comparable.

The main aim of this study was to determine whether the suggested recruitment
method with a simultaneous ultrasound assessment may lead to the reduction in mechani-
cal ventilation pressures owing to the patient-based adjustment of the therapy. We revealed
that in 91.9% of patients it was possible to recruit atelectasis successfully with the mean
peak pressure of 29cmH2O and the mean PEEP of 17cmH2O. The achieved pressure values
are significantly lower as compared to non-customized therapy, which reduces the risk of
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hyperinflation and other complications. In seven patients (8.1%) the reduction in atelectasis,
as observed in the ultrasound image, was not successful. We suppose that this may be
associated with additional overlapping pathologies in these patients, e.g., heart failure and
pulmonary congestion. This issue requires further research—extending the assessment
to include echocardiographic projections and, additionally, the assessment of the inferior
vena cava [38–43].

An important issue observed in our study is that abnormalities in lung ultrasound
images were found preoperatively in as many as 19 patients (19%); 5 of them underwent
emergency surgery, and 14 had elective surgery. Patients who qualified for elective surg-
eries did not present with dyspnea and symptoms of decompensated heart failure. This
observation confirms that lung ultrasound is a diagnostic tool that facilitates the detec-
tion of lung pathologies at an early stage, before overt clinical symptoms appear [31–33].
Abnormalities detected preoperatively impacted the activities undertaken intra- and post-
operatively, mostly fluid therapy, decisions concerning the prolonged monitoring of the
patient’s status, and the employment of high-flow nasal cannula and respiratory rehabilita-
tion. In our view, the suggested procedure reduces the risk of postoperative respiratory
complications. However, it is most beneficial for patients with comorbidities. In the
available literature, there are reports that do not confirm the effectiveness of recruitment
maneuvers in the context of reducing the risk of postoperative complications [44–46], Yet,
these studies were not based on ultrasound monitoring.

Irrespective of the recruitment method, this procedure is associated with the risk of
complications (e.g., barotrauma, volutrauma, hemodynamic destabilization). In our study,
we did not find any significant clinical complications arising from alveolar recruitment. The
proposed method assumes a gradual and slow increase in the PEEP level, facilitating the
adaptation of the circulatory system to pressure changes in the chest. Moreover, maneuvers
were performed in patients with stabilized intravascular volume, which significantly
reduced the risk of hypotension. During classic intraoperative monitoring, including
ultrasonography, we are not able to detect the risk of barotrauna and volutrauma. To this
end, it is necessary to measure transpulmonary pressure [47,48].

In our study, we have revealed the positive impact of the employed method, but
this method has, however, some limitations. The interpretation of the ultrasound image
is largely dependent on the operator. Consequently, in order to increase the reliability
of our results, all ultrasound examinations in our study were performed by one person,
experienced in lung ultrasound assessment. It would be optimal if ultrasound images were
assessed by two operators independently, taking into account the degree of agreement
and consistency between the results. However, the limitations imposed by performing
the examinations in the operating room make it impossible to implement such a solution.
Another important limitation, in our view, is the fact that lung ultrasound does not detect
hyperinflation that may occur during recruitment, definitely an unwanted phenomenon.
Ultrasound images of normally aerated lungs and excessively aerated lungs will be identi-
cal. Considering that owing to the customization of the recruitment process, quite low peak
pressures were obtained (on average 29cmH2O), the risk of hyperinflation seems lower than
in traditional recruitment maneuvers, where often pressures of approximately 40cmH2O
are used. B-lines in lung ultrasound image suggest pathologies involving the interstitium.
This may indicate progressing atelectasis, but the appearance of B-lines artifacts may also
result from intraoperative coexisting circulatory insufficiency or hypervolemia. It is not
possible to differentiate the etiology of B-lines in ultrasound. The type of surgery, the posi-
tion of the patient, and the type of surgical draping may make the ultrasound examination
difficult to perform effectively for the operator. This study concerns, for the most part,
patients who underwent elective surgeries and whose initial status was generally good.
The results cannot be referred to patients with severe lung diseases, respiratory failure
and ARDS.
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5. Conclusions

Ultrasound-guided recruitment maneuvers facilitate the procedure customization,
thus allowing for the reduction in ventilation pressures required to aerate the areas of
intraoperative atelectasis, simultaneously reducing the risk of complications resulting from
the procedure. The described method allows for the individual patient-based adjustment
of the PEEP value that prevents atelectasis. The suggested protocol may be particularly
beneficial for patients with a high risk of postoperative respiratory complications.
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