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Abstract

Disruption of dopamine homeostasis may lead to dopaminergic neuron degeneration, a proposed explanation for the
specific vulnerability of dopaminergic neurons in Parkinson’s disease. While expression of human a-synuclein in C. elegans
results in dopaminergic neuron degeneration, the effects of a-synuclein on dopamine homeostasis and its contribution to
dopaminergic neuron degeneration in C. elegans have not been reported. Here, we examined the effects of a-synuclein
overexpression on worm dopamine homeostasis. We found that a-synuclein expression results in upregulation of dopamine
synthesis and content, and redistribution of dopaminergic synaptic vesicles, which significantly contribute to dopaminergic
neuron degeneration. These results provide in vivo evidence supporting a critical role for dopamine homeostasis in
supporting dopaminergic neuron integrity.
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Introduction

Abnormal dopamine (DA) metabolism, which produces reactive

oxygen species (ROS), may lead to dopaminergic (DAergic)

neuron degeneration and has been proposed to be related to the

pathogenesis of Parkinson’s Disease (PD) [1–6]. For example,

overexpression of tyrosine hydroxylase (TH) in primary neuronal

cultures of Drosophila embryos induces cellular degeneration [1]

and vesicular monoamine transporter (VMAT) loss-of-function

mice show nigrostriatal neurogdegeneration [2].

Some in vitro or ex vivo evidence also suggests a connection

between dopamine homeostasis and a-synuclein, the central player

of PD pathology [3–11]. Thus, expression of pathogenic a-

synuclein mutants enhances cytosolic catecholamine levels in

human mesencephalic cells, PC12 cells and mouse chromaffin cells

[12,13]. Moreover, genetic disruption of vesicular dopamine

storage induces age-dependent alterations in the nigrostriatal

dopamine system and progressive nigral cell loss in a-synuclein

positive, but not in a-synuclein negative mice [2]. Reduction of

cytosolic dopamine content either genetically or pharmacologically

prevents haSyn-mediated neuronal degeneration in vitro [1]. It also

has been suggested that a-synuclein overexpression disrupts

vesicular pH, leading to the increased cytosolic catechol species

[13].

Genetic model organisms such as yeast, Drosophila and C. elegans

are valuable surrogates for the study of certain aspects of

neurodegenerative diseases, including investigations of a-synuclein

toxicity [5,14–22]. For example, genes involved in protein

trafficking have recently been identified to be involved in a-

synuclein toxicity, leading to the hypothesis that a-synuclein

mediated altered intracellular trafficking regulates dopamine

homeostasis [5].

Expression of human a-synuclein (haSyn) in DAergic neurons

of C. elegans results in their degeneration [21,22]. Yet, the effects of

haSyn expression on dopamine homeostasis have not been

addressed in this useful organism. Here, we used haSyn-expressing

C. elegans lines to examine the toxic effects of haSyn on dopamine

homeostasis and its contribution to haSyn-mediated DAergic

neuron degeneration.

Results

haSyn Expression Induces DAergic Neuron Degeneration
We first characterized the expression of dat-1 promoter-driven

haSyn by using immunohistochemistry and confocal microscopy.

Positive haSyn immunostaining was found exclusively in DAergic

neurons, marked with dat-1 promoter-driven DsRed, demonstrating

the specificity of haSyn expression in our transgenic lines (Figure S1).
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Previous efforts to express wild type or pathogenic haSyn in worms

led to loss of the fluorescent DAergic neuron marker due to

degeneration of DAergic neurons [5,20]. Consistent with these reports,

our haSyn-expressing line, but not the control line, displayed an age-

related progressive decline in the number of fluorescent DAergic

neurons (Figure 1A–E). Another haSyn-expressing line also exhibited a

similar decline in the number of fluorescent DAergic neurons (data not

shown). This conclusion was further confirmed by TH immunostaining

experiments (Figure S2) and similar experiments where both a non-

functional CAT-2/TH::GFP fusion protein [23,24] and DsRed were

used as DAergic neuron markers (Figure S3).

We next investigated the effect of haSyn expression on the

function of worm DAergic neurons by measuring the basal slowing

response, a food-sensing behavior regulated by dopamine

neurotransmission [25]. The worm basal slowing response was

used to assess the effect of haSyn expression on the function of

DAergic neurons [21]. As found in cat-2, a knockout mutant of

worm TH, haSyn-expressing worms had an impaired basal

slowing response, which returned to control levels in the presence

of 0.5 mM exogenous dopamine (Figure 1F). Thus, animals of the

haSyn expressing line were functionally deficient in dopamine.

Consistent with our haSyn expression pattern, the enhanced

slowing response, a food response behavior regulated by serotonin

neurotransmission [25], was not affected in haSyn expressing

animals (Figure S4).

Taken together, these results lead us to conclude that haSyn

expression induces degeneration of DAergic neurons in our haSyn

expressing lines, similar to previous reports.

haSyn Expression Induces a Motor Capacity Deficit
We next quantified the effect of haSyn expression on worm

motor capacity, which had not been assessed previously in worms

Figure 1. haSyn expression leads to DAergic neuron degeneration. A–D, Confocal images of living day 10 adult control (AB) or haSyn-
expressing (CD) worms with DAergic neuron specific expression of DsRed. A and C, Bright field; B and D, DsRed. E, Number of fluorescent DAergic
neurons in haSyn-expressing (squares) and control (circles) lines. ***, p,0.005 (two-way ANOVA). Error bars represent the SEM (standard error of the
mean) for three independent experiments. In each experiment, the n of each sample varied from 20 to 50. F, Basal slowing response of day 2 adult
worms. TH/CAT-2 KO or cat-2 is a TH/CAT-2 knockout (KO) worm line. GFP indicates a wild type line expressing GFP in DAergic neurons. Food
response experiments were conducted with (grey bars) or without (black bars) food. ***, p,0.0001 (t-test); n varied from 6 to 20. Error bars indicate
SEM.
doi:10.1371/journal.pone.0009312.g001
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specifically expressing haSyn in DAergic neurons [5,21]. In

general, there are two methods to access motor capacity in worms:

body bending frequency and centroid velocity [25–28]. Body

bending frequency is the number of sinusoidal waves made by a

worm during a given time period, while centroid velocity

quantifies the physical displacement of a worm’s centroid. Body

bending frequency can be uncoupled from centroid displacement

by genetic mutations and ageing [26,29]. We observed that L4 and

day 1 adult worms exhibit similar body bending frequencies,

although adult worms move much faster than L4 worms, as

quantified by their centroid velocity (Cao and Feng, unpublished

data). Because the centroid velocity of worm locomotion has been

utilized to quantify age-related changes in motor capacity and

provides more sensitive and reliable quantification of worm motor

activity [26,27], this parameter was selected to address the effect of

haSyn expression on the worm motor system. Indeed, haSyn

expressing worms exhibited a deficit in motor activity that was

restored by adding 1 mM dopamine (Figure 2), a finding

consistent with observations in a Drosophila PD model [17].

haSyn Expression Results in Altered Dopamine
Metabolism

Despite their functional deficiency in dopamine neurotransmis-

sion, haSyn expressing worms surprisingly exhibited a remarkable

upregulation of dopamine content from L4 to day 4 in adulthood

(Figure 3A), as measured by liquid chromatography-mass

spectrometry (LC-MS). We obtained similar results and reached

the same conclusion (data not shown) by using conventional high

performance liquid chromatography (HPLC) as well. Consistently,

the fluorescence intensity of a non-functional TH/CAT-2::GFP

fusion protein [23,24] in day 2 adult haSyn expressing worms was

significantly elevated (Figure 3B).

Abnormal dopamine metabolism may produce cytotoxic

molecules such as hydrogen peroxide, superoxide radicals and

dopamine-quinone through two pathways, namely auto-oxidation

and deamination by monoamine oxidase (MO). Dopamine

deamination also yields 3,4-dihydroxyphenylacetic acid (DOPAC),

a non-toxic metabolite that can be used to monitor dopamine

deamination-specific oxidative stress [12,30].

We found that haSyn-expressing worms displayed an age-

related accumulation of DOPAC leading to a significantly higher

DOPAC content than control worms (Figure 3C), thereby

providing evidence for an haSyn-mediated disruption of dopa-

mine metabolism. Dopamine-quinone was not detected in any

worms (data not shown), possibly because dopamine auto-

oxidation is negligible in vivo. This quinone can be oxidized to

several other species [30] or become adducted to glutathione and/

or thiol groups of native proteins [31]. Nevertheless, we conclude

that haSyn expression alters dopamine metabolism in worms.

haSyn Expression Redistributes Dopamine Synaptic
Vesicles

Dopamine is loaded into synaptic vesicles by a VMAT and

pathogenic a-synuclein impairs dopamine storage in mammalian

cell lines [32,33]. To further investigate whether haSyn expression

affects dopamine homeostasis in worms, we crossed our haSyn

expressing line with a worm line expressing CAT-1::GFP [34].

CAT-1 is the sole worm homolog of VMAT. In worms expressing

only VMAT/CAT-1::GFP but not haSyn, the observed VMAT/

CAT-1::GFP expression pattern of DAergic neurites was contin-

uously linear with a few bright spots at both L2 (Figure 4A) and L4

(Figure 4E–G) stages, a finding consistent with previous reports

[34–36]. In contrast, many bright VMAT/CAT-1::GFP spots

appeared in the remarkably weakened linear fluorescent DAergic

neurites of haSyn expressing L2 worms (Figure 4C). Such an

haSyn mediated alteration of VMAT/CAT-1::GFP distribution

further developed, and VMAT/CAT-1::GFP fluorescence of

DAergic neurites was only located in discrete punctate spots

without visible lines in L4 worms (Figure 4I–M), which was prior

to the obvious start of DAergic neuron degeneration in this worm

variant.

Also consistent with previous reports [34–36], VMAT/CAT-

1::GFP in DAergic somas of control worms was excluded from the

nucleus and formed a punctate pattern in both DAergic and

serotonergic neuron somas (Figure 4B and H). haSyn expression

disrupted this pattern of VMAT/CAT-1::GFP expression exclu-

sively in DAergic but not serotonergic neurons as early as L2

(Figure 4D, L–M). From this evidence, we conclude that haSyn

expression causes dopamine synaptic vesicle maldistribution.

Disruption of haSyn-Mediated Dopamine Homeostasis
Contributes to DAergic Neuron Degeneration

The next step was to determine whether haSyn-mediated

disruption of dopamine homeostasis contributes to DAergic

neuron degeneration in worms. In rodents, exogenous expression

of DAT-1, a dopamine transporter, leads to neuronal degenera-

tion. In worms, overexpression of TH/CAT-2 produces DAergic

neuron (CEP) abnormalities [22]. Here, we found that haSyn

induced DAergic neuron degeneration more slowly in worms with

a cat-2 mutant background (Figure 5), indicating that haSyn-

mediated DAergic neuron degeneration is related to dopamine

homeostasis.

Dopamine is toxic in the cytosol but not in synaptic vesicles

[1,2,37]. Consistently, we found that VMAT/CAT-1 knockout

worms displayed slightly faster rates of DAergic neuron degener-

ation than controls (Figure 6A). If haSyn-mediated altered

dopamine metabolism contributes to haSyn-mediated dopamine

neuron degeneration, one would expect that in vivo overexpression

of VMAT/CAT-1 would ameliorate haSyn mediated DAergic

neuron degeneration. Indeed, we found that VMAT/CAT-1

Figure 2. haSyn expression leads to a motor deficit. Locomotion
speed was quantified in day 2 adult worms. **: p,0.01 (one way
ANOVA with Dunnet’s post-hoc test). n varies 10 to 15. Error bars
indicate SEM. This deficit was not observed after addition of 1 mM DA.
doi:10.1371/journal.pone.0009312.g002
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overexpression [34,38] did prevent the haSyn-mediated DAergic

neuron degeneration (Figure 6B) and motor activity deficit

(Figure 6C).

Critically, VMAT/CAT-1 overexpression prohibited haSyn-

mediated [DOPAC] upregulation (Figure 6E), but not [dopamine]

upregulation (Figure 6D), providing evidence that enhanced

sequestration of dopamine protects DAergic neurons from the

toxicity of haSyn expression by affecting dopamine turnover.

Thus, haSyn-mediated disruption of dopamine homeostasis

significantly contributes to the observed DAergic neuron degen-

eration and loss of motor activity. Consistent with this conclusion,

haSyn expression disturbed the VMAT/CAT-1::GFP expression

pattern in L2 organisms before significant DAergic neuron

degeneration starts (Figures 4 and 6B), and this disruption

persisted in the cat-2 mutant background (Figure S5), wherein

DAergic neuron degeneration was prevented.

Discussion

Using in vitro and ex vivo mammalian or drosophila cell cultures,

a-synuclein was found to disrupt dopamine homeostasis. Here, we

provide in vivo evidence to support a critical relationship between

a-synuclein and dopamine homeostasis. a-Synuclein may regulate

dopamine homeostasis through multiple mechanisms [13], such as

dopamine synthesis/breakdown [39,40], compartmentalization

[41] and recycling [42]. Consistently, we found that a-synuclein

expression altered the expression of CAT-2/TH and distribution

of dopamine synaptic vesicles.

Why did we observe an haSyn mediated dopamine functional

deficit along with upregulated dopamine synthesis and content?

One possibility to explain this paradox is that haSyn alters

dopamine synaptic vesicle trafficking or packing, which may

reduce the availability of dopamine synaptic vesicles at synapses

and stimulate dopamine synthesis through feedback control

mechanisms [43,44]. Insufficient loading of unregulated dopamine

into vesicles, therefore, could result in the observed altered

dopamine metabolism. Indeed, a-synuclein was proposed to

intervene directly in dopamine synaptic loading in mammals

[12,32,33]. But this possibility should be further explored and

validated with mammalian models.

In a previous study, investigators observed that heterological

haSyn expression in worm DAergic neurons induced dopamine

deficiency rather than upregulation [21]. Interestingly, haSyn

expression did not cause degeneration of DAergic somas in their

Figure 3. haSyn expression leads to altered dopamine metabolism. A, Quantification of dopamine content in worms with (squares) or
without (diamonds) haSyn expression is shown as a function of age. Error bars represent the SEM of 3 independent experiments. Each experiment
was done with ,200 worms per sample. B, Quantification of CAT-2::GFP florescence in DAergic neurons of EM641 worms (a worm line expressing a
non-functional CAT-2::GFP) either with (black bars) or without (gray bars) haSyn expression. ** p,0.01 (t-test). n varied from 9 to 12. Error bar, SEM. C,
Quantification of DOPAC content in haSyn expressing (squares) or control (circles) worms. Error bars represent the SEM of 3 independent
experiments. Each experiment was done with ,400 worms per sample.
doi:10.1371/journal.pone.0009312.g003
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worm lines either. The less severe cytotoxicity of haSyn in their

worm line, compared with our haSyn expressing lines and a line

reported by Caldwell’s group [22], may be due to different levels of

protein expression.

It is worthy to point out that knockout of TH/CAT-2 or

overexpression of VMAT/CAT-1 did not completely protect

DAergic neurons from haSyn-mediated degeneration. Consistent-

ly, the effect of knocking out VMAT/CAT-1 on DAergic

degeneration was not as pronounced as that resulting from haSyn

expression, indicating that haSyn-mediated cytotoxicity is not

solely caused by the disruption of dopamine homeostasis. Indeed,

a-synuclein mediated modification of chaperone-mediated au-

tophagy (CMA) also plays a critical role in DAergic neuron loss in

mammals [45].

Materials and Methods

C. elegans Strains
The promoter of dat-1 was cloned and linked to a full-length

cDNA encoding haSyn, DsRed or GFP according to a previous

Figure 4. haSyn expression disrupts dopamine synaptic vesicle distribution. A–L, Typical confocal laser scanning VMAT/CAT-1::GFP (A–D,
F–H, J–L) or bright field (E, I) images of living L2 (A–D) or L4 (E–L) nuls26 (a worm line expressing VMAT-CAT-1::GFP) worms expressing (C–D, I–L) or
not expressing (A–B, E–H) haSyn. A–D, are GFP images that show DAergic (CEP, specifically) dendrites (A, C) or DAergic/serotonergic somas (B, D) of
L2 worms. G and K are magnified areas of F and J, respectively, that show DAergic dendrites (CEP) of L4 worms. H and L, are magnified areas of F and
J, respectively, that show DAergic and serotonergic somas of L4 worms. M, Quantification of CAT-1::GFP redistribution in DAergic neurons (CEP) and
serotonergic neurons (AIM and ADF) of L2 (black bars, n = 5) and L4 worms (gray bars, n = 8). ***: p,0.0001 (t-test). Error bars indicate SEM.
doi:10.1371/journal.pone.0009312.g004
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description [21]. Transgenic lines expressing haSyn were

generated by injecting constructs of haSyn (10 ng/ml per

injection), DsRed or GFP under the control of the dat-1 (encoding

dopamine transporter) promoter sequence [46]. Two transgenic

lines expressing haSyn were obtained and both exhibited similar

haSyn toxicity. After the transgenic line expressing haSyn was

integrated, this integrated line was backcrossed 46with wild type

worms. To produce lines expressing both haSyn and CAT-1::GFP

or CAT-2::GFP, the transgenic haSyn expressing worm line was

crossed into nuls26 or EM641, respectively [24,34]. All other

worm protocols involved standard methods [47]. cat-1 and cat-2

mutants used were e1111 and e1112, respectively. N2 was used as

the wild type.

Immunochemistry
Worms were fixed with formaldehyde and stained with goat

anti-haSyn antibody according to published protocols with slight

modifications [48]. All antibodies were purchased from Millipore.

Microscopy
All confocal experiments were conducted with a Leica TCS SP2

confocal microscope. The spectra used were: DsRed(lex = 543nm

and lem = 580–630nm) and GFP(lex = 488nm and lem = 510–

530nm). To count fluorescent DAergic neuron numbers, living

worms were immobilized with 30 mM sodium azide on 5%

agarose pads and examined with a Leica DMI3000 microscope or

a Leica TCS SP2 confocal microscope according to a published

method with modifications [21]. Specifically, fluorescent DAergic

neurons numbers were counted manually. The existence of a

fluorescent DAergic soma was evaluated by its fluorescence

intensity, its position in animals and the position of its dendrites

of a candidate neuron. The position of a neuron in worms and the

position of its dendrites are relatively unchanged in worms

throughout their life [49]. To obtain consistent data, an observer

was warmed up with 10–20 day 1 animals from an integrated wild

type line expressing DsRed in DAergic neurons, every day when

such an experiment was conducted. These animals have eight

fluorescent DAergic somas. In these experiments, representative

images were captured with an Andor iXonEM 885 EMCCD

camera and SimImaging (Feng, Z. unpublished software) (when

Lecica DMI3000 microscope was used) or a Leica TCS SP2

confocal microscope. All images were processed and analyzed with

National Instruments Vision Assistant 7.1.

Behavioral Analyses
Worm basal/enhanced slowing responses with and without

dopamine pretreatment were obtained as previously described

[21,25]. Locomotion speed was collected by using Automated and

Quantitative Analysis of Behavior of Nematode (AQUABN) with a

protocol described previously [26,27]. After a 10-minute video was

collected, the average speed from minutes 7–10 was computed to

eliminate the locomotion acclimation phase. For dopamine rescue

experiments, dopamine was added to the liquid medium before

pouring Nematode Growth Medium (NGM) plates. Animals were

then raised and experiments were conducted on dopamine

containing NGM plates. These dopamine-exposed, haSyn-

expressing animals exhibited DAergic neurite and soma degener-

ation phenotypes similar to haSyn expressing animals raised on

regular NGM plates (data not shown).

Dopamine and DOPAC Measurements
Samples were prepared as described [21] and filtered with a

0.45 mm Millipore filter before being injected into tandem LC-MS

that employed an ESI probe in the positive ion mode. The column

used was a C18 Discovery HS (5mm narrow bore), 15 cm long

with a 2.1 mm diameter. The mobile phase used for elution was

composed of solvent A (10 mM ammonium formate, pH 3.0) and

solvent B (acetonitrile) with ratios ranging from 97% – 80% of

solvent A. The detector was set up for single ion monitoring m/z

150–210.

Statistical Analysis
Statistical significance was analyzed by using Statistica (StatSoft,

Inc.). T-tests, ANOVA with Bonferroni corrections or Dunnet’s

post-hoc analyses were used for their appropriate applications.

Supporting Information

Figure S1 Immunohistochemical analysis of haSyn expression

in transgenic C. elegans. A–D, Confocal images of a formaldehyde-

fixed day 2 adult worm with DAergic neuron specific expression of

haSyn and DsRed. A, Bright field (BF). B, DsRed. C, haSyn

immunostaining (green). D. Merged image of B and C.

Found at: doi:10.1371/journal.pone.0009312.s001 (0.80 MB TIF)

Figure S2 Immunohistochemical analysis of TH expression in

transgenic C. elegans. A–B, Confocal images of formaldehyde-fixed

day 0 (A) or day 10 (B) worm with DAergic neuron specific

expression of haSyn and DsRed. Left, TH immuostaining;

Middle, DsRed; Right, Merged image of TH staining and DsRed;

C, Quantification of DAergic neuron degeneration by using TH

staining (green) or DsRed (Red). Data represents mean 6 S.E.M.,

n = 10. 1 represents 6.8 and 6.3 DAergic neurons in DsRed and

TH staining experiments, representatively.

Found at: doi:10.1371/journal.pone.0009312.s002 (0.69 MB TIF)

Figure S3 Correlation of DAergic neuron degeneration with

CAT-2::GFP and DsRed. A–B, Confocal images of living day 0

(A) or day 10 worms (B) with DAergic neuron specific expression

of CAT-2::GFP, DsRed and haSyn. Left, CAT-2::GFP; Middle,

Figure 5. Knockout of TH protects DAergic neurons from haSyn
expression toxicity. A. Quantification of fluorescent DAergic neurons
in haSyn expressing wild type (squares) or haSyn expressing TH/CAT-2
KO (diamonds) worms and in control wild type (triangles) or TH/CAT-2
KO (circles) worms. Error bars represent the SEM of three independent
experiments. **, p,0.01; ***, p,0.005 (Two-way ANOVA). In each
experiment, n of each sample varied from 10 to 30.
doi:10.1371/journal.pone.0009312.g005

Dopamine Homeostasis in Worms

PLoS ONE | www.plosone.org 6 February 2010 | Volume 5 | Issue 2 | e9312



DsRed; Right, Merged image of CAT-2::GFP and DsRed. (C)

Quantification of DAergic neuron degeneration by using CAT-

2::GFP (green) or DsRed (red) in haSyn-expressing (diamonds)

and control (circles) lines. Data represent mean 6 S.E.M., n = 30.

Error bars may hide in symbols. ***, p,0.005 (Two-way ANOVA

to compare haSyn expressing and control line) (green: CAT-

2::GFP; Red DsRed). 1 represents 7.9 and 7.7 in DsRed and

CAT-2/TH::GFP experiments, respectively.

Found at: doi:10.1371/journal.pone.0009312.s003 (1.44 MB TIF)

Figure S4 haSyn expression does not affect serotonin neuro-

transmission. Enhanced slowing responses of day 2 adult worms.

GFP indicates a wild type worm line expressing GFP in DAergic

neurons. Food response experiments were conducted with (grey

bars) or without (black bars) food.

Found at: doi:10.1371/journal.pone.0009312.s004 (0.23 MB TIF)

Figure S5 haSyn expression disrupts dopamine synaptic vesicle

distribution in TH/CAT-2 knockout background. A–D, Typical

bright field (A) or confocal laser scanning VMAT/CAT-1::GFP

(B–D) images of living L2 worms expressing both VMAT/CAT-

1::GFP and haSyn in a TH/CAT-2 knockout background. C and

D are magnified areas of B that show DAergic and serotonergic

somas (C) or DAergic dendrites of CEPs (D), respectively. E,

Quantification of CAT-1::GFP redistribution in CEPs of L2

worms expressing both VMAT/CAT-1::GFP and haSyn in wild

type (n = 5) or a TH/CAT-2 knockout background (n = 5). Error

bar:SEM.

Found at: doi:10.1371/journal.pone.0009312.s005 (0.98 MB TIF)
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