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Polarization has been a useful concept for describing activated macrophage pheno-
types and gene expression profiles. However, macrophage activation status within tumors
and other settings are often inferred based on only a few markers. Complicating matters
for relevance to human biology, many macrophage activation markers have been best
characterized in mice and sometimes are not similarly regulated in human macrophages.
To identify novel markers of activated human macrophages, gene expression profiles for
human macrophages of a single donor subjected to 33 distinct activating conditions
were obtained and a set of putative activation markers were subsequently evaluated
in macrophages from multiple donors using integrated fluidic circuit (IFC)-based RT-
PCR. Using unsupervised hierarchical clustering of the microarray screen, highly altered
transcripts (>4-fold change in expression) sorted the macrophage transcription profiles
into two major and 13 minor clusters. Among the 1874 highly altered transcripts, over
100 were uniquely altered in one major or two related minor clusters. IFC PCR-derived
data confirmed the microarray results and determined the kinetics of expression of
potential macrophage activation markers. Transcripts encoding chemokines, cytokines,
and cell surface were prominent in our analyses. The activation markers identified
by this study could be used to better characterize tumor-associated macrophages
from biopsies as well as other macrophage populations collected from human clinical
samples.

Keywords: human macrophages, activation markers, microarray, integrated fluidic circuit RT-PCR, macrophage
polarization

Introduction

Macrophages assume critical roles in almost every tissue and disease state through their ability
to assume distinct functional capacities in different microenvironments. Macrophages respond to
a variety of external stimuli to assume different polarized activation states. Distinctly polarized
macrophages, modeled in vitro using specific activating conditions, can be defined by func-
tional attributes such as microbicidal activity, and by unique gene expression profiles. An early
study contrasting functional and gene expression differences between IFNγ- and IL-4-treated
macrophages proposed that the latter phenotype be described as alternative activation (1), a
very different macrophage phenotype from IFNγ- or classically activated macrophages. Since
that time, many additional polarized macrophage types, induced by different stimuli, have been
proposed.
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Several competing systems have been proposed in an attempt to
provide a framework that describes the complexity of macrophage
polarization. The first system describes macrophage pheno-
types as a linear continuum with M1 (classically activated) and
M2 (alternatively activated) macrophages at opposite ends (2,
3). The second system describes macrophage phenotypes as
a spectrum akin to a color wheel, with classically activated,
wound healing, and regulatory macrophages used as examples
of unique polarized phenotypes that do not fit well within a
linear continuum (4). A modified version of the M1–M2 sys-
tem acknowledged the diversity of macrophage phenotypes with
descriptions such as M1a, M1b, M2a, M2b, and M2c (5, 6).
Additions to the M1–M2 nomenclature system have proposed
naming macrophages differentiated in the presence of CXCL4
as “M4” (7) and IL-17-treated macrophages “M17” (8). To stan-
dardize the burgeoning descriptions of polarized macrophage
types, it has been suggested that the activation condition be
defined in the name of the polarized macrophage [M(IL-4),
M(IL-10), M(LPS), M(IFNγ), and so forth (9)]. To preserve
clarity, we have employed this descriptive nomenclature sys-
tem to describe the activated macrophages in the current report
(Table 1).

Macrophages are often very abundant within tumors (12, 13).
There is evidence that macrophages can promote tumorigen-
esis, tumor growth, and metastasis (14). Despite macrophage
pro-tumor activities, tumor-associated macrophages (TAMs) dis-
play a wide range of phenotypic diversity within a tumor
due to ontogeny, activation signals, and localization (15).
The plasticity of macrophage phenotypes is well known (16,
17) and this characteristic has provided a therapeutic tar-
get whereby macrophages are encouraged to switch function-
ally from pro-tumor to anti-tumor. Clinical approaches that
modify macrophage activation in this way include block-
ade of M-CSF, low-dose irradiation, and combinational ther-
apies (18–21). What is lacking is a thoroughly characterized
and reliable set of macrophage activation markers that would
allow for improved characterization of activation patterns, and
monitoring of the therapeutic efficacy of macrophage-targeted
treatments.

Gene expression profiles using microarrays have been used to
analyze activation of primary human monocytes and monocyte-
derived macrophages (MDMs) (7, 22–32). Until very recently
(33), most transcriptome-based approaches to characterize polar-
ized macrophages contrasted two macrophage-activating con-
ditions in each study. Using a blood sample from a single
human donor, we surveyed gene expression profiles in pri-
mary macrophages activated with 33 different activating con-
ditions. This data set served as a rich resource for identifying
putative human macrophage activation markers. As a follow-
up approach, integrated fluidic circuit (IFC)-based RT-PCR was
used to examine a panel of transcripts to verify the repro-
ducibility of the gene expression changes from multiple donors.
This latter assay was also used to determine the expression
kinetics of previously described markers of human macrophages
as well as novel markers identified by the microarray-based
screen.

TABLE 1 |Macrophage-activating conditions and nomenclature used in this
study.

Single stimulus treatments Previous
nomenclature

Current
nomenclature

1. GM-CSF (100 ng/ml) M1 M(GM-CSF)
2. IFNβ (20 ng/ml) M(IFNβ)
3. IFNγ (20 ng/ml) M1, classical M(IFNγ)
4. IL-1β (100 ng/ml) M(IL-1β)
5. IL-4 (20 ng/ml) M2, M2a, alternative,

wound healing
M(IL-4)

6. IL-10 (50 ng/ml) M2c M(IL-10)
7. TGFβ (5 ng/ml) M2c M(TGFβ)
8. TNFα (100 ng/ml) M(TNFα)
9. Curdlan (20µg/ml)a M(Curdlan)
10. TDB (20µg/ml) M(TDB)
11. PolyI:C (2µg/ml) M(PolyI:C)
12. LPS (10 ng/ml) M1, classical M(LPS10)
13. LPS (100 ng/ml) M1, classical M(LPS100)
14. Adenosine (100µM) M(Ado)
15. IgG-OVA immune complexes
(IC)a

M(IC)

16. Dexamethasone (100 nM) M2c M(Dex)

Combinational treatments Previous
nomenclature

Current
nomenclature

17. TDB+ IFNγ M(TDB+ IFNγ)
18. TDB+ ICa M(TDB+ IC)
19. TDB+ IL-4 M(TDB+ IL-4)
20. TDB+ IL-10 M(TDB+ IL-10)
21. LPS (10 ng/ml)+ IFNγ M1 M(LPS+ IFNγ)
22. LPS (100 ng/ml)+ ICa M2b, regulatory M(LPS+ IC)
23. LPS (10 ng/ml)+ IL-4 M(LPS+ IL-4)
24. LPS (10 ng/ml)+ IL-10 M(LPS+ IL-10)
25. Adenosine+ IFNγ M(Ado+ IFNγ)
26. Adenosine+ ICa M(Ado+ IC)
27. Adenosine+ IL-10 M(Ado+ IL-10)
28. TGFβ +GM-CSF M(TGFβ +GM-CSF)
29. TGFβ + IL-1β M(TGFβ + IL-1β)
30. TGFβ + LPS (100 ng/ml) M(LPS+ TGFβ)
31. Dexamethasone+GM-CSF M(Dex+GM-CSF)
32. Dexamethasone+ IL-1β M(Dex+ IL-1β)
33. Dexamethasone+ LPS
(100 ng/ml)

M(LPS+Dex)

aTreatments with chicken ovalbumin and with Curdlan likely had endotoxin contamination
due to the extraction processes used to obtain these reagents (10, 11).

Materials and Methods

Human Subjects
Human subject protocols were approved by Institutional Review
Boards of the University of Iowa and the Iowa City Veterans
Affairs Medical Center. Peripheral blood samples from anony-
mous, healthy donors were acquired through the DeGowin Blood
Bank at the University of Iowa.

Integrated Fluidic Circuit-Based RT-PCR
RNA purified from MDMs using TRIzol was reverse transcribed
in random hexamer-primed reactions with SuperScript III RT
(Invitrogen). The cDNA was pre-amplified for 14 PCR cycles in
reactions primed by a master mix of 48 TaqMan Gene Expression
Assays (Applied Biosystems) using PreAmp Master Mix (Applied

Frontiers in Immunology | www.frontiersin.org May 2015 | Volume 6 | Article 2532

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Sudan et al. Macrophage responses to activating conditions

Biosystems) with a modified protocol according to recommen-
dations by Fluidigm. Following a 1:5 dilution of pre-amplified
product in water, 48 samples and 48 TaqMan Gene Expression
Assays were loaded onto 48.48 Dynamic Array IFC plates (Flu-
idigm) using the 48.48 MX IFC Controller (Fluidigm). Real-
time PCR was performed using the BioMark System for Genetic
Analysis (Fluidigm). Cycle threshold (Ct) values were determined
using real-time PCR analysis v3.1.3 software (Fluidigm). Ct values
corresponding to transcripts encodingACTB, B2M, andTBPwere
used as endogenous controls. Changes in transcript expression
were calculated using the ∆∆Ct method and converted to log2
scale using Excel 2010. Line graphs of time course experiments
were generated using Prism 6 (GraphPad). Heat maps were gen-
erated using Partek Genomic Suite software.

Cell Purification and Culture
Peripheral blood mononuclear cells (PBMCs) were isolated from
the blood by density sedimentation using Ficoll-Paque PLUS
(GE Healthcare) and maintained in Petri dishes at a density
of 5e7 cells/dish in 10ml RP-10 medium [RPMI 1640 medium
(Gibco) supplemented with 10% fetal bovine serum (Gibco),
100U/ml penicillin, 50µg/ml gentamicin, and 5 ng/ml M-CSF
(eBioscience)]. After 10 days, non-adherent cells were removed
by rinsing and the adherent MDMs were dislodged with cell
scraping following incubation at 37°C for 10min in 0.25%
Trypsin/1mM EDTA solution (Gibco). MDMs were seeded in
12-well tissue culture-treated plates (Corning) at 5e5 cells/well
in 2ml RP-10 and allowed to rest for 2 days at 37°C. Before
treatment with macrophage-activating conditions, the culture
mediumwas replaced with 1ml fresh RP-10 per well. At 24 h post-
treatment, RNA was purified from MDMs using TRIzol Reagent
(Invitrogen).

Macrophage-Activating Stimuli
All stock solutions were stored at −80°C unless otherwise noted.
The sources of human recombinant cytokines were as follows: IL-
1β (eBioscience), IL-4 (PeproTech), IL-10 (R&D Systems), IFNβ
(PeproTech), IFNγ (PeproTech), GM-CSF (eBioscience), TNFα
(PeproTech), and TGFβ (R&D Systems). These cytokines were
stored at concentrations recommended by the manufacturers and
were subjected to no more than two freeze–thaw cycles. Dex-
amethasone powder (Sigma-Aldrich) was suspended in 1 part
ethanol and subsequently diluted in 49 parts medium to a stock
concentration of 50µM. Phenol-extracted Escherichia coli 055:B5
LPS (Sigma-Aldrich) and polyinosinic:polycytidylic acid sodium
salt (PolyI:C) (Sigma-Aldrich) were stored at a stock concen-
tration of 1mg/ml in RP-10. Adenosine (Sigma-Aldrich) was
suspended in RP-10 at a stock concentration of 10mM.

Chicken ovalbumin (MP Biomedicals) was suspended at
2mg/ml in PBS lacking Ca++ or Mg++ (Gibco) and goat anti-
chicken ovalbumin (MP Biomedicals) was suspended in water at
16mg/ml. Immune complexes (IC) were prepared fresh for each
experiment by combining ~10:1M excess of antibody to antigen
and incubating with end-over-end rotation at room temperature
for 30min. Curdlan (InvivoGen) was also freshly prepared for
each experiment by suspension in RP-10 at a concentration of
1mg/ml.

Trehalose-6,6-dibehenate (TDB) (InvivoGen)was suspended at
a concentration of 10mg/ml inDMSO and heated to 60°C for 30 s.
After vortexing, the TDB/DMSO solution was diluted to 1mg/ml
by the addition of PBS. This stock solution was heated to 60°C for
15min and stored at 4°C.

Microarrays
RNA sample preparation for microarrays and the subsequent
hybridization to the Illumina beadchips were performed at
the University of Iowa DNA Facility. Three Human HT-12
v4 BeadChips (Illumina) were processed individually in this
experiment with 1 sample from an untreated control and 11
samples from polarized macrophages loaded onto each array.
Briefly, 100 ng total RNA from each of the 36 samples was
amplified and converted to biotin-cRNA using the Epicenter
TargetAmp-Nano Labeling Kit for Illumina Expression Bead-
Chip (Illumina). The biotin-aRNA product was purified using
the RNeasy MinElute Cleanup Kit (Qiagen) according to mod-
ifications from Epicenter. Seven hundred fifty nanograms of
this product were mixed with Illumina hybridization buffer,
placed onto each beadchip array, and incubated with rocking
at 58°C for 17 h in an Illumina Hybridization Oven. Follow-
ing hybridization, the arrays were washed, blocked, and stained
with streptavidin-Cy3 using the Whole-Genome Gene Expres-
sion Direct Hybridization Assay (Illumina). Beadchip arrays were
scanned with the iScan System (Illumina) and data were col-
lected using the GenomeStudio software v2011.1 (Illumina). The
expression data has been deposited in NCBI Geo repository
(GSE68854).

Transcript Expression Analysis
Partek Genomic Suite v6.5 (Partek) was used to perform robust
multi-array averaging and to calculate gene expression changes. A
data set comprising of 1874 transcripts with changes in expres-
sion of more than fourfold relative to untreated controls was
submitted to unsupervised hierarchical clustering and principal
components analysis using default settings in Partek Genomic
Suite software. Briefly, for unsupervised hierarchical clustering,
agglomerative clustering was used to determine Euclidean dissim-
ilarity distances using an average linkage method. For principal
components analysis, a dispersion matrix based on correlations
was normalized using Eigenvector scaling. Contribution of indi-
vidual transcripts to each of the principal components was deter-
mined using the FactoMineR package in R. After principal com-
ponent analysis was completed the contribution of each tran-
script to each of the components was extracted and ranked using
Excel 2010.

Correlation coefficients were calculated for each pairwise com-
bination of the 33 activated macrophage expression profiles for
the 1874 regulated transcripts using the corandPvalue function of
the WGCNA package in R. The data were then converted to heat
maps using Excel (Microsoft).

For gene ontology (GO) analysis, the STRING database (ver-
sion 9.05; string-db.org) was used to identify the 1615 protein
coding RNAs in our set of 1874 regulated transcripts. Also, within
the STRING database website, the GO categories enriched in the
set of 1615 regulated transcripts identified as protein codingRNAs
were determined.
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FIGURE 1 | Expression kinetics of previously proposed macrophage
activation markers. At 1, 3, 6, and 24 h time points, RNA was collected from
untreated MDM controls as well as M(IFNβ), M(IFNγ), M(Dex), M(IL-4),

M(Curdlan), and M(LPS). Using IFC-based RT-PCR, the changes in expression
for each indicated transcript relative to the untreated MDM controls was
determined at each time point for the six types of activated MDMs (N=1).

Results

Survey of Proposed Human Macrophage
Activation Marker Expression in MDMs
Responding to Six Distinct Activation Conditions
Transcripts used as markers of polarized human macrophages
should change expression in response to one stimulus or a limited
number of related activation stimuli. Additionally, macrophage
activation markers should have sustained, rather than transient,
changes in expression. In primary human macrophages respond-
ing to a variety of activation conditions, we evaluated the expres-
sion kinetics of transcripts that encode 11 proposed activation
markers (4, 6, 9) over a 24-h period (Figure 1). Several obser-
vations from this survey were notable. First, some commonly

assessed transcripts, TNF and IL-10, were rapidly induced in
M(LPS) andM(Curdlan) but returned to near basal expression by
the 24-h time point. Second, although many genes were similarly
regulated in M(IFNβ) and M(IFNγ), the expression patterns of
CD163 and CXCL9 were distinct in response to these two inter-
feron types. Third, most markers have been noted because of
their increased expression in response to macrophage activation
conditions butmany transcripts in this panel showed a remarkable
reduction in expression. Finally, the expression level of many
activation marker transcripts was either continuing to change or
was sustained at high levels at the 24-h time point. Together, these
observations revealed there is a need for a systematic attempt
to identify reliable activation markers whose expression was
either up- or down-regulated in human macrophages, and which
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FIGURE 2 | Continued
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FIGURE 2 | Continued
Hierarchical clustering of gene expression profiles from activated
human MDMs separated into 2 major clusters and 13 minor clusters.
Microarrays were performed using RNA collected from MDMs at 24 h
post-treatment with 33 distinct activation conditions (N= 1). (A) A set of 1874
regulated transcripts defined as having >4-fold change in expression levels
relative to untreated controls was compiled and displayed as a heat map (log2
scale). Gene expression profiles were sorted according to unsupervised

hierarchical clustering of genes and treatments. Dissimilarity distances between
gene expression profiles are displayed using a color-coded dendrogram to
indicate 13 hierarchical clusters. See Section “Results” for dissimilarity distance
cut-off rationale. Arranged in the same order as shown here, transcript names
and quantitation of expression level changes are available in Table S1 in
Supplementary Material. (B) Number of upregulated and down-regulated
transcripts within each gene expression profile. Potent and mild macrophage
activation conditions are indicated.

exhibited sustained expression level changes in response to an
array of activation conditions.

Expression Profiling of a Diverse Array of
Activated Human Macrophages
To screen for transcripts representing putative human
macrophage activation markers, microarrays were performed
using samples collected from human MDMs derived from
a single donor, subjected to 33 unique activating conditions
(Table 1) for 24 h. Sixteen of the conditions were composed
of a single activating stimulus. Eight cytokines comprised the
largest category of macrophage-activating stimuli used in this
study and represent a spectrum of pro- and anti-inflammatory
molecules that are abundantly expressed in sites where MDMs
would be recruited such as infections or wounds. Pathogen-
associated molecular patterns (PAMPs) recognized by C-type
lectin receptors (CLRs) or toll-like receptors (TLRs) were the
second largest set of macrophage-activating stimuli in this study
and consisted of Curdlan (dectin-1 agonist), TDB (trehalose-
6,6-dibehenate; mincle agonist), polyI:C (TLR3 agonist), or
one of two concentrations of LPS (TLR4 agonist). Another
set of stimuli, IgG–OVA IC and adenosine, were selected
for their ability to reprogram inflammatory macrophages to
become non-inflammatory (34, 35). Finally, we selected the
glucocorticoid, dexamethasone, as an immunosuppressive
stimulus. The remaining 17 conditions consisted of pairs of the
above macrophage-activating stimuli (Table 1). The macrophage-
activating conditions were selected with the expectation that they
would lead to diverse gene expression profiles providing insights
into the potential diversity of macrophage gene expression
programs.

We first focused our attention on regulated transcripts that
had changes in abundance of over fourfold relative to untreated
controls changes. A data set of 1874 regulated transcripts that
were differentially expressed inMDMs responding to one ormore
of the macrophage-activating conditions was compiled. Unsu-
pervised hierarchical clustering was performed to evaluate the
expression profiles of the regulated transcripts; this is summarized
in a heat map that includes a dendrogram indicating relative
dissimilarity distances between gene expression profiles of each
polarized macrophage type (Figure 2A). Official gene names of
the regulated transcripts and calculated expression changes are
provided as supplemental material (Table S1 in Supplementary
Material).

We considered whether the clustering analysis results sep-
arated the gene expression profiles corresponding to pre-
viously studied macrophage activation states as denoted in
Table 1. Consistent with the previous reports (29, 33), gene

expression profiles of M(LPS+ IFNγ) (previously named “M1”)
macrophages were quite different from that of M(IL-4) (previ-
ously named “M2a”) macrophages. By contrast, the profile of
M(LPS+ IC) macrophages (previously named “M2b”) was very
similar to the profiles of M(LPS+ IFNγ), separated only by the
profile of M(PolyI:C). SinceM(LPS+ IFNγ) andM(LPS+ IC) are
known to have different biological activities (6), we divided the 33
macrophage expression profiles into 13 clusters, the lowest dissim-
ilarity distance cut-off that successfully separated these profiles
(Figure 2A).

Microarray Results were Confirmed Using IFC
Arrays
The IFC array-based real-time RT-PCR platform provided a high-
throughput mechanism to accurately verify the expression of a
large set of transcripts in samples from multiple human donors.
We used several strategies to select a panel of transcripts with
diverse expression patterns out of the 1874 regulated transcripts,
which were re-assessed on multiple samples using IFC arrays.
First, we included the 11 transcripts analyzed in Figure 1. Next,
we used the STRING database (version 9.05) to identify enriched
GOs for the 1615 protein coding RNAs in our set of 1874 regu-
lated transcripts. Among the GOs categories that were enriched
in our data set, we chose to focus on chemokine activity, cell
surface, and cytokine activity because these GO categories were
highly enriched (Table S2 in Supplementary Material). Finally,
we selected transcripts that were uniquely regulated in one or
two minor clusters. The final panel included a combination of
transcripts that represented changes occurring in each of the 33
macrophage-activating conditions. We also mined the data set
for reliable endogenous controls to include in the panel. Among
the potential endogenous controls we considered, the expression
levels of TBP (define) and B2M (define) transcripts appeared to
be the least affected by the 33 macrophage-activating conditions
(Table S1 in Supplementary Material).

The samples obtained from activated MDMs of a single donor
that were analyzed by microarray were re-assessed using IFC
arrays. Approximately 10 transcripts were not detected when
using a pre-established Ct cut-off. Strong linear correlation for 15
representative transcripts was observed when comparing expres-
sion levels determined bymicroarray and by IFC arrays (Figure S1
in SupplementaryMaterial). The remaining detectable transcripts
in our panel had expression levels that also showed strong lin-
ear correlation when comparing microarray and RT-PCR results
(data not shown). Overall, these results confirmed the microar-
ray measurements using an independent approach and provide
convincing evidence that IFC arrays was a dependable method for
measuring transcript expression.
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FIGURE 3 | Continued
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FIGURE 3 | Continued
Comparing correlation coefficients supported the separation of gene
expression profiles into two clusters, which can be modeled as a
“split spectrum.” Correlation coefficients were calculated for using the
1874 regulated transcript data set (N= 1). (A) Each pairwise combination of
the 33 gene expression profiles are displayed as a heat map with a range of

coefficients of −0.2 to 1.0. (B) Each pairwise combination of the 13 “potent”
gene expression profiles in clusters 8–13 are displayed as a heat map with a
restricted range of coefficients from 0.7 to 1.0. (C) A “Split Spectrum” model
of macrophage activation can be used to emphasize the high degree of
correlation between treatments with at least one potent
macrophage-activating stimulus.

Macrophage-Activating Conditions can be
Categorized as “Mild” or “Potent” Based on the
Number of Transcripts regulated in Response to
the Stimuli
There was a large range in the number of highly regulated
transcripts in each activated macrophage expression profile
(Figure 2B). Specifically, the 20 activated macrophage types
within clusters 1–7 had relatively few regulated transcripts
(93± 14), whereas the 13 activatedmacrophage types within clus-
ters 8–13 had large numbers of regulated transcripts (564± 31).
We propose that macrophage-activating conditions can be cate-
gorized as “mild” or “potent” based on the number of transcripts
the treatment alters.

When considering the mild and potent clusters of the unsuper-
vised hierarchical clustering, we noted that the gene expression
profiles did not segregate along previously described M1–M2
divisions (Table 1). Polarized macrophage types, M(IFNγ) and
M(LPS), which have each been considered “M1” macrophage
types sorted into the mild and potent clusters, respectively. Sim-
ilarly, macrophage types formerly named “M2,” M(IL-4), and
M(LPS+ IC) were categorized as mild and potent, respectively.

We considered the possibility that the wide discrepancy in the
number of transcripts regulated inMDMs responding tomild and
potent activating conditions was due to suboptimal concentra-
tions of the “mild” stimulus. To address this, MDMs were treated
with each of the 11 single treatmentmacrophage-activating condi-
tions that were categorized asmild at concentrations ranging from
4-fold higher to 16-fold lower those used in the microarray-based
experiments. In general, modest dose responses were observed.
In response to the majority of the mild stimuli tested (IFNβ,
IFNγ, IL-1β, IL-4, IL-10, and TNFα), the amplitude of change in
expression for any given transcript was routinely <4-fold between
the lowest and highest concentrations for the activating stimu-
lus tested (Figure S2 in Supplementary Material). This suggests
that the window of activity is wide for these stimuli and further
suggests that use of higher concentrations of these stimuli would
be unlikely to revise their macrophage-activating categorization
from “mild” to “potent.”

Evaluation of Correlation Coefficients Between
Activated MDM Gene Expression Profiles
Supports Conclusions Drawn from Hierarchical
Clustering Analyses
Correlation coefficients were determined for each pairwise com-
bination of activated MDM gene expression profiles in the set of
1874 regulated transcripts (Figure 3). This analysis further sub-
stantiated the categorization of gene expression profiles into mild
and potent categories as shown by unsupervised hierarchical clus-
tering (Figure 2). As an example, there was a consistently higher

gene expression profile correlation when the profiles of potently
activated macrophages (clusters 8–13) were paired with profiles
from potently activated (clusters 1–7), macrophages (Figure 3A).
Also, we note that, when using a different color scale (Figure 3B),
correlations between profiles in clusters 8–13 were noticeable
and supported the division of the gene expression profiles of
the potently activated macrophage gene expression profiles into
minor clusters.

In a recent microarray-based study (33), at least 9 clusters of
activated macrophages in a data set derived from human MDMs
activated with 28 distinct stimuli. In agreement with the level of
clustering as the previous study, we now show using unsuper-
vised hierarchical clustering and correlation coefficient analyses
that human MDMs activated with the 33 macrophage activation
conditions used in this study form at least 13 clusters. Both studies
support a spectrum model of macrophage activation. Because
of the strong “mild” and “potent” macrophage-activating con-
dition categories described here, we propose that macrophage
activation may best be described using a “split spectrum” model
(Figure 3C).

Verifying Transcripts that Serve as Markers for
the “Potent” Macrophage Activation Conditions
The first principal component (PC1) explains (42.9%) of the
variance in the data set of 1874 regulated genes while PC2 and
PC3 each contributed to ~10% of the variance and the remaining
principal components each accounted for <5% of the variance
(Figure 4A and data not shown). A scatterplot of regulated gene
expression profiles based on the first two principal components
segregated profiles in clusters 1–7 from those in clusters 8–13
along the PC1 axis (Figure 4B). The expression profiles of the
50 transcripts that contributed the most to PC1 were subjected
to unsupervised hierarchical clustering and displayed as a heat
map (Figure 4C). There was an obvious distinction between gene
expression responses between the profiles within the mild and
potent major clusters; the transcripts robustly regulated by potent
macrophage-activating conditions and relatively unaltered by
mildmacrophage-activating conditions underlie PC1 and account
for the major source of variance for the diverse spectrum of
polarized macrophage gene expression profiles in this study.

There were many transcripts in addition to the 50 noted in
Figure 4C that contributed to PC1. Using samples collected for
analysis in Figure 1, we monitored the change in expression of
four transcripts (CCL5, IRG1, MT1G, and S100A8) that con-
tributed to PC1 over 24 h (Figure 4D). CCL5 and IRG1 transcripts
showed immediate increased expression levels that were sustained
through the 24-h time point. By contrast, delayed increases were
seen for the expression levels of MT1G and S100A8 transcripts.
These four transcripts, in addition to IL1B, IL6, and IL23A that
were previously seen to have sustained high expression levels in
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FIGURE 4 | Continued
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FIGURE 4 | Continued
Transcripts universally regulated by “potent” macrophage-activating
conditions in clusters 8–13 were the largest source of variance in the
polarized MDM gene expression profiles. Principal components analysis
was performed using the data set of 1874 regulated transcripts from the 33
gene expression profiles. (A) The contribution of PC1–PC5 to the variance is
shown. (B) Scatterplot displays gene expression profiles according to PC1
and PC2 scores with color coding based on “mild” (clusters 1–7) and

“potent” (clusters 8–13) categorization. (C) The 50 transcripts that
contributed the most to PC1 were sorted according to unsupervised
hierarchical clustering results. Changes in transcript expression levels relative
to untreated MDMs are depicted as a heat map (log2 scale). (D) Using
IFC-based RT-PCR and samples from Figure 1, the changes in expression
for each indicated transcript relative to the untreated MDM controls was
determined at the 1, 3, 6, and 24 h time points for the six types of activated
MDMs (N= 1).

M(LPS) and M(Curdlan) macrophages, suggesting that numer-
ous transcripts that can be reliably used as markers of “potent”
activation conditions.

Evaluating the Use of Chemokine Transcripts as
Macrophage Activation Markers
Chemokines not only play an important functional role in
macrophage activity but also include some of the earliest pro-
posed markers of macrophage polarization (2, 5). We generated
a heat map of transcript expression changes for chemokines
from the C–C and C–X–C subfamilies from the 1874 transcripts
(Figure 5A). Since IL-4 treated macrophages have been well char-
acterized, the chemokines were sorted according to their aver-
age expression in the two activated macrophage types that form
cluster 1, M(IL-4) and M(TDB+ IL-4). Among the remaining
12 clusters, the chemokine expression profiles from macrophages
in cluster 3, comprised of M(TDB), M(TGFβ +GM-CSF), and
M(GM-CSF) macrophages, appeared to have the most similar
trend in chemokine expression. The overall chemokine expression
patterns from all other profiles shared little resemblance to those
in cluster 1.

Transcripts for two chemokines, CCL13 and CCL22, accumu-
lated inmacrophages treated with IL-4 for 24 h (Figure 5A). Inter-
estingly, the upregulation of these chemokines in response to IL-4
was delayed relative to other treatments that induced transient
upregulation: interferons for CCL13 (Figure 1) and PAMPs for
CCL22 (Figure 5B). These observations suggests that CCL13 and
CCL22 can be used as specific markers for M(IL-4) as long as
enough time has elapsed since the activation occurred.

We noted that nearly all chemokines had reduced expres-
sion in M(Dex) macrophages according to the microarray results
(Figure 5A). This observation was confirmed when monitor-
ing the kinetics of expression for five chemokine transcripts
described above (CCL5, CCL13, CCL18, CXCL9, and CXCL10)
(Figures 1 and 4D) and in four additional chemokines (CCL2,
CCL3, CCL22, and CXCL5) (Figure 5B). The general trend of
repressing chemokine production in M(Dex) macrophages may
hint at amechanism bywhich dexamethasone acts as an immuno-
suppressive molecule.

Donor-to-Donor Variability in Gene Expression
Regulation was Minimal in Most Circumstances
but was Occasionally seen in some Minor
Clusters
A caveat to the results described until this point is that they were
based on MDMs derived from two human donors: one donor
for monitoring transcript expression kinetics and one donor for
transcriptional profiling. Since donor-to-donor variability among

human MDM responses was a concern, the expression profiles
for many transcripts was determined in samples derived from the
microarray experiment and from two additional donors whose
MDMs were treated with all 33 macrophage activation conditions
(Figure 6).

The strong correlation between the microarray results and the
IFC PCR results for the first donor was discussed above (Figure
S1 in Supplementary Material). Importantly, the last two rows
for each transcript, which show the results for the two addi-
tional donors, indicated that theMDM responses were, in general,
similar to those of the first donor (Figure 6). There were a few
transcripts (CCL22, CXCL10, IL10, ITGB7, and TGM2) that had
strong opposing changes in expression from one donor to the next
(Figure 6). It is noteworthy that in these instances, the difference
in expression was restricted to a limited number of clusters. For
example, CCL22 expression regulation tended to be similar in
response to all 33 macrophages activation conditions for all 3
donors; the notable exception was seen in the 5 macrophages
activation conditions within cluster 12 for the second donor
(Figure 6). This result is unlikely due to the polyIC and LPS
treatments being suboptimal in the experiment involving MDMs
from donor 2 since other transcripts, such as CCL5, were regu-
lated similarly in all three donors for the macrophage-activating
conditions that make up cluster 12.

A recent mass cytometry-based study produced a high-
dimension data set from a panel of 38 antibodies to effectively
identify signature expression patterns of myeloid cell populations
in mice from a number of tissues (36). Since the dimensionality of
data sets produced by mass cytometry and IFC PCR are similar,
we tested whether the 13 clusters originally defined by unsu-
pervised hierarchical clustering of the 1874 regulated transcripts
(Figure 2) could be effectively identified using IFC PCR results
(Figure 7A). The majority of the 13 clusters remained clusters
for each of the three donors (Figure 7B). Even the “clusters”
composed of a single type of activated macrophage type [i.e.,
M(IFNβ)] maintained their distinctness relative to the other acti-
vated macrophage types. We conclude that gene expression plat-
forms such as IFC PCRmonitor a large enough set of macrophage
activation marker transcripts to identify an overall macrophage
population’s type/cluster while still allowing for detection of subtle
donor-to-donor differences.

Putative Activation Markers were Identified for
Specific Clusters of Polarized Human
Macrophages
Macrophage activation markers would ideally have large expres-
sion changes in a single cluster or polarized macrophage type.
We therefore queried the gene expression profiles in the current
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FIGURE 5 | Evaluation of chemokines as MDM activation markers.
(A) All C–C and C–X–C chemokines were selected from the set of 1874
regulated transcripts and sorted according to average expression level changes
in response to the two macrophage-activation treatment conditions within

cluster 1. (B) Using IFC-based RT-PCR and samples from Figure 1, the
changes in expression for each indicated transcript relative to the untreated
MDM controls was determined at the 1, 3, 6, and 24 h time points for the six
types of activated MDMs (N= 1).

study to identify activation markers specific to each of the
13 clusters formed by the unsupervised hierarchical cluster-
ing analysis. Many putative activation markers were identified
in macrophages activated with IL-4, dexamethasone, or IFNβ
(Figures 8–10).

IL-4 was used as an activation condition for gene expression
profiles in clusters 1 and 10. We identified transcripts that were
strongly upregulated only within cluster 1, within both cluster 1
and cluster 10, or only within cluster 10. Examples of transcripts
that fit these gene expression profiles were readily detected within
our data set (Figure 8A). Analysis of the kinetics of expression
for three of the transcripts identified by this screening approach
showed that while ALOX15 and CD1B each appear to be good
markers for M(IL-4), although the increase in CD1B was delayed
until the 24 h time point, FABP4 was not robustly induce in

M(IL-4) but could still be a valuable marker as this transcript
was potently down-regulated in response to several macrophage-
activating conditions (Figure 8B). This latter observation was
consistent with the microarray data (Figure 8A).

Given the relative ease of finding IL-4-associated activation
markers in our data set, we switched our attention to identifying
additional activation markers. Dexamethasone-associated activa-
tion markers were identified that were specifically upregulated
in macrophage-activating conditions from only within cluster
2, within both clusters 2 and 13, and only within cluster 13
(Figure 9A). The expression kinetics was determined for three
of the transcripts identified by the microarray screen as dexam-
ethasone responsive (Figure 9B). Of these, ALOX15B andMFGE8
appear to be a markers for M(Dex) at early and late time points,
respectively.
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FIGURE 6 | Variability in donor-to-donor MDM gene expression
responses was often limited to specific clusters. IFC-based RT-PCR was
used to determine the expression of 48 transcripts (45 putative macrophage
activation markers and 3 endogenous controls) in MDMs at 24 h post-treatment
with 33 distinct activation conditions (columns) (N= 3). Shown here are the
results for 15 of the activation marker transcripts. The RNA collected from the

first donor (first row for each indicated transcript) had been used in the
microarray studies and the RNA from two additional donors (second and third
row for each indicated transcript) was collected in independent experiments.
Blank areas within clusters represent samples did not meet the Ct cut-off of 25
or, in the case of the third M(TNFα) sample, did not load properly into the IFC
device.

Next, potential activation markers or IFNβ-treated
macrophages were identified within cluster 7 (Figure 10A).
Further analysis showed that AXL, IFIT, and ZBP1 were all
induced rapidly in M(IFNβ) and with delayed kinetics in M(LPS)
(Figure 10B). This observation may be explained by indirect
induction of these genes by LPS-induced IFNβ production.

Discussion

Characterization of TAMs has shifted from quantifying
macrophage density in and around tumors to evaluating markers

of activation (15, 37). It is important to note that macrophage
activation markers have been used to categorize macrophage
activation, typically using the M1–M2 nomenclature, yet the
regulation patterns of these markers in macrophages responding
to a wide variety of activation conditions are not well understood.
Using a combined microarray- and IFC array-based approach
in this study, previously proposed markers of macrophage
activation were better characterized and novel markers of
macrophage activation were identified.

In the earliest report using M1–M2 nomenclature, the authors
stated that “M-1 and M-2, while useful for conceptualizing
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FIGURE 7 | Comparing unsupervised hierarchical clustering of 33
activated macrophage types based on 1874 regulated transcripts
against hierarchical clustering based on a 45-transcript subset of
putative activation markers. IFC PCR was used to determine the expression
of 48 transcripts in MDMs at 24 h post-treatment with 33 distinct activation
conditions (columns) (N= 3). The RNA collected from the first donor had been
used in the microarray studies and the RNA from two additional donors was
collected in independent experiments. Data points were omitted when the ∆Ct

value was unreliable as defined by either the macrophage activation marker or
the endogenous control not meeting the Ct cut-off of 25. (A) Unsupervised
hierarchical clustering was performed using calculated ∆∆Ct values derived from
IFC PCR. Dissimilarity distances between gene expression profiles are displayed
as dendrograms for each donor. For comparison purposes, the hierarchical
cluster number is displayed below each macrophage-activating treatment type.
(B) A summary is shown for comparisons between microarray-derived clusters
from donor 1 and IFC PCR-derived clusters from donors 1, 2, and 3.

immune responses, certainly could be an oversimplification” and
that “there may be a continuum of phenotypes between M-1 and
M-2 macrophages” (3). A recently proposed framework argued
against using the M1–M2 nomenclature yet upheld the linear
model concept that suggested M(IFNγ) and M(IL-4) to represent
the polar extremes (9). However, both the results of the current
study and those reported by Xue et al. (33) support a spectrum
model of macrophage activation rather than a linear model.

Unsupervised hierarchical clustering, correlation coefficient
analysis, and principal components analysis of the regulated tran-
scripts each support the concept that macrophage polarized states
in this study can be sorted into two major clusters. We designated
these clusters “mild” and “potent” to convey the number tran-
scripts altered in response to each specific macrophage-activating
condition. It is important to note that, although we have eval-
uated more macrophage activation conditions in a macrophage
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FIGURE 8 | Evaluation of activation markers in MDMs responding to
treatments with IL-4. (A) Putative macrophage activation markers were
screened for within the microarray data that met two criteria: (i) a >4-fold
expression level change in response to activation conditions that included IL-4
(samples within cluster 1 and/or cluster 10) relative to untreated MDMs and (ii)
a >2-fold expression level change relative to the activating conditions that did

not include IL-4. (A) Changes in select putative activation markers as
determined by microarray analysis are shown as a heat map (log2 scale)
(N= 1) (B) Using IFC-based RT-PCR and samples from Figure 1, the
changes in expression for each indicated transcript relative to the untreated
MDM controls was determined at the 1, 3, 6, and 24 h time points for the six
types of activated MDMs (N= 1).

activation study that has previously been published, there could
be activation conditions that will have an intermediate number of
regulated transcripts making our split spectrummodel potentially

incorrect. Indeed, Xue et al. (33) studied macrophage responses
to 28 activation conditions and we found that the free fatty acid
conditions from their study may represent an “intermediate”
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FIGURE 9 | Evaluation of activation markers in MDMs responding to
treatments with dexamethasone. (A) Putative macrophage activation
markers were screened for within the microarray data that met similar criteria as
described in Figure 7A with a focus on transcripts that changed in response

dexamethasone treatment (samples within clusters 2 and/or 13). (B) Using
IFC-based RT-PCR and samples from Figure 1, the changes in expression for
each indicated transcript relative to the untreated MDM controls was determined
at the 1, 3, 6, and 24 h time points for the six types of activated MDMs (N= 1).

cluster (analysis not shown). While our “split spectrum” model
may not represent the entirety of the spectrum, it raises the
idea that strength of macrophage activation may be worth con-
sidering in future attempts to accurately describe macrophage
activation/polarization.

In the analysis of the principal components, special attention
was warranted for PC1 because it accounted for four times more
of the variance than any other principal component. The sin-
gle treatment macrophage-activating conditions that contributed
to PC1 were immune complexes, Curdlan, polyIC, and LPS.
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FIGURE 10 | Evaluation of activation markers in MDMs responding to
treatment with IFNβ. (A) Putative macrophage activation markers were
screened for within the microarray data that met similar criteria as described in
Figure 7A with a focus on transcripts that changed in response IFNβ treatment

(cluster 7). (B) Using IFC-based RT-PCR and samples from Figure 1, the
changes in expression for each indicated transcript relative to the untreated
MDM controls was determined at the 1, 3, 6, and 24 h time points for the six
types of activated MDMs (N= 1).

All combinational treatments that contributed to PC1 contained
one or two of these potent stimuli. Treatment of macrophages
with immune complexes and Curdlan initially signal through
Fcγ receptor/Syk/Card9 pathways while treatment with polyIC

and LPS signal through TRIF and/or MyD88 pathways. Despite
these initial differences, there is substantial overlap triggered by
the potent stimuli further downstream pathway signaling. For
example, activation of pathways such as NF-κB and MAPK may
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directly and indirectly account for the regulated expression of
many transcripts that contributed to PC1. Importantly, as noted in
Table 1, chicken ovalbumin and Curdlan are often contaminated
with substantial levels of endotoxin, so the “potent” activation
conditions may be mostly or in part a consequence of TLR-
initiated signaling (10, 11). Future studies will assess the extent
that TLR signaling may have contributed to the alterations in the
M(Curdlan) and M(IC) macrophage gene expression profiles.

There was substantial evidence, both gene expression and func-
tional, that the mild and potent polarized macrophage types of
our data set should be divided into smaller clusters. To define
these clusters, we chose to separate our gene expression profiles
based on known differences that occur in response macrophage-
activating conditions rather than using a statistically based dis-
similarity cut-off in the unsupervised hierarchical clustering.
Specifically, we noted thatM(LPS+ IFNγ) andM(LPS+ IC) were
situated close to each other according to unsupervised hierarchical
clustering analysis (Figure 2). Important functional differences in
macrophages treated with these two distinct activating conditions
such as cytokine production (IL-12 vs. IL-10) and ability to skew
CD4+ T cell responses (Th1 vs. Th2) (35, 38–40) supported
the segregation of these gene expression profiles into separate
clusters. Therefore, the dissimilarity distance between these two
gene expression profiles served as our cut-off to rationally sort the
33 gene expression profiles into 13 clusters.

It is notable that if the gene expression profiles had been seg-
regated based on dissimilarity distances into 14 clusters instead
of 13, the 5 gene expression profiles currently grouped within
“cluster 4” would have been split into 2 clusters. Furthermore, cor-
relation coefficients within cluster 4 were markedly higher when
comparing gene expression profiles from MDMs activated with
conditions that included IL-10 (Figure 3). Finally, hierarchical
clustering based on IFC PCR results (Figure 7) failed to retain
the integrity of cluster 4 in any of the three donors. These obser-
vations suggest that subdividing the 33 gene expression profiles
into more than 13 clusters may have been warranted starting with
subdividing cluster 4. Future functional studies will be useful for
supporting or modifying our current classification of 13 clusters
for these 33 macrophage-activating conditions.

In order for macrophage activation markers to be useful, it is
critical to knowwhether eachmarker is regulated by awide variety
or a limited number of stimuli. In our initial time course analysis
survey of previously proposed macrophage activation markers,
few of the 11 transcripts were found to be highly specific for
a specific type of activated macrophage. Therefore, microarrays
were performed and then surveyed to identify novel macrophage
activation markers. This approach proved to be useful for identi-
fying markers differentially expressed by activated macrophages
in all the potent conditions used in this study (Figure 4) and in
many of the minor clusters (Figures 7–9).

Our approach of screening for macrophage activation markers
by surveying microarray results of a single donor’s macrophage

responses to 33 different activation conditions and following up
with IFC arrays proved effective. Also, use of unbiased, bottom-
up analyses of the microarray results argue against previously
proposed top-down linear frameworks describing macrophage
activation states, such as the M1–M2 system (3, 9). We note that
our results are in line with the spectrum model proposed by Xue
et al. from their microarray data set (33). There are likely to be
more clusters of activated macrophages than the 13 described
here and the 9 described by Xue et al. (33). Taken together, we
conclude thatmeasuring the expression changes in a panel of well-
characterized markers would provide a useful tool to accurately
differentiate various activation states associated with functional
activity of TAMs or other macrophage populations.
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9.05.

Figure S1 | IFC PCR-calculated transcript expression changes correlated
well with results from the microarrays. Scatterplots of gene expression level
changes of the indicated transcripts as determined by microarray and by Fluidigm
IFC-based RT-PCR. RNA samples collected at 24 h post-treatment from activated
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Figure S2 | Dose-dependent changes in MDM transcript expression levels
were minimal across a broad range of concentrations for most of the mild,
single stimulus treatments. IFC-based RT-PCR was used to monitor the
expression of 48 transcripts in MDMs from a single donor treated with
four different concentrations of 11 indicated mild treatment stimuli. The
concentrations tested were 4×, 1×, 1/4×, and 1/16× relative to the concentration
described for each stimulus in Table 1. For each treatment, transcripts that had at
least a fourfold change in expression (>2 or <−2 on log2 scale) in any of the four
tested concentrations were selected for display.
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