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Abstract: A distinct G-protein coupled receptor that senses changes in extracellular Zn2+,
ZnR/GPR39, was found in cells from tissues in which Zn2+ plays a physiological role.
Most prominently, ZnR/GPR39 activity was described in prostate cancer, skin keratinocytes,
and colon epithelial cells, where zinc is essential for cell growth, wound closure, and barrier formation.
ZnR/GPR39 activity was also described in neurons that are postsynaptic to vesicular Zn2+ release.
Activation of ZnR/GPR39 triggers Gαq-dependent signaling and subsequent cellular pathways
associated with cell growth and survival. Furthermore, ZnR/GPR39 was shown to regulate the
activity of ion transport mechanisms that are essential for the physiological function of epithelial and
neuronal cells. Thus, ZnR/GPR39 provides a unique target for therapeutically modifying the actions
of zinc in a specific and selective manner.
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1. Introduction

The symptoms of zinc deficiency are particularly prominent in the digestive, immune, nervous,
endocrine, and integumentary systems [1–5]. In many cases dietary zinc supplementation can
ameliorate the symptoms and indeed zinc supplementation is widely used to treat diarrhea,
the common cold, and skin conditions. The mechanisms underlying the roles of zinc have been
revealed in the last two decades, but there is still a lot to learn about the pathways and regulation of
zinc ions (Zn2+). Initially, Zn2+ was identified as a structural element and cofactor in enzymes [6,7]
and transcription factors [8–10]. It is estimated that about 3000 proteins contain Zn2+ binding sites,
and interaction with Zn2+ regulates or modulates the activity of these proteins, thereby affecting
numerous cellular processes [11]. Cellular Zn2+ is associated with these proteins with a very
high affinity and is considered a tightly bound pool of Zn2+ [10,12]. The labile Zn2+ pool in cells
includes proteins that interact with Zn2+ via histidines, cysteines, or glutamate/aspartate residues;
most prominent are the metallothioneiens (MTs) Zn2+ binding proteins [13]. This is a dynamic
pool that releases Zn2+ upon redox signaling and oxidative or nitrosative stress, and contributes to
cellular signaling [14–18]. In addition, cytosolic Zn2+ rise, likely mediated by Zn2+ transporters
on the endoplasmic reticulum (ER), was monitored in mast cells following activation of the
immunoglobulin receptor [19,20]. Subsequent studies determined that Zn2+ transporters found on
various cellular organelles induce changes in cytosolic or organellar Zn2+ and thereby modulate cellular
signaling [21–26]. Indeed, Zn2+ transport from the ER, Golgi, or mitochondria plays an important
role in the function of mammary gland or prostate epithelial cells and other secretory cells [27–29].
Similar release of Zn2+, from the ER, during cardiac function regulates Ca2+ leakage from the ER in these
cells [30,31]. These studies established Zn2+ as a second messenger that is released following diverse
stimuli and triggers the regulation of kinases or phosphatases as well as protein expression [20,32].
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Cellular Zn2+ is buffered by interaction with proteins and formation of complexes to rapidly reduce
levels of Zn2+ to the picomolar range [17,33]. Importantly, transient changes in extracellular levels
of Zn2+ can also occur following release of Zn2+-containing vesicles. Such vesicular Zn2+ is found in
neurons, epithelial Paneth cells of the intestine or the salivary gland, as well as in pancreatic β-cells [34].
The vesicular Zn2+ can be released during normal activity of the cells; for example, Zn2+ is released into
the synapse during neuronal activity or is secreted from β-cells or mammary epithelial cells [35–40].
Release of Zn2+ from cells can also occur following cellular injury and cell death, which liberates
Zn2+ from the numerous Zn2+-binding proteins or cellular organelles [41]. Extracellular Zn2+ can
interact with specific binding sites on numerous proteins and regulate their activity. For example,
extracellular Zn2+ allosterically modulates numerous neuronal receptors, i.e., N-methyl-D-aspartate
(NMDA), γ-Aminobutyric acid (GABA), or glycine receptors, thereby modulating the excitatory
and inhibitory responses [42–46]. In epithelial cells, extracellular Zn2+ regulates the activity of
purinergic receptors and the store-operated Ca2+ (SOC), representing an important link between
Zn2+ and intracellular Ca2+ [47–49]. Application of Zn2+ was also suggested to upregulate the
phosphatidylinositol-4,5-bisphosphate 3 (PI3) kinase/AKT pathway [50] or mitogen-activated protein
kinases (MAPKs) [51], both essential to cell survival and proliferation.

2. Identification of a Zn2+-Sensing Receptor, ZnR/GPR39

In addition to the large numbers of Zn2+ homeostatic proteins described above, a distinct
target for extracellular Zn2+ is the plasma membrane G-protein coupled receptor that is sensitive
to Zn2+, ZnR/GPR39 [52–54]. G-protein coupled receptors are a large family of seven-transmembrane
proteins that mediate cellular signaling in response to a diverse array of extracellular stimuli [55].
The endogenous Zn2+, released during physiological activity, acts as a first messenger and triggers
intracellular Ca2+ signaling via the specific Gαq-coupled receptor ZnR/GPR39 [34,56]. Activity of
ZnR/GPR39 in tissues relevant to Zn2+ signaling has been identified in neurons, colon epithelial cells
(colonocytes), skin epidermal cells (keratinocytes), pancreatic cells, prostate cancer cells, salivary gland
cells, and in bones [57–61]. In neurons, stimulation of the mossy fibers triggers ZnR/GPR39-dependent
Ca2+ rises in postsynaptic CA3 (Cornu Ammonis 3) neurons [62] that are diminished in the presence of
a non-permeable Zn2+ chelator, or in the absence of the Zn2+ transporter-3 (ZnT3), which is responsible
for synaptic Zn2+ accumulation. Similar ZnR/GPR39 responses were observed in postsynaptic
neurons of the auditory brainstem nucleus, the dorsal cochlear nucleus [63]. Importantly, ZnR/GPR39
activity was shown to enhance neuronal inhibitory tone, and zinc deficiency is associated with
epilepsy and seizures, suggesting the significant physiological role of ZnR/GPR39 [53,64–68]. Luminal
application of Zn2+ to colon epithelial cells, colonocytes, was sufficient to activate the plasma membrane
ZnR/GPR39 [69], which is highly expressed in this tissue [70,71]. In colonocytes, ZnR/GPR39
activated cellular pathways that are strongly associated with cell growth, MAP, and PI3 kinases.
The prominent role of zinc supplementation in digestive system function, taste disorders, and salivary
secretion suggests that ZnR/GPR39 may play an important role in the physiological functions of
this system. A specific role for zinc in wound healing and the strong link between its deficiency and
skin lesions suggested that ZnR/GPR39 may mediate cell proliferation and wound healing, thereby
contributing to skin health. A recent study also describes ZnR/GPR39 expression in the oviduct,
where it colocalized with a higher concentration of Zn2+ but its activity has not been studied [72].
While a link to Zn2+ physiology is still not clear, ZnR/GPR39 was also associated with adipocyte
and myoblast proliferation and differentiation [73,74]. Activation of ZnR/GPR39 was triggered by
transient changes in extracellular Zn2+. While exogenous application of Zn2+ may trigger ZnR/GPR39
activation, the endogenous sources of vesicular Zn2+ may be the physiological trigger of ZnR/GPR39
activation, i.e., Zn2+ released from neuronal vesicles, salivary gland vesicles, pancreatic enzymes,
or Paneth cells in the intestinal epithelium [35–40,75]. In addition, extracellular Zn2+ levels may
transiently change following efflux mediated by Zn2+ transporters, such as ZnT6 [76], or following
injury and cell death [41].
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3. ZnR/GPR39-Dependent Signaling

Intracellular Ca2+ signaling triggered by extracellular Zn2+ was the first functional identification
of a distinct Zn2+ sensing receptor, named ZnR [77]. Use of pharmacological inhibitors of
Gαq [78,79], inositol 1,4,5-trisphosphate (IP3) receptor and the phospholipase C (PLC), indicated
that a Zn2+-dependent Ca2+ rise is mediated by activation of a Gαq-coupled receptor, such that the
Ca2+ is released from thapsigargin-sensitive stores following activation of the IP3 receptor [52,57]
(see Figure 1). Importantly, the Zn2+-dependent signaling was mediated by changes in extracellular,
and not intracellular, levels of this ion, as expected from a G-coupled receptor [52,57]. The search
for the protein that mediates Zn2+-dependent signaling focused on members of the Gαq family of
receptors, their possible isoforms, or interactions between these receptors that may affect the affinity
towards Zn2+; the main candidate in this family was the Ca2+-sensing receptor (CaSR). Most G-protein
coupled receptors are activated by peptides and not cations, but a CaSR was already identified and its
physiological significance to cellular signaling was established [80,81]. The similarity of the ligands
and the signaling pathway activated by the CaSR and the putative ZnR suggested that these may
be isoforms of the same receptor. Surprisingly, Zn2+ turned up in a screen of serum for the agonist
of GPR39, which was an orphan receptor until then [82], subsequent studies confirmed that ZnR
and GPR39 are one receptor, termed ZnR/GPR39. Despite their ligand similarity, CaSR and GPR39
are not members of the same subfamily of G-protein coupled receptors. The GPR39 is a member of
ghrelin receptor family A, while CaSR is a member of family C of the G-protein coupled receptors [83].
It is important to note that ZnR/GPR39 is not activated by extracellular Ca2+, nor is the CaSR activated
by Zn2+ [52,84]. Nevertheless, the affinity of ZnR/GPR39 to Zn2+ is modulated by Ca2+, as the K0.5

of ZnR/GPR39 in salivary gland cells was ~55 µM in the presence of Ca2+ and only ~36 µM in its
absence [58]. This may be mediated by a direct effect of CaSR on ZnR/GPR39 conformation or its
membrane expression or by a direct effect of Ca2+ on the Zn2+-binding site. Indeed, ZnR/GPR39 and
the CaSR have been shown to directly interact in an exogenous overexpression system and may thereby
modulate cation-dependent signaling in many systems where they are both expressed [84]. Importantly,
the orphan receptor GPR39 was initially suggested to mediate signaling triggered by the obesity-related
peptide obestatin [85]. These results were not reproduced by other laboratories and a study using serum
identified Zn2+ as the endogenous ligand of GPR39 [82]. Using silencing and overexpression, it has been
shown that the endogenous Zn2+-dependent signaling is mediated by GPR39, which is highly selective
for Zn2+ and is not activated by Mn2+, Cu2+, or Fe2+ [52,53]. The affinity of ZnR/GPR39 to Zn2+ was
physiologically adapted to the relevant tissues. For example, Zn2+ concentration in the digestive system
lumen may reach hundreds of µM [86–88] and the colonocytic ZnR/GPR39 has an EC50 (half maximal
effective concentration) of 80 µM [52,57]. Physiological relevance was further established when Zn2+

release from Caco-2 colonocytes was sufficient to induce ZnR/GPR39-dependent cell growth and
tight junction formation [69,89]. In addition, in a cholera toxin model of diarrhea or a dextran sodium
sulfate model of colitis, ZnR/GPR39-dependent pathways were not activated following dietary Zn2+

depletion [90,91]. Similarly, in the prostate, where there are high concentrations of Zn2+/citrate
complex and transient release of this ion is likely to occur following cell death or changes in pH,
ZnR/GPR39 is adapted to the relevant concentrations, which range from 10 to 200 µM [59]. In contrast,
in keratinocytes ZnR/GPR39 EC50 to Zn2+ is in the nanomolar range, likely because this tissue contains
much lower concentrations of labile Zn2+ [41]. Most importantly, the ZnR/GPR39 is triggered during
keratinocytic injury, as shown using a scratch assay [41]. In addition, the neuronal ZnR/GPR39 has
an affinity that is adapted to the release of Zn2+ from the synaptic mossy fiber terminals, and indeed
very mild activation of these fibers induces sufficient Zn2+ levels to trigger postsynaptic ZnR/GPR39
signaling [62,92]. The differences in the affinity of the ZnR/GPR39 may result from its interaction with
other, physiologically relevant G-protein coupled receptors in the tissues, as has been established for
many receptors of this family [93].

Since Zn2+ can interact with numerous intracellular and extracellular proteins, application of this
ion to study the effects of ZnR/GPR39 may yield confusing results and distinct agonists or antagonists
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would be of importance. Using various screening methods, agonists for ZnR/GPR39 have been
suggested but very few were successfully tested in endogenous tissues. A recent study identified
several compounds that may interact with ZnR/GPR39 and were shown to affect gastric function
in wild-type but not GPR39 knockout mice, yet these compounds only potentiated the response
of the ZnR/GPR39 to Zn2+ itself [94]. The use of molecular approaches to modulate expression of
ZnR/GPR39, together with pharmacological inhibition of its signaling pathway, is therefore still
important to study the effects of ZnR/GPR39. Indeed, the first description of the role of ZnR/GPR39
was established using a knockout mouse, which exhibited accelerated gastric emptying and increased
body weight and fat composition [70]. This phenotype strengthened the link between the receptor and
the well-known effects of Zn2+ on the gastrointestinal system. Future studies using knockout mice
required challenging the mice to trigger a phenotypic distinction from the wild-type mice, suggesting
that ZnR/GPR39 has a role in stress conditions. Finally, overexpression of ZnR/GPR39 in exogenous
systems resulted in signaling that exhibited constitutive activity or was suggested to trigger Gαs or
Gα12/13 signaling and CRE- or SRE-dependent gene expression [83], but the physiological significance
of these pathways is yet to be determined.
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Figure 1. Schematic representations of common Zn2+ sensing receptor, ZnR/GPR39, signaling in
epithelial cells. Extracellular signal–regulated kinases, ERK; Phosphatidylinositol-4,5-bisphosphate 3
(PI3) kinase/AKT, PI3K/AKT; Phospholipase C, PLC.

Activation of the Gαq is triggering PLCβ activation and subsequent Ca2+ release from
thapsigargin-sensitive ER stores. Insets show the Fura-2 fluorescent signals in cells expressing
ZnR/GPR39 following application of Zn2+. The top left inset shows the calibrated level of Ca2+

change, monitored with Fura-2, obtained in the presence or absence of extracellular Ca2+; the right
upper inset shows the % change of Ca2+ levels, relative to baseline Fura-2 fluorescence, in the presence
or absence of the Gαq inhibitor (YM-254890); and the right bottom panel shows the % change of Ca2+

levels in the presence of the PLC inhibitor (U73122 active form, or U73343 inactive form). Subsequent
to the Ca2+ signal ERK1/2 (extracellular regulated kinase) or AKT phosphorylation is monitored
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(shown in blots in the lower panels), indicating activation of the MAPK or PI3K pathways, respectively.
(The figure was composed using Servier Medical Art templates (http://smart.servier.com/)).

Subsequent to the Ca2+ rise, ZnR/GPR39-triggers activation of the ERK/MAPK and AKT/PI3K
pathways [57,84] that are essential for cell survival and proliferation [95]. ZnR/GPR39 activation
in keratinocytes, colonocytes, and prostate cancer cells was shown to upregulate ERK and AKT
phosphorylation and thereby cell growth. Activation of the Zn2+-dependent Ca2+ response was first
shown to activate ERK1/2 phosphorylation, which was attenuated by functional de-sensitization
of ZnR/GPR39, critical for protecting cells from excessive activation of the signaling [84].
In androgen-insensitive prostate cancer cell lines, ZnR/GPR39 activation by Zn2+ triggers PI3K
pathway upregulation, which is reflected by increased expression and phosphorylation of AKT [84],
associated with more malignant phenotypes of carcinomas [96–98]. Butyrate is a short-chain fatty
acid found to affect colon epithelial cell growth and carcinogenesis [99–102]. In the colonocytic cell
line, butyrate-induced apoptosis was attenuated by ZnR/GPR39-dependent activation of MAPK
and PI3K pathways that increased expression of the pro-survival protein clusterin [69]. Moreover,
enhanced cell proliferation was monitored using BrdU in colon tissue from ZnR/GPR39 expressing
mice, but not in GPR39 knockout mice, during recovery from treatment with the toxin dextran sodium
sulfate [90]. Under normal conditions BrdU staining in knockout mice lacking ZnR/GPR39 did
not show differences from the wild-type tissue, suggesting that the baseline proliferation is intact,
in agreement with the mild phenotype of these mice. The requirement for enhanced proliferation
following the injury is the process that is impaired in the absence of ZnR/GPR39. As such, a role for
ZnR/GPR39 may also underlie the healing effects of Zn2+ on gastric ulcers [103]. Topical application
of zinc-containing ointments to enhance wound healing and re-epithelialization of the skin is well
established [104–107]. Indeed ZnR/GPR39 activation in keratinocytes was shown to trigger MAPK
phosphorylation and increased rate of scratch closure, suggesting that the receptor may mediate
the effects of Zn2+ [41]. Finally, pre-adipocyte proliferation and differentiation are also induced
following AKT activation, associated with ZnR/GPR39 expression [73,108]. In neurons, ZnR/GPR39
and subsequent Ca2+ release are essential for activation of MAPK by Zn2+ [92,109]. Such activation
of the MAPK pathway by metabotropic signaling mediates changes in synaptic plasticity [110,111].
Finally, activation of ZnR/GPR39 in a salivary gland ductal cell line was shown to induce ATP
release that mediated metabotropic signaling via the purinergic system in neighboring smooth muscle
cells [58]. Thus ZnR/GPR39 has paracrine effects on neighboring cells, which may provide an
important mechanism by which Zn2+ can affect physiological processes in tissues where not all cells
express ZnR/GPR39 itself.

Zn2+, in contrast to most ligands of G-protein coupled receptors, is not rapidly degraded
and a desensitization mechanism to protect cells from excessive Ca2+ signals is important for the
regulation of ZnR/GPR39 signaling. Indeed, profound and prolonged desensitization [112] is
monitored following exposure to subtoxic concentrations of Zn2+ [57,59,92]. The desensitization
of ZnR/GPR39 by prolonged Zn2+ treatment induces internalization and possible degradation of
the receptor, and profound loss of ZnR/GPR39 signaling is sustained for several hours. As such,
Zn2+-induced desensitization was also used to specifically identify the roles of Zn2+ via ZnR/GPR39.
For example, following ZnR/GPR39 desensitization the Zn2+-dependent ERK1/2 phosphorylation was
diminished in prostate cancer cells [59]. The pathways that lead to ZnR/GPR39 desensitization are not
fully understood. Recruitment of β-arrestin following ZnR/GPR39 with an allosteric modulator in the
presence of Zn2+ did not induce desensitization but inhibition of Rho kinase blocked this process [113].

Zn2+ binding to ZnR/GPR39 occurs via two histidine residues, His17 and His19 [114],
and an aspartate residue, Asp313. The pH sensitivity of these residues matched the regulation of
ZnR/GPR39 response by extracellular pH. The ZnR/GPR39-dependent Ca2+ response and subsequent
phosphorylation of MAP or PI3 kinase is completely abolished at pH 6.5 [41,109,115]. Hence,
ZnR/GPR39 activity is regulated by physiologically relevant changes in extracellular Zn2+ or pH [115].
Thus, ZnR/GPR39 may be the mediator for many of the well-established, health-promoting functions
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of Zn2+ [116]. In contrast, local pH changes during inflammatory bowel disease may attenuate
ZnR/GPR39-dependent cell proliferation in the digestive system and may contribute to epithelial
erosion and barrier breakdown [117].

4. ZnR/GPR39 Regulation of Physiological Functions

4.1. ZnR/GPR39 Regulates Ion Transport Mechanisms

Downstream to activation of ZnR/GPR39, it has been shown that transport of Na+, K+, and Cl−

are regulated. The movement of these ions is essential for the physiological functions of epithelial cells
and neurons.

The ubiquitously expressed Na+/H+ exchanger (NHE) is upregulated following cytoplasmic
acidification, to induce recovery of intracellular pH [118]. Activation of ZnR/GPR39 upregulates
NHE activity in colonocytes, keratinocytes, and neurons [41,57,69,89,109], thereby providing
a Zn2+-dependent homeostatic mechanism. Colonocytes are constantly exposed to cellular acidification,
for example by short-chain fatty acid penetration [119], which can be recovered by NHE activity.
Indeed, activation of ZnR/GPR39 in colonocytes and native colon tissues induced activation of
NHE, downstream to the Ca2+ signaling and ERK1/2 activation, which enhanced the recovery
of the colonocytic pH [57,69]. Thus, ZnR/GPR39 plays a role in pH homeostasis that is essential
for colonocytes’ survival. Importantly, Na+-dependent H+ export can lower the extracellular pH.
In keratinocytes, ZnR/GPR39 upregulation of NHE activity was also mediated via the same signaling
pathway [41]. The extracellular acidification triggered by ZnR/GPR39-dependent activation of NHE
may be required for migration of cells during wound healing or for the formation of an effective
permeability barrier [120,121]. Intracellular acid loading in neurons affects neuronal excitability
and results from metabolic H+ generation during repetitive firing [122]. Neuronal ZnR/GPR39
activation following release of Zn2+, concomitant with the neurotransmitter, resulted in increased NHE
activity, thus relieving the metabolic acidification [109]. However, acidification of neuronal surfaces,
by upregulating NHE activity, may contribute to tissue acidosis during ischemic neuronal injury [123].
Interestingly, ZnR/GPR39 itself is inactive at acidic pH [109], suggesting a homeostatic mechanism
that can attenuate ZnR/GPR39 activation of NHE and excessive tissue acidification.

The K+/Cl− cotransporters (KCC) family is responsible for mediating Cl− efflux and thereby
maintaining cell volume, as well as transepithelial ion transport and neuronal excitability [124].
These transporters are highly regulated via their phosphorylation and changes in surface
expression [125,126]. In neurons, KCC2 is crucial for mediating Cl− efflux and thereby rendering the
GABAA and glycine receptors inhibitory [127–130]. Activation of ZnR/GPR39 results in enhanced
K+-dependent Cl− transport, which is mediated by KCC2 [62,131]. This Zn2+-dependent upregulation
is abolished in the absence of ZnR/GPR39, or its downstream Ca2+ and MAPK activation. Moreover,
Gαq-dependent signaling triggered by ZnR/GPR39 enhances KCC2 surface expression and thereby
upregulates KCC2-dependent Cl− transport [62]. Similar upregulation of K+-dependent Cl− transport
was also monitored following ZnR/GPR39 activation in colonocytes [91]. Loss of Cl− and Na+ into
the colon lumen, via CFTR (cystic fibrosis transmembrane conductance regulator) upregulation for
example, produces the driving force for water loss, thereby inducing diarrhea [132]. Yet, Cl− absorption
pathways are not fully identified. Activation of ZnR/GPR39 in native colon epithelial tissue
or in colonocytic cell lines resulted in activation of KCC1, which was mitogen activated kinase
(MAPK)-dependent [91]. Moreover, KCC1 expression was shown to be basolateral, thereby providing
a pathway for modulation of Cl− absorption in the colon.

4.2. ZnR/GPR39 Regulates Tight Junction Formation

Formation of epithelial barriers strongly depends on expression of junctional proteins, such as
E-cadherin of the adherens junctions and zonula occludens-1 (ZO-1) or occludin of the tight junctions.
This physical barrier is essential for the function of all epithelia and is particularly important in regions
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exposed to pathogens, such as the digestive tract. A role for Zn2+ in modulating colon epithelial tight
junctions was previously described, but the prolonged application in that study may have resulted
in changes of intracellular Zn2+ and not only activation of ZnR/GPR39 [133,134]. Using siRNA
silencing of ZnR/GPR39 in Caco-2 colonocytic cell line revealed that ZnR/GPR39 was essential
for Zn2+-dependent upregulation of tight junction formation, thus establishing that ZnR/GPR39
has a specific role in enhancing tight junctional complexes and epithelial barrier function [89].
It was further established that these colonocytic cells release Zn2+ in a manner that activates the
ZnR/GPR39-dependent formation of the barrier, since a chelator of extracellular Zn2+ attenuated
tight junction formation. Colon from ZnR/GPR39 deficient mice exhibited diminished expression
level for the tight junction protein occludin, further revealing an important role of ZnR/GPR39 in
barrier formation in vivo [90]. This loss of tight junctions may underlie some of the immune system
effects associated with Zn2+ deficiency: as the permeation of pathogens is easier, inflammation may
be prevalent during Zn2+ deficiency. A recent study showed that Zn2+ enhanced the expression of
protein kinase C ζ (PKCζ), which was associated with ZnR/GPR39 levels, and linked to tight junction
formation during Salmonella enterica serovar Typhimurium infection [135].

5. A Role for ZnR/GPR39 in Disease

5.1. ZnR/GPR39 in Wound Healing

Perhaps the oldest known use of zinc as a treatment is in dermal ointments for enhancing wound
healing [104–107]. Zinc has been associated with proliferating tissues and is indeed accumulated in the
skin [136]. Zinc transporters, i.e., ZIP4 (Zrt-Irt-like protein) or ZIP7, knockdown or mutations in these
proteins also reveal an important role for these Zn2+ homeostatic proteins in skin formation during
development [137]. Activation of ZnR/GPR39 in primary keratinocytes and in HaCaT cells suggested
that Zn2+ may trigger this receptor signaling and may be the missing link between topical application
of zinc and wound healing [41,52]. Indeed, the pro-proliferation/migration pathways were activated
by ZnR/GPR39: ERK1/2 phosphorylation was increased via ZnR/GPR39-dependent activation of
PKC and PI3K. In a scratch assay model, silencing of ZnR/GPR39 expression or activity inhibited
the Zn2+-dependent increased rate of scratch closure [41]. One of the suggested benefits of zinc
application was associated with anti-inflammatory effects. The ZnR/GPR39-dependent activation of
NHE in keratinocytes induces acidification of the extracellular region. Such acidification is essential for
reducing barrier permeability in the skin [120]. Hence NHE activation and the subsequent acidification
by the ZnR/GPR39 may also exert an anti-inflammatory effect. Finally, if paracrine release of ATP
following ZnR/GPR39 activation [58] also occurs in keratinocytes, it suggests another mechanism to
increase the proliferation of neighboring fibroblasts that do not express ZnR/GPR39. Activation of
cellular signaling by ZnR/GPR39 may affect numerous pathways and Zn2+ binding proteins. As such,
a role for MG53, a Zn2+ binding protein, has been associated with myoblasts’ cell membrane recovery
following permeation of Zn2+ into the cells [138]. The ZnR/GPR39 has also been described in myogenic
processes, but the role of Zn2+ in this aspect has not been addressed [74], hence future studies on the
role of ZnR/GPR39 in muscle cell recovery would be of interest.

5.2. Diarrhea and Inflammatory Bowel Diseases

Prominent roles of Zn2+ include attenuation of diarrhea and amelioration of symptoms of
inflammatory ulcerative disease, such as Crohn’s disease and colitis [139–143]. Initial breakdown
of tight junctions is considered a trigger to recurrence of inflammatory bowel diseases.
The ZnR/GPR39-dependent enhancement of junctional complex proteins ZO-1 and occludin [69,89]
suggested that ZnR/GPR39 may be involved in ameliorating symptoms of inflammatory bowel
diseases. Indeed, ZnR/GPR39 deficient mice showed increased susceptibility to dextran sodium
sulfate (DSS) model of colitis [90]. Even more profound was the effect of ZnR/GPR39 during a recovery
phase. ZnR/GPR39 expression was essential for rapid recovery of the epithelial layer, via increased
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proliferation and crypt formation, and formation of the physical barrier, via increased expression of
occludin. The benefit of Zn2+ treatment in inflammatory bowel disease is controversial. The results
described here suggest that during bouts of the inflammatory state the epithelial erosion and loss of
ZnR/GPR39 on the epithelial barrier may render Zn2+ inefficient, yet if provided during remission
Zn2+, via ZnR/GPR39, may extend this period. In fact, ZnR/GPR39 expression in the epithelial cells
may serve as a therapeutic target that can be specifically activated to extend the remission periods.

Maintenance of osmotic gradients, for proper water movement, is mediated by ion transporters
found on the epithelial cells [144]. In diarrhea, impaired transporters function results in excessive loss
of Na+ and Cl− into the lumen and subsequent water loss. The Zn2+ and ZnR/GPR39 upregulation of
Na+/H+ exchanger activity [57,69] can serve to enhance uptake of Na+ from the lumen. Indeed many
previous studies showed that the colonocytic apical NHE3 upregulation enhances Na+ absorption and
thereby reduces water loss and diarrhea [144–146]. In addition, activation of a basolateral KCC1 by
ZnR/GPR39 increases absorption of Cl−, which is also essential to reducing fluid loss. Cholera toxin
infection, a common cause of diarrhea, induced significantly worse diarrhea in GPR39 knockout mice,
lacking ZnR/GPR39 signaling, compared to WT mice [91]. Thus, ZnR/GPR39 activation can reduce
fluid loss during the disease, but reduced luminal Zn2+, which may be a dietary or disease-mediated
condition, may diminish the protective effect of this pathway. While Zn2+ is suggested by the World
Health Organization (WHO) as an important supplement to treat diarrhea [142,147], ZnR/GPR39 is
a novel and specific target that may be more effectively targeted.

5.3. Epilepsy

Several studies linked the loss of synaptic Zn2+ or Zn2+ deficiency with increased incidence
of seizures [148–151]. Despite a well-known role for Zn2+ in modulating numerous excitatory
and inhibitory post synaptic targets, how synaptically released Zn2+ can affect epileptogenesis
was not clear. Nevertheless, the major phenotype of the ZnT3 knockout mice, lacking synaptic
Zn2+, is enhanced sensitivity to kainate-induced or febrile hyperthermia induced seizures [152,153].
This indicated that synaptic Zn2+ itself does have a role in epilepsy. The results showing regulation of
Cl− transport by ZnR/GPR39 activation of KCC2, taken together with the prominent role of loss of
KCC2 function in increasing seizure susceptibility [128,154,155], suggested that ZnR/GPR39 may play
a role in epilepsy via this pathway. Indeed, GPR39 knockout animals, lacking ZnR/GPR39 signaling,
exhibit enhanced susceptibility to kainate-induced seizures, with significantly higher behavioral seizure
severity scores and more seizures over longer periods of time compared to wild-type controls [156].
Kainate-induced upregulation of KCC2 activity is dependent on Zn2+, which is released by the
increased firing under these enhanced excitability conditions. Moreover, ZnR/GPR39 signaling via
the Gαq and subsequent MAPK pathway are required for increased KCC2 activity and thereby
inhibitory tone. Thus the homeostatic role of ZnR/GPR39, activated by Zn2+ co-released with
glutamate, is essential during excessive firing to reduce excitatory activity via enhancing GABAergic
responses. In contrast, loss of this signaling in the absence of synaptic Zn2+ or ZnR/GPR39 may result
in epileptogenesis [53]. A similar effect on increasing inhibitory neuronal signaling is monitored in
the dorsal cochlear neurons, where ZnR/GRP39 activation enhances endocannabinoid release and
reduces excitatory glutamate release [63]. In addition, enhanced excitability and thereby seizure
activity has been associated with neuronal acidification and loss of Na+/H+ exchanger (NHE)
activity [157,158]. Thus ZnR/GPR39-dependent upregulation of NHE activity, which was monitored
in primary neurons, may also link the receptor to reduced seizures [109]. In Alzheimer’s disease,
Aβ oligomers interact with Zn2+ [159,160], thus lowering levels of labile Zn2+. Indeed, in the presence
of Aβ, the ZnR/GPR39-dependent Ca2+ responses in primary neurons were significantly reduced and
resulted in much lower MAPK activation [161]. This decrease in ZnR/GPR39-dependent signaling,
reducing the homeostatic activation of KCC2, may serve as a link to the increased incidence of seizure
found in Alzheimer’s disease patients compared to the general population.
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5.4. Depression

Zinc deficiency is associated with neurological and psychiatric disorders [162]; however, it is not
yet clear if the decrease in Zn2+ results from aberrant intake, especially in depression, when appetite
is lost and general uptake of nutrients is low, or is a cause of the disorder. Several studies reported
a role for ZnR/GPR39 in depression, based on apparent changes in the expression level of this
receptor following Zn2+-deficiency that were correlated with behavioral changes, also in suicide
victims [163,164]. Changes in ZnR/GPR39 expression were also shown following treatment with
monoaminergic inhibitors, such as used to treat depression, thus suggesting a link between the
receptor and this disease. Surprisingly, despite the extensive use of antibodies against ZnR/GPR39 in
this study, the antibodies were not verified in GPR39 knockout mice [165]. A role for ZnR/GPR39 in
the regulation of the CREB/BDNF/TrkB (cyclic AMP response element binding protein/brain-derived
neurotrophic factor/tyrosine receptor kinase B) pathway, and thereby in depression, has also been
postulated, though it is not clear at present how Gαq signaling activates this pathway or whether these
effects are lost in ZnR/GPR39 deficient mice [166,167].

5.5. Insulin Secretion

Pancreatic β-cells contain vesicular Zn2+ that is released together with insulin [168].
Several studies have highlighted a role for Zn2+ in the regulation of β-cell function and glucagon
release [169–171]. The Zn2+ transporter ZnT8 is responsible for transporting Zn2+ into the insulin
vesicles, and a mutation in this transporter of an Arg replacing Trp325 is associated with increased risk
of developing type 2 diabetes [172]. Thus a role for ZnR/GPR39 in this tissue may have important
physiological implications in the regulation of the Zn2+ releasing β-cells or neighboring cells within
the islets of Langerhans. Knockout of ZnR/GPR39 does not immediately produce a phenotype under
baseline conditions, and the knockout mice show normal insulin secretion. However, when fed
a sucrose-rich diet, older mice show increased glucose levels and decreased insulin compared to
the wild type [173]. Similarly, higher glucose levels were monitored in GPR39 knockout mice fed
a high-fat diet [174]. In agreement, overexpression of ZnR/GPR39 in β-cells resulted in protection
from streptozotocin-induced diabetes [175]. A recent study showed ZnR/GPR39 expression and
Zn2+-dependent Ca2+ release in association with Zn2+-dependent insulin secretion [176]. Yet how
ZnR/GPR39 activity regulates insulin secretion and whether this is an autocrine effect of endogenous
Zn2+ released from the β-cells is still poorly understood.

5.6. Defects in Bone Composition

Zinc is accumulated in bone and plays a role in the dynamic maintenance of the structure of bones.
Supplementation with dietary zinc enhances the strength of bones, but an underlying mechanism is
not available. While several zinc transporters of the ZIP family have been associated with skeletal
function [137], a role for ZnR/GPR39 was not described. Using GPR39 knockout mice, a recent
study indicates that this receptor is important for osteoblast differentiation [61]. Hence, mice lacking
ZnR/GPR39 showed impaired bone composition with decreased collagen content, likely involving
ADAMTS metalloproteinase, which regulates collagen processing [61]. Most importantly, ZnR/GPR39
deficient osteoblasts showed lower ZIP13 expression, linking ZnR/GPR39 and Zn2+ transporters for
the first time. Future studies aiming to determine how ZnR/GPR39 modulates Zn2+ transporters’
activity or expression can provide a more complete picture of the network of zinc homeostasis and its
physiological implications.

5.7. ZnR/GPR39 in Cancer

Increased cell proliferation and migration, as well as the activation of MAPK and AKT, suggest
a possible role for ZnR/GPR39 in cancer. Activation of ZnR/GPR39 signaling was monitored in
androgen-independent, but not androgen-dependent, prostate cancer cells [59]. Extracellular Zn2+
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via activation of ZnR/GPR39 in the prostate cancer cell line PC-3 enhances expression of S100A4 [84],
a protein that is thought to enhance metastatic prostate cell proliferation and angiogenesis [177].
Other studies that associated ZnR/GPR39 expression in epithelial cells with cancer did not employ
changes in extracellular or dietary Zn2+ to specifically study whether signaling pathway activation
or Zn2+-dependent processes are affected in the cancer cells. These studies nevertheless indicate
the importance of this receptor as a therapeutic target for cancer treatment. As such, GPR39 was
overexpressed in primary human esophageal squamous cell carcinomas and its silencing reduced the
tumorigenicity of these cells [178]. A recent study suggested that GPR39 expression is modulated
in gastric adenocarcinoma [179], yet this study applied a previously incorrectly suggested ligand
of GPR39 and not Zn2+ [180]. Interestingly, a link between the ZnR/GPR39 and mRNA levels of
the Zn2+ transporter ZIP13 was recently shown in bone [61], but whether ZnR/GPR39 regulates
other members of the ZIP family of Zn2+ transporters is unknown. Such a link between ZnR/GPR39
and ZIP transporters may further link the receptor to tumorigenesis. For example, ZIP6 and ZIP7
overexpression in breast cancer has been previously shown [181,182], and ZIP4 has recently been
associated with ovarian stem cell growth and carcinoma [183]. Future studies aiming to specifically
test the role of ZnR/GPR39 in cancer tissue and the link to ZIP transporters expression are of major
interest and can provide a novel target for therapeutic tools.

6. Conclusions

ZnR/GPR39 is an important regulator of Zn2+-dependent signaling, functional in numerous
epithelial cells, bone cells, and neurons—all tissues associated with Zn2+ homeostasis. Transient
changes in extracellular Zn2+ occur during physiological activity and are sufficient to activate
ZnR/GPR39. While dietary or serum zinc itself has been suggested to affect the physiological function
or pathological conditions in these tissues, these changes in zinc concentration do not directly reflect
local or cellular changes in the concentrations of the ionic Zn2+. In addition, Zn2+ interacts with
a multitude of intracellular or extracellular proteins and modulates their activity, as described in the
introduction; therefore, changes in Zn2+ concentration may affect many proteins and cellular functions
and not just ZnR/GPR39 activity. Thus, this micronutrient is a poor therapeutic compound with
inconsistent effects. However, elucidation of ZnR/GPR39 as a regulator of Zn2+-dependent cellular
signaling can offer a novel handle to effective therapeutic approaches that will depend on ZnR/GPR39
agonists. Of note, ZnR/GPR39 is a member of the G-protein coupled receptor family, which is currently
considered a major candidate for targeted therapies [184,185]. Finally, what regulates the activity of
Zn2+ transporters is only partially understood; for example, it was previously shown that intracellular
Zn2+ activation of metal-responsive elements regulates ZnT expression or that phosphorylation of
ZIP regulates their expression [24,25]. In this context, a possible link between ZnR/GPR39 and the
transporters may be a key to understanding Zn2+ homeostasis and is an important aim for future
studies. Thus ZnR/GPR39 may serve as a specific and efficacious handle to modulate Zn2+ homeostatic
proteins and signaling, thereby ameliorating physiological processes to enhance recovery.
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