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Abstract – Vascular cognitive impairment/vascular dementia have been the subject of a large number of stud-

ies, due to their high prevalence and broad preventive and compensatory therapeutic potential. The knowledge

of the cerebral anatomy correlated to the vascular territories of irrigation enables understanding of clinical

manifestations, as well as classification into the several types of syndromic presentations. The central choliner-

gic system exercises important neuromodulatory functions on cerebral circuits related to cognitive and behav-

ioral integration, as well as on vasomotor control related to cerebral blood flow adjustments. The acquisition of

data on the anatomy of the cholinergic pathways, including the localization of the nuclei of the basal prosen-

cephalon and the routes of their projections, established an important milestone. The knowledge of the vascu-

lar distribution and of the trajectories of the cholinergic pathways allows identification of the strategic points

where a vascular lesion can cause interruption. The ensuing denervation leads to cholinergic hypofunction in

the involved territories. This information proves important to better evaluate the sites of vascular lesions,

emphasizing their strategic localizations in relation to the cholinergic pathways, and offering more robust

foundations for treatment aiming at enhancing cholinergic activity.
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Demência vascular e as vias colinérgicas

Resumo – Comprometimento cognitivo vascular/demência vascular vem sendo objeto de numerosos estu-

dos, levando em conta sua alta prevalência e as amplas possibilidades terapêuticas preventivas e compen-

satórias. O conhecimento da anatomia cerebral correlacionado ao dos territórios vasculares de irrigação per-

mite a compreensão das manifestações clínicas, assim como a classificação dos diversos tipos de apresentações

sindrômicas. O sistema colinérgico central exerce funções neuromoduladoras importantes dos circuitos rela-

cionados à integração cognitiva e comportamental, além do controle vasomotor relacionado aos ajustes do

fluxo sanguíneo cerebral. A obtenção de dados sobre a anatomia das vias colinérgicas, incluindo a localização

dos núcleos do prosencéfalo basal e os trajetos das suas projeções, estabeleceu um marco importante. O con-

hecimento da distribuição vascular e do percurso das vias colinérgicas permite identificar pontos estratégicos

onde a lesão vascular pode causar sua interrupção. A desnervação que se segue causa hipofunção colinérgica

dos territórios acometidos. Essas informações são importantes para melhor avaliar os locais das lesões vascu-

lares, enfatizando suas localizações estratégicas em relação às vias colinérgicas, oferecendo, desse modo, bases

mais sólidas para o tratamento que visa aumentar a atividade colinérgica.

Palavras-chave: anatomia, demência vascular, comprometimento cognitivo, fibras colinérgicas.

The study of cholinergic hypofunction in Alzheimer’s
disease (AD) is already more then two decades old, and
has recently been extended to other dementing illnesses,
such as the Lewy body diseases (dementia with Lewy
bodies, dementia and Parkinson’s disease) and vascular
dementia (VaD). This knowledge underpins the widely
known cholinomimetic treatment strategy, with the effi-

cacious use of cholinesterase inhibitors1-4. Degeneration
of the cholinergic nuclei of the basal prosencephalon
(BP) and the derangement of their projections making
up the cholinergic pathways can be seen in several pri-
mary dementing diseases.

Lesions of the BP and/or of the cholinergic pathways
can be found at varied points of their course in VaD. The
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same can be seen in mixed presentations, the most com-
monly described being AD+CVD and MD (AD+VaD)5.

The knowledge of the cholinergic system, both in
normal and pathological states, is important to fully un-
derstand how the cholinergic treatment strategy works in
VaD and what benefits it offers.

The cholinergic nuclei of
the basal prosencephalon

The central cholinergic system is made up of several
clusters of neurons distributed across different levels of
the brain. The BP lies in the basal part and comprises
four clusters or groups of cholinergic neurons, the large
nucleus basalis of Meynert (nbM) being among them.
The others include the medial nucleus of the septum
(nmS) and the nuclei of the diagonal band of Broca,
along with the vertical (ndbBvl) and the horizontal
(ndbBhl) limbs6-7.

The groups of cholinergic neurons in these nuclei are
named according to the Ch nomenclature, and are found
in nmS (Ch1), in ndbBvl (Ch2), in ndbBhl (Ch3), and in
nbM (Ch4)6,8.

The nmS plus ndbBvl comprise about 20 000 neu-
rons, with 3 200 cholinergic neurons, in each hemisphe-
re9-10. The nbM has about 200 000 neurons in each hemi-
sphere, subdivided into sectors related with particular
cortical areas, in approximately a mediolateral and an-
teroposterior topography11-13,6,14-15.

All cholinergic neurons express acetylcholinesterase
(AChE) and choline acetyltransferase (ChAT). The Ch1-
Ch4 clusters differ by the presence of neurons (about
90%) containing the nerve growth factor receptor
(NGFr), tirosine kinase (TRKa) and the neurotrophine
receptor (p75NTR), not found in cholinergic neurons at
other levels6.

The cholinergic system and its functions
The central cholinergic system exercises important

functions including neuromodulation of brain circuits
related to cognitive and behavioral integration16-20 and to
vasomotor control.

Vasomotor control is related to modulation of brain
blood flow, exerted through two mechanisms:

(i) circumscribed enhancement of perfusion related to
increased neural activity in a given area caused by
cholinergic stimulation, corresponding to ‘functional
hyperemia’ resulting from neurovascular metabolic
coupling21 and

(ii) vasodilator action on arteries of varied caliber, mainly
on terminal ramifications (arterioles, capillaries) ac-

complished through muscarinic receptors localized
close to astrocytic terminations (gliovascular com-
plexes) with liberation of nitric oxide to the smooth
muscular fibers and pericytes22-25.

Vasomotor control has been studied in animal models,
where vasodilatation was shown by cholinergic stim-
ulation22,26-29. An increase of perfusion was also seen in
normal subjects and patients with AD or VaD with PET
and SPECT imaging related to cholinergic intervention
(use of cholinesterase inhibitors)5,30-34.

Thus, this double activity, tissular and vascular, makes
the cholinergic system important in normal functional
condition. On the other hand, its hypofunction becomes
an important target for interventions aiming to enhance
its modulatory activity.

The anatomy of the cholinergic pathways
The projections from the BP cholinergic groups are

directed toward several subcortical and cortical brain
regions6,8-10,12,35-39.

The projections to the hippocampal formation and
entorhinal cortex originate mainly from Ch1-Ch2 and
have a route that accompanies the fornix. The terminals
reach mainly the CA2-CA4 sectors of the hippocampus
and the dentate gyrus, with a lesser density to sector CA1
and subiculum.

The Ch3 group is directed to olfactory areas, reached
through the medial prosencephalic fascicle.

The projections to other regions of the cortex origi-
nate in the Ch4 group and constitute two bundles, the
medial and the lateral. Fibers detach from these bundles
and supply subcortical regions and cerebral cortex.

The medial cholinergic pathway originates from the
nbM, passes through the white matter of the straight and
medial orbital gyri, around the rostrum of the corpus cal-
losum and accompanies the cingulum bundle until the
splenium, where it continues to the retrosplenial white
matter. This pathway supplies ramifications to the medial
orbitofrontal, subcallosal, cingulate, pericingulate, and
retrosplenial cortical regions.

The lateral cholinergic pathway arises from the nbM
and forms a compact bundle that subdivides in the capsu-
lar and perisylvian divisions that run through the external
capsule and the claustrum, ramify widely in the centrum
semiovale and subcortical white matter, and distribute
fibers to the inferior frontal, frontoparietal operculum,
temporal, insular, and para-hippocampal neocortex. The
amygdala also receives fibers from the lateral pathway.

The cortical layers of all cytoarchitectonic regions
present a dense cholinergic innervation. The density of
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the cholinergic axons is higher in the more superficial
cortical layers (I, II, and superior parts of layer III). There
is a significant difference in the global density of the cho-
linergic axons among the several cytoarchitetonic regions.
The highest fiber density is observed in the central limbic
structures, such as the hippocampal formation and amyg-
dala, followed by the cortical paralimbic areas, entorhinal
and cingulate cortex; the cholinergic innervation of the

unimodal and heteromodal associative areas is of inter-
mediary density, while that of the primary sensory areas is
the lowest6,12,18 (Table 1, Figures 1 and 2). The cortical
cholinergic axons are mainly amyelinic and establish
symmetric and asymmetric synapses with a large number
of cortical and subcortical neurons. It is likely that part of
the released ACh and the action it exerts is extra-synaptic,
reaching neurons and neuroglia relatively distant from

Table 1. Brain cholinergic system – cholinergic groups, main projections and most important destinations of the basal prosen-

cephalon.

Basal prosencephalon – nuclei Bundles/fascicles Destination

Medial nucleus of septum (Ch1) nmS fornix hippocampal formation

nucleus of diagnonal band of Broca – ndbBvl entorhinal cortex

vertical limb (Ch2) retrosplenial cortex

medial prosencephalic hypothalamus

Nucleus of the diagonal band of Broca – ndbBhl medial prosencephalic olfactory bulb

horizontal limb (Ch3)

basal nucleus of Meynert (Ch4) nbM ansa peduncularis amygdala

(ventral amigdalofugal)

medial pathway alo- and mesocortex

medial orbitofrontal, subcallosal, cingulate,

pericingulate, retrosplenial

lateral pathway neocortex

inferior frontal, dorsal frontoparietal, frontoparietal

opercular, temporal (superior, middle and inferior),

insular, inferotemporal, para-hippocampal

(A) Sagital scheme of the brain to localize the nuclei of BP and their main projections. (B) Coronal schema with localization of medial and lateral
cholinergic pathways. (C) Axial schemata, two levels (c1, basal ganglia level; c2, supracallosal level), with localization of medial and lateral cholinergic
pathways. 1=nmS (Ch1)+ndbBvl (Ch2); 2=nbM (Ch4). a) lateral pathway projection to the amygdala; b) lateral pathway, initial part of the main pro-
jection; c) medial pathway and its course in the cingulum; d) septo-hippocampal projection; e) lateral path (black-continuous) in its external capsule-
claustrum course; f) medial path (black-interrupted) in its cingulum course.

Figure 1. Basal prosencephalon and projections.
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ACA, anterior cerebral artery; MCA, middle cerebral artery; PCA, pos-
terior cerebral artery; ACoA, anterior communicating artery; AChA,
anterior choroidal artery.

Figure 2. Coronal schema of the brain – the cholinergic path-

ways (left side) (medial path=black-interrupted; lateral path=

black-continuous) and the limits of the main vascular territo-

ries (right side).

the site of neurotransmitter release by diffusion (volume
transmission)40-43.

The cholinergic pathways and the 
cerebral vascular territories

The cholinergic projections of the septo-hippocampal
path present a fairly compact constitution, running
through the fornix to reach the hippocampal formation.
The Meynert-cortical projections present a relatively com-
pact origin, but once outside the basal ganglia territory, at
the level of the centrum semiovale, the lateral pathway
presents a fanlike distribution to reach their destination
areas, while the medial pathway runs mainly through the
cingulum and distributes ramifications along its route38.

The main cerebral arteries – anterior cerebral artery
(ACA), middle cerebral artery (MCA), anterior commu-
nicating artery (ACoA), posterior communicating artery
(PCoA), anterior choroidal artery (AChA) – provide irri-
gation of the territories where the cholinergic projections
travel5,46-51 (Table 2, Figure 2).

The cholinergic pathways and 
cerebrovascular disease

Ischemic or hemorrhagic processes represent the sev-
eral cerebrovascular pathologies that can cause tissue
damage and interruption of the cholinergic pathways.
The ischemic processes cause territorial infarcts, water-
shed infarcts, lacunes, white matter demyelination, affect-
ing areas of varied size52-56. It is possible to localize the
points where lesions can interrupt these pathways by con-
sidering the routes of the cholinergic pathways38 and the
vascular territories (Table 2, Figure 2, Figure 3).

The lesions of the BP, severely affecting the septal area
and/or the nbM, can occur due to ischemia in the territo-
ries of the ACA, ACoA and MCA. The projection of the
septal area to the hippocampal formation, via the fornix,

can be interrupted by lesions in the territory of the
ACoA. The interruption of the wide Meynert-cortical
projections may stem from a variety of lesion sites. The
main medial pathway can be interrupted at any point of
its route in the cingulum due to pathology in the ACA
and ACoA territories, while the ramifications of this
pathway, with a more radiating distribution, can be
injured in territories of the same arteries at a variety of
points. The main lateral pathway can be affected in its
sublenticular and paralenticular route (external capsule
and claustrum) due to lesions in the territories of the
ACA, ACoA and MCA, and its wide and fanlike course

Table 2. Territories of the cerebral arteries related to cholinergic structures or their routes.

Artery Territory

ACA BP (Ch3 and Ch4-pt), septal region, frontal (basal), subcallosal area, cingulum, centrum semiovale (pt)

MCA BP (Ch4-pt), claustrum, external and extreme capsules, centrum semiovale (pt) 

PCA centrum semiovale (pt)

AChA BP (pt)

ACoA BP (Ch1 e Ch2), septum, subcallosal area, cingulum (anterior pt), fornix (columns)

PCoA ––––

ACA, anterior cerebral artery; MCA, middle cerebral artery; PCA, posterior cerebral artery; AChA, anterior choroidal artery; ACoA,
anterior communicating artery; PCoA, posterior communicating artery; BP, basal prosencephalon; pt, part.
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Figure 3. RM-FLAIR. Axial sections of the

brain of a case with extensive subcortical de-

myelination. The cholinergic pathways are

depicted to the left side (medial path= white

-interrupted, lateral path=white continu-

ous) on two levels (similar to Figure 1C).

can be affected in the white matter of the centrum semio-
vale, irrigated mainly by the ACA, MCA and PCA (Figure
2C, Figure 3).

Two neuropathologic studies indicate a relationship
between CVD and the interruption of these pathways,
besides the anatomic relations between the cholinergic
pathways and the vascular territories.

One of these studies was conducted using brain tissue
from a patient with CADASIL (cerebral autosomic domi-
nant arteriopathy with subcortical infarcts and leucoen-
cepalopathy), a disease that can be considered a model for
pure CVD (VaD). The material was stained with a histo-
chemical technique to show AChE revealing cholinergic
denervation in several cortical areas, except for the hip-
pocampal formation and entorhinal cortex. Even in the
more affected areas a number of AChE positive fibers were
seen. The cholinergic neurons of the nbM were undam-
aged, as verified by techniques for NGFr and AChE57.

The other study was performed using brain tissue of
patients with VaD of the Binswanger subtype. The mate-
rial was stained with histochemical and imunnohisto-
chemical techniques to show AChE and ChAT. This mat-
erial revealed severe reduction of AChE and ChAT posi-
tive fibers in the external capsule and claustrum, in com-
parison to controls. The nbM had large neurons pre-
served, but showed some chromatolytic changes and
numerical reduction.

A neuroimage-neuropathological correlation was
possible for some of the patients. MRI showed hyperin-
tensities in the frontal periventricular white matter, ex-
tending to the subinsular white matter (where the exter-
nal capsule is found). The brains of the same patients at
autopsy showed loss of myelin in the corresponding
regions58. Therefore, underpinned by these two paradig-

matic studies, we can state that CVD may cause interrup-
tion of segments of the cholinergic pathways, leading to
denervation and consequent cholinergic hypofunction of
the affected territories.

Cholinergic hypofunction, variable according to the
lesioned segment of the cholinergic pathways, causes
integrative dysfunction of the target brain structures and
disturbances of vasomotor control with consequent
reduction in brain blood flow of the affected areas5,59.
These functional data gave rise to the proposal of a
‘cholinergic neurovascular hypothesis22.

Recently, two studies were dedicated to the relation-
ship between the cholinergic pathways and the white
matter hyperintensities, correlated to the clinical mani-
festations of VCI/VaD, with the aim of staging scales.
These proposals relate the white matter lesions with their
localization in relation to the cholinergic pathways. The
staging was graduated according to the visually evaluated
extension, and number of lesions localized, along the
anatomical known routes of the cholinergic pathways.
One of these rating scales classified the lesions in the
cholinergic pathways as minimal (absence of lesions in
nbM and absence of hyperintensities in medial pathway
or external capsule), moderate (lesions in external cap-
sule plus in lateral pathway) and severe (nbM infarction
or external capsule plus lateral pathway hyperintensities
or large hyperintensities in lateral pathway or hyperinten-
sities in both lateral and medial pathways)60. The other,
more detailed rating, proposes an evaluation on 4 slices
(low external capsule, high external capsule, corona radi-
ata and centrum semiovale), separated into 10 regions.
The severity of white matter lesions was visually rated on
a 3-point scale (0-3) for each region, and weighted (1-4)
to account for the decreasing concentration of choliner-
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gic fibers as they project and fan out in the white
matter61. The results of these studies suggest that the
localization of the hyperintensities in the white matter
holds special importance, considering that some of these
may occur at strategic points and may be related to meas-
urable clinical manifestations60,61.

Thus, the knowledge of the anatomy of the choliner-
gic pathways and their relation to those vascular territo-
ries where an interruption can occur, allied to the conse-
quent clinical manifestations, enable better evaluation of
CVD clinical expression. It may also be able to lend a
more solid basis for treatment strategies, such as the
cholinergic approach.

Conclusion
CVD can cause clinical symptoms defining VCI/VaD

according to its extension and localization. Two mecha-
nisms play a role: one corresponding to tissue lesions of
cortical areas and subcortical regions, including white
matter responsible for disconnection related manifesta-
tions, while the other is related to the interruption of the
cholinergic pathways at various localizations along their
routes, producing manifestations consequent to choliner-
gic denervation which result in a hypocholinergic state of
the affected territories.

Knowledge of cognitive-behavioral and vasomotor
functions of the cholinergic system, allied to that of the
anatomical localization of the course of its pathways, is
important to better assess the sites of vascular lesion.
Such knowledge permits strategic points of the choliner-
gic pathways to be highlighted and provides more solid
bases for use of cholinergic therapeutic strategies.
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