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Abstract
The nerve growth factor family of growth factors, collectively known as
neurotrophins, are evolutionarily ancient regulators with an enormous range of
biological functions. Reflecting this long history and functional diversity,
mechanisms for cellular responses to neurotrophins are exceptionally complex.
Neurotrophins signal through p75 , a member of the TNF receptor
superfamily member, and through receptor tyrosine kinases (TrkA, TrkB, TrkC),
often with opposite functional outcomes. The two classes of receptors are
activated preferentially by proneurotrophins and mature processed
neurotrophins, respectively. However, both receptor classes also possess
neurotrophin-independent signaling functions. Signaling functions of p75
and Trk receptors are each influenced by the other class of receptors. This
review focuses on the mechanisms responsible for the functional interplay
between the two neurotrophin receptor signaling systems.
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Nerve growth factor (NGF) and its orthologs are collectively known 
as neurotrophins. Mammals have four neurotrophins – NGF, brain-
derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and 
neurotrophin 4 (NT-4, also known as NT-4/5). Neurotrophins, 
functioning as homodimers, have a wide variety of functions in 
both neural and non-neural tissues, and they control adult  
physiology as well as embryonic development.

The 4 neurotrophins signal through three paralogous receptor 
tyrosine kinases (TrkA, TrkB and TrkC) and the 75 kDa  
neurotrophin receptor (p75NTR), which is a member of the death 
domain-containing receptor subgroup (so-called death receptors) 
of the TNF receptor superfamily. While p75NTR is activated by all 
four neurotrophins, the Trk receptors are more selective, as shown 
in the table.

The neurotrophin system is ancient, as orthologs of neurotrophins, 
p75NTR and Trks are found in invertebrates as diverse as sea urchins, 
mollusks and round worms1,2. Consequently, this signaling system 
has had half a billion years of evolution to develop extraordinary 
complexity. A goal of this review will be to capture the many 
levels of complexity of the neurotrophin receptor signaling system. 
Perversely, the entire signaling system has been lost in Caenorhab-
ditis and Drosophila lineages, depriving investigators of conven-
ient genetic systems to unravel the complexity of neurotrophin 
signaling.

Although neurotrophic Drosophila proteins have been referred to 
as neurotrophins, they are only distantly similar to neurotrophins of 
other invertebrate and vertebrate species, and they signal via toll-
like receptors, rather than p75NTR or Trk-like receptors3–5. I prefer to 
refer to these neurotrophin-like cytokines by their original names, 
Spätzle and Spätzle-family proteins, rather than as neurotrophins, 
to avoid confusion.

It has been said that there is a yin and yang relationship between 
p75NTR and Trk receptors, because they often are co-expressed and 
function oppositely6. For example, TrkA signaling in sympathetic 
neurons promotes axon growth and neuronal survival, whereas 
p75NTR signaling promotes axon degeneration and neuronal cell 
death7. BDNF controls hippocampal neuronal synaptic plasticity, 
learning and memory with TrkB signaling promotes synaptic long 
term potentiation (LTP) and p75NTR signaling promoting long term 

depression (LTD)6. Functional interactions between the two recep-
tor systems produce multiple levels of complexity, while several 
different mechanisms control the balance between the yin and the 
yang of neurotrophin signaling.

Like many biologically active polypeptides, neurotrophins are 
synthesized as precursors (pro-neurotrophins), which are cleaved 
to release an N-terminal prodomain peptide and a C-terminal 
mature neurotrophin. This cleavage event may occur either within 
the secretory pathway or following secretion, so that receptors may 
be exposed to both proneurotrophins and mature neurotrophins. 
Importantly, p75NTR binds both mature and proneurotrophins, and is 
more effectively activated by proneurotrophins, while only mature 
neurotrophins activate Trk receptors8,9. The enhanced action of 
proneurotrophins binding to p75NTR is dependent on association 
of p75NTR with sortilin or SorCS2, Vps10p-domain proteins which 
bind a conserved motif in proneurotrophin prodomains10,11.

The complexity of function that can be generated by these 
relationships is well illustrated by sympathetic neurons, which 
express TrkA and p75NTR, but not TrkB. For these neurons, proNGF, 
which activates p75NTR but not TrkA, promotes cell death. Mature 
NGF, which activates both p75NTR and TrkA, promotes cell survival. 
ProBDNF or mature BDNF promotes cell death, because these 
ligands bind p75NTR but not TrkA12–14.

The canonical mode of signaling by Trk receptors is similar 
to signaling by other receptor tyrosine kinases. Neurotrophin 
binding promotes formation of Trk dimers, and induces trans- 
phosphorylation of Trk cytoplasmic domain tyrosine residues, 
initiating recruitment of signaling adapter proteins that foster 
signaling by ras/ERK1/2, PI3 kinase/Akt STAT and phospholipase 
Cγ pathways15. However, alternatively spliced forms of TrkB and 
TrkC (misleadingly known as truncated TrkB and truncated TrkC) 
lack a tyrosine kinase domain, but possess alternative cytoplasmic 
domain sequences that signal by less extensively characterized 
mechanisms16,17.

One feature of canonical signaling by Trk receptors that differs  
from many other receptor tyrosine kinases is the use of so-called  
signaling endosomes to achieve retrograde axonal signaling.  
For most receptor tyrosine kinases, ligand-mediated activation 
of the receptor leads to receptor endocytosis, followed either by  
lysosomal degradation of the receptor or recycling back to the cell 
surface. However, in many physiological scenarios, the survival 
and/or differentiated state of neurons is regulated by neurotrophins 
secreted by the target tissues those neurons innervate. In this  
context, endocytosis of the neurotrophin/Trk complex generates 
signaling endosomes, which undergo retrograde axonal trans-
port, delivering the activatedneurotrophin/receptor complex to the 
somatic compartment in order to permit control of nuclear trans-
activation of genes18–21. The exquisite complexity associated with 
this mode of signaling is nicely illustrated by sympathetic neurons, 
where NT3 and NGF differently control axonal TrkA signaling 
functions because of differences in the pH-dependence for NT3 
and NGF binding. Sympathetic axons encounter NT3 on the route 
to their target. NT3 activates TrkA and achieves local control of 
axonal growth cone dynamics, but does not engage signaling to 

Table 1. Ligand preferences of 
neurotrophin receptors. Ligands 
listed in italic type have lower 
affinity and/or are less commonly 
important for receptor activation  
in vivo.

Receptor Ligand

p75NTR NGF, BDNF, NT3, NT4

TrkA NGF, NT3 

TrkB BDNF, NT4, NT3 

TrkC NT3
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the cell soma because NT3 dissociates from TrkA at the acidic pH 
within endosomes, causing TrkA receptors to recycle to the local 
plasma membrane without production of axonally transported  
signaling endosomes. In contrast, NGF/TrkA complexes remain 
intact as endosomes acidify, allowing TrkA to engage the motor 
systems that mediate retrograde axonal transport of TrkA-bearing 
endosomes22.

p75NTR signaling shares several features with other death receptors. 
A juxta-membrane region of the cytoplasmic domain binds TRAF6, 
which engages signaling pathways leading to activation of NF-κB 
and JNK23,24. The death domain interacts with RhoGDI, which 
controls RhoA activation, and RIP2 kinase, which contributes to 
NF-κB and JNK activation25. Neurotrophin binding to p75NTR 
inhibits RhoA activation26, while enhancing JNK activation27,28. 
However, TRAF6, RhoGDI and RIP2 are only a few of the bewil-
dering array of p75NTR-binding signaling adapter proteins that have 
been reported to mediate p75NTR signaling. Other notable examples 
include NRIF, which promotes JNK activation28,29, MAGE proteins 
including NRAGE, which promote Rac1 and JNK activation30, 
and Bex1, which negatively affects NF-κB signaling31,32. Further, 
p75NTR has been reported to influence glucose uptake in adipocytes 
via Glut4 by directly binding the trafficking regulators Rab5 and 
Rab3133, to controls energy expenditure in obese mice on a high- 
fat diet by inhibiting cAMP signaling in adipocytes via direct 
association of p75NTR with protein kinase A34, and to promote fibri-
nolysis in nerve injury and lung fibrosis by binding and enhancing 
the cAMP degradative activity of phosphodiesterase PDE4A4/535.

One feature of p75NTR function is unique, so far, among known 
receptors. A cysteinyl residue in the membrane spanning domain 
of p75NTR forms a disulfide bond, within the lipid bilayer, creat-
ing a covalently linked-dimeric form of p75NTR, and this covalent 

linkage is required for neurotrophin-dependent JNK activa-
tion, but not inhibition of RhoA activity36. Mutation of the single 
cysteinyl residue required to form this disulfide bond eliminates  
p75NTR-dependent death signaling in neurons in vitro and in vivo37. 
A physiologically occurring disulfide bond within a lipid bilayer 
has never been described previously in any membrane protein, 
and the mechanism by which a disulfide forms in such an unusual  
environment is unclear. However, our unpublished evidence 
(Leslayann Schecterson and Mark Bothwell) demonstrates that this  
linkage forms within 2 minutes when cells are exposed to minute 
concentrations of hydrogen peroxide, indicating that oxidative stress 
may control p75NTR signaling, as we have reported previously38.

A detailed model, illustrated in Figure 1, has recently been 
proposed for death domain-mediated p75NTR signaling25. In the 
absence of bound neurotrophin, the death domains of p75NTR dim-
ers form a homodimeric complex. The RhoGDI binding site is 
not occluded by this interaction, so non-liganded p75NTR engages 
RhoGDI-dependent RhoA activation. Binding of a neurotrophin 
dimer to the extracellular domain of a disulfide-linked p75NTR 
dimer, causes a scissoring action (or more accurately a snail-tong 
action) around the disulfide pivot-point, separating originally jux-
taposed death domains, and allowing access of RIP2 to a binding 
site that was previously partially occluded by the death domain/
death domain interaction. The RIP2 binding site partially overlaps 
with the RhoGDI binding site, so RIP2 binding displaces RhoGDI, 
initiating JNK activation and terminating RhoA activation.

Challenging the elegant simplicity of this model, an element of 
controversy has been introduced by the suggestion that the p75NTR 
oligomer observed on non-reducing SDS gels is a trimer, rather 
than a dimer39,40. This conclusion relies primarily on the ratio of 
the apparent molecular weights of p75NTR monomer and oligomer 

Figure 1. p75NTR Signaling. In absence of ligand, death domains of disulfide-linked p75NTR dimer bind RhoGDI, promoting formation of 
active GTP-bound RhoA. Binding of neurotrophin or proneurotrophin causes a scissoring action of the dimer, displacing the death domains 
laterally and allowing RIP2 to bind the death domains. RIP2 promotes activation of JNK and NF-κB and by displacing RhoGDI, terminates 
RhoA activation.
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on non-reducing SDS gels. A caveat for such analysis is that the 
theoretical basis for the proportionality of electrophoretic mobility 
and protein mass on SDS gels assumes that SDS-induced dena-
turation fully unfolds the protein and causes the protein to form 
linear structures with length proportional to mass41. This assump-
tion does not apply to p75NTR, which contains multiple intra-chain 
disulfide linkages if disulfide bonds are not reduced before elec-
trophoresis. p75NTR function as a trimer is inconsistent with X-ray  
crystallographic and/or NMR generated three-dimensional struc-
tures indicating that the extracellular domain of p75NTR42, the death 
domain region of the intracellular domain of p75NTR25, and the  
membrane spanning domain of p75NTR43 each forms dimers, not 
trimers. Application of emerging technologies such as cryo-EM 
will be required to provide definitive evidence about the stoichiom-
etry of intact p75NTR.

Although the reader may think that the preceding account is already 
quite complicated enough, another mode of p75NTR signaling, and 
its manner of influence by Trk receptors, provides substantial 
additional complexity, as summarized in Figure 2. Soon after the 
discovery of Trk receptors, it was reported that p75NTR/Trk het-
erodimeric complexes could form, enhancing the affinity of NGF 
binding to TrkA44, and causing TrkA and TrkB to be less effec-
tively activated by NT315. Although the physiological importance of 
these p75NTR effects on Trk signaling remain uncertain, recently 
Trk-dependent effects on p75NTR signaling have emerged that 
seem likely to have physiological relevance. p75NTR has an  
alternative signaling pathway that resembles the mode of signaling 
of Notch. ADAM10 or ADAM17-dependent cleavage of the p75NTR 
extracellular domain near the membrane, followed by γ-secretase 
mediated release of the intracellular domain into the cytoplasm, 

Figure 2. Cell death and cell survival signaling by p75NTR and Trk receptors.  (Above) Proneurotrophins interact preferentially with p75NTR, 
promoting JNK dependent caspase activation and cell death. Sequential cleavage of p75NTR by ADAM10/17 and γ-secretase, allowing 
cytoplasmic mobilization of the intracellular domain of p75NTR, may also promote cell death, by a mechanism that is only indirectly promoted 
by neurotrophins. Non-liganded Trk A and TrkC promote cell death by a mechanism that implicates the p75NTR cleavage pathway. (Below) 
Mature neurotrophins preferentially activate Trk receptors, in a manner that may be enhanced by p75NTR, particularly for TrkA. Neurotrophin 
activation of Trks promotes cell survival.
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fosters signaling45–47. Interestingly, a similar mode of signaling 
by another TNF receptor superfamily member, TNFR1, has been 
described recently48. Differential cleavage of p75NTR in different 
types of neurons produced different signaling outcomes49. Signaling 
effects attributed to the mobilized p75NTR intracellular domain 
include nuclear accumulation of NRIF47, association with the ubiq-
uitin ligase siah2 controlling degradation of the transcription factor 
Hif1α50, and association with nuclear pore complexes promoting 
nuclear uptake of the SMAD2 transcription factor51. Neurotrophin 
binding to p75NTR does not directly influence the rate of ADAM 
protease-mediated cleavage of p75NTR45,46,52 although signaling  
pathways initiated by neurotrophin binding may enhance p75NTR 
cleavage many hours after neurotrophin exposure47. Interest-
ingly, activation of Trk receptors promotes the p75NTR cleavage  
pathway45,53.

It remains to be determined definitively whether Trk activ-
ity represents a major mode of regulation of the p75NTR cleavage 
signaling pathways in vivo. However, the recently reported func-
tion of TrkA and TrkC as dependence receptors may reflect a 
consequence of this mode of interaction. Dependence receptors are 
receptors that signal constitutively until ligand binding terminates 
signaling. Although each of the three Trk paralogs was originally 
found to promote neuronal survival, in some neuronal populations, 
neurotrophin-independent effects of TrkA and TrkC were reported 
to promote neuronal cell death, and the cleavage mediated signal-
ing pathway of p75NTR has been implicated as a mediator of this 
effect54,55.

The foregoing paragraphs have focused on neurotrophin- 
dependent signaling by neurotrophin receptors, but other ligands 
importantly engage signaling by both Trk and p75NTR receptors. 
For Trk receptors, the most common mechanism for signaling in 
response to non-neurotrophin ligands involves receptor transacti-
vation, most commonly of TrkB. A variety of G protein-coupled 
receptors, including PACAP and A2a adenosine receptors, acti-
vate TrkB via Gsα-dependent activation of Src family kinases 
(commonly Fyn in neural tissue)56,57. In the context of embryonic 
cerebral cortex, where developing neurons express abundant TrkB 
receptors, EGF-dependent activation of EGF receptors engages 
Src-dependent TrkB activation58. Src family kinase-mediated Trk 
transactivation also is induced by ligand-dependent activation 
of Low-density lipoprotein receptor-related protein 1 (LRP1)59, 
and by zinc ion, which is co-released during glutamatergic 
neurotransmission60,61. One interesting feature of transactivation  
of TrkB is that activation commonly occurs in the ERGIC or Golgi 
compartments, rather than at the cell surface. Signaling from 

intracellular sites may not be functionally equivalent to signal-
ing from the plasma membrane. For example, PACAP-dependent 
transactivation of TrkB in cultured hippocampal neurons, by 
coupling to pathways that otherwise control Golgi dynamics 
during cell division, induces fragmentation of the Golgi appara-
tus and alters Golgi-dependent processing of other membrane 
proteins62.

A variety of modes of neurotrophin-independent activation 
of p75NTR have been reported. p75NTR is one of several recep-
tors that bind Aβ peptide and putatively engage in pathogenic  
signaling in Alzheimer’s disease40,63. Other scenarios in which 
non-neurotrophin ligands control p75NTR signaling involve asso-
ciation of p75NTR with co-receptors that bind the activating ligand. 
Axon--repellant signaling by CNS myelin proteins such as Nogo, 
MAG, or OMgp, mediated by association of NgR1 with p75NTR,64,65 

or the p75NTR homolog, Troy66 while ephrin-A/p75NTR complexes 
have been implicated as mediators of EPH-dependent reverse  
signaling67.

Although great progress has been made in elucidating the sign-
aling pathways employed by neurotrophin receptors, a systems 
level understanding of how these signaling pathways are selec-
tively engaged in vivo is sadly lacking. It is a daunting task to  
understand how this extraordinarily rich palette of neurotrophin 
receptor signaling modalities is controlled physiologically.

Abbreviations
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