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ABSTRACT Pseudomonas aeruginosa is known to tolerate antibiotic therapy during
infection. This prevents clearance of infection and negatively impacts patient out-
comes. Here, we report the transcriptome sequence of antibiotic-treated and un-
treated P. aeruginosa cultures and the differential gene expression observed when
treated cells are compared to untreated cells.

Pseudomonas aeruginosa is a Gram-negative bacterium which causes various human
infections using a suite of virulence factors (1). The most severe manifestations of

P. aeruginosa are wound infections in burn victims and chronic lung infections in cystic
fibrosis patients. P. aeruginosa is strongly associated with nosocomial infections and is
known to contaminate hospital floors, beds, and medical devices (1). P. aeruginosa is a
major public health concern because of its intrinsic antibiotic resistance profile and
ability to tolerate antibiotic therapy (2). The ability to tolerate antibiotic therapy in the
absence of resistance can result from changes in gene expression, increased lag times,
and the formation of a heterogeneous population containing persister cells (2–4). Here,
we report the transcriptome sequences of antibiotic-treated planktonic cultures and
untreated biofilm, stationary, and planktonic cultures of P. aeruginosa to gain better
insight of the potential changes in gene regulation leading to antibiotic tolerance.

An 18-h culture of P. aeruginosa PAO1-UW (5) was grown in Luria-Bertani (LB) broth
at 37°C. Cells were centrifuged and washed with 0.85% NaCl three times before they
were incubated with ciprofloxacin (50 �g/ml) in 0.85% NaCl (treated) or 0.85% NaCl
alone (stationary) for 3.5 h (6). Following incubation, cells were pelleted and preserved
in RNAprotect (Qiagen, Hilden, Germany). For the planktonic culture, the 18-hour
culture was used to inoculate fresh LB broth, which was incubated until the optical
density at 600 nm (OD600) reached 0.5, at which point the cells were collected and
preserved in RNAprotect. Biofilms were formed in LB broth on borosilicate glass discs
as described previously and preserved in RNAprotect (7). Each treatment condition was
performed twice. RNA was isolated using the RNeasy kit according to the manufactur-
er’s instructions and treated twice with Turbo DNase (Ambion, Grand Island, NY) to
remove any contaminating DNA (7, 8). rRNA was depleted using the Ribo-Zero mag-
netic kit (Epicentre, Madison, WI), and the directional library (100 bp) was generated
using the NEXTflex directional RNA transcriptome sequencing (RNA-seq) kit (Bioo
Scientific, Austin, TX) before sequencing using an Illumina HiSeq 2000 instrument.
Following demultiplexing with CASAVA, the reads were mapped to the annotated NCBI
reference sequence of strain PAO1 (no. NC_002516) using Bowtie, allowing 2 mis-
matches in a default seed length of 28 nucleotides to prevent the mapping of
low-quality reads (9). Reads were separated into forward and reverse directions using
SAMtools (10) and visualized in JBrowse (11) for verifying strand-specific transcription
mapping results. Read counts per gene were calculated with the HTSeq script version
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0.6.1p1 (12), and differential expression of protein-encoding genes was analyzed using
the Bioconductor software package DESeq (13). Default settings were used for all
software analyses. The summary of sequencing reads, mapping, and differential ex-
pression results can be found in Table 1.

As some of these open reading frames (ORFs) may be involved in antibiotic
tolerance, these data will provide a starting point for investigating the mechanisms of
tolerance in P. aeruginosa. This knowledge may assist studies of posttreatment relapse
and latent infections.

Data availability. The RNA-seq reads and the DESeq results have been deposited in
the NCBI Gene Expression Omnibus (GEO) (14) and are accessible through GEO series
accession no. GSE120602.
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TABLE 1 Summary of sequencing reads

Condition
(replicate no.)

No. of reads
(in millions)

% of reads mapped
on forward strand

% of reads mapped
on reverse strand

No. of
upregulated ORFsa

No. of
downregulated ORFsa

Treated (1) 14.6 22.5 39.3
Treated (2) 13.8 29.0 36.0
Stationary (1) 14.3 32.3 48.6 144 234
Stationary (2) 15.0 28.4 49.1
Planktonic (1) 16.2 34.8 61.1 799 912
Planktonic (2) 16.0 33.7 61.6
Biofilm (1) 16.0 36.7 57.6 67 15
Biofilm (2) 16.1 38.3 55.2
a Differential expression in treated cells compared to other conditions.
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