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Plasmodium falciparum infection causes the most severe form of malaria. It has been
hypothesized that P. falciparum directly suppresses host immune responses because
sufficient acquired immunity is often not induced even by repeated P. falciparum infections
in malaria-endemic areas. It is known that many kinds of P. falciparum-derived proteins
are expressed on the surface of P. falciparum-infected erythrocytes (IEs), and these
proteins have long been thought to be a key to the elucidation of the host immune evasion
mechanisms. Our recent studies have revealed that the P. falciparum-derived erythrocyte
surface antigen, RIFIN, the largest multiple gene family protein in the P. falciparum
genome, suppresses host immune cell activation through direct interaction with human
inhibitory immune receptors. In this review, we will discuss the molecular mechanisms for
host immune evasion by P. falciparum-infected erythrocyte surface antigens. In addition,
we will discuss the recently identified host immune response to P. falciparum using
specialized antibodies that target host-P. falciparum-derived molecule interactions.

Keywords: Plasmodium falciparum, immune evasion, variant surface antigens, RIFIN, inhibitory immune receptors,
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INTRODUCTION

Malaria is one of the most important infectious diseases in the world and still affects more than 200
million people annually, resulting in more than 600,000 deaths in 2021 (1). About 80% of deaths are
among children under five years of age. Malaria is an infectious disease caused by Plasmodium
species, of which malaria caused by P. falciparum is particularly severe, and most of the deaths are
associated with P. falciparum infection. P. falciparum is transmitted by female Anopheles
mosquitoes, and sporozoites accumulated in the salivary glands of the Anopheles mosquitoes
enter the host body during blood feeding. Sporozoites that invade the blood are firstly taken up by
hepatocytes, with repeated division of parasites in hepatocytes forming thousands of merozoites.
Merozoites eventually destroy the hepatocytes and are released into the blood (liver stage). Soon
after release into the blood, merozoites invade erythrocytes and divide into more than 30 merozoites
through the ring, trophozoite, and schizont stages. They are then released into the blood by
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disrupting the erythrocyte membrane, subsequently invading
new erythrocytes to repeat the cycle (blood stage). Therefore,
P. falciparum multiplies through a complex life cycle within the
host and is transmitted by the blood feeding of new Anopheles
mosquitoes. Recent studies have shown that P. falciparum
maintains infection and successfully evades host immune
responses by producing and utilizing a variety of parasite-
derived molecules at each stage in this complex life cycle.

Human immune cells express a variety of inhibitory immune
receptors to maintain host immune homeostasis. However, some
viruses and cancer cells are known to evade host immunity via
these inhibitory immune receptors. P. falciparum infection
induces antibodies against various P. falciparum-derived
proteins in the host throughout multiple stages. However,
these antibodies are not enough to effectively protect P.
falciparum infection. Therefore, P. falciparum seems to possess
multiple mechanisms of immune evasion. We have recently
discovered novel mechanisms by which P. falciparum exploits
inhibitory immune receptors to evade host immunity. In this
review, we will discuss the host immune evasion mechanisms
mediated by blood-stage P. falciparum infection.
P. FALCIPARUM-INFECTED
ERYTHROCYTE SURFACE ANTIGENS

P. falciparum merozoites invade erythrocytes and mature
through the ring, trophozoite, and schizont stages, during
which P. falciparum produces a large number of parasite-
derived proteins. Some of these proteins are transported
beyond the parasitophorous vacuole (PV) to the cytoplasm of
erythrocytes and are subsequently expressed on the surface of the
infected erythrocytes (2–4). These erythrocyte surface antigens
are derived from multiple gene family proteins located mainly in
the subtelomeric region of P. falciparum genome and are referred
to as variant surface antigens (VSAs) (5). VSAs are mainly
composed of P. falciparum erythrocyte membrane protein 1
(PfEMP1), P. falciparum-encoded repetitive interspersed
families of polypeptide (RIFIN), and subtelomeric variant open
reading frame (STEVOR). These proteins are encoded by var
(~60 genes), rif (~150 genes), and stevor (~30 genes) genes
respectively (5) Table 1. PfEMP-1 is a well-studied molecule,
but there are very few analyses of RIFIN and STEVOR; therefore,
much remains unknown.
HUMAN INHIBITORY IMMUNE
RECEPTORS

Human immune cells express a wide variety of inhibitory
immune receptors that interact with self-ligands such as MHC
class I molecules for appropriate regulation of immune
responses. Inhibitory immune receptors have immunoreceptor
tyrosine-based inhibitory motifs (ITIMs) in the cytoplasm and
transduce inhibitory signals into the immune cells by associating
with Src-homology 2-containing tyrosine phosphatase-1 and -2
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(SHP-1, SHP-2) (27). A large number of inhibitory immune
receptors have been reported previously, and these receptors are
mainly composed of two groups, the leukocyte receptor complex
(LRC) (28) (Figure 1A) and the NK gene complex (NKC) (29).

Some viruses and cancer cells are suggested to evade host
immunity via these inhibitory immune receptors. For example,
mouse cytomegalovirus (MCMV) expresses m157, an MHC class
I-like molecule, as a ligand for the mouse inhibitory immune
receptor, Ly49I (30). Human cytomegalovirus (HCMV) up-
regulates the expression of a non-classical HLA class I
molecule HLA-E by the HCMV-derived protein gpUL40 and
suppresses NK cell function via inhibitory immune receptors,
CD94/NKG2A (31). Cancer cells have been reported to inhibit
phagocytosis from tumor-associated macrophages via MHC
class I-LILRB1 signaling (32). Therefore, it has been suggested
that inhibitory immune receptors are involved in the immune
evasion mechanisms of pathogens and cancer cells. Furthermore,
these inhibitory immune receptors have also been suggested to be
involved in the immune evasion mechanisms of P. falciparum as
described below.
MECHANISMS FOR HOST IMMUNE
EVASION BY P. FALCIPARUM-INFECTED
ERYTHROCYTE SURFACE ANTIGENS

-Antigenic Variation
P. falciparum-infected erythrocytes (IEs) express erythrocyte
surface antigens referred to as VSAs, but these antigens can be
targets of host immune responses, such as the production of
antibodies. For example, PfEMP-1 is a major target antigen for
antibodies, and antibodies against PfEMP-1 specifically promote
the elimination of IEs (33). Therefore, P. falciparum transcribes
and translates molecules such as PfEMP-1 and STEVOR,
multiple gene family proteins, without expressing all the
variants of each molecule on the IEs at once. Rather, only a
single gene is transcribed and translated in the case of PfEMP-1
(34) and only a few genes in the case of STEVOR (35), with all
the other genes being silenced. This phenomenon is termed
‘antigenic variation’ and it allows P. falciparum to evade the host
immune responses including antibodies by switching the antigen
expression patterns on IEs. The molecular mechanism
underlying ‘antigenic variation’ has been well characterized in
the var gene family encoding PfEMP-1, and it is thought to be
regulated by an epigenetic mechanism (36).

-PfEMP-1
PfEMP-1 is a high-molecular weight protein (200-350 kDa), and
the extracellular region of PfEMP-1 is composed of cysteine-rich
interdomain regions (CIDR) domains and Duffy-binding-like
(DBL) domains (6) (Figure 1B). PfEMP-1 is known to be
primarily expressed on the surface of IEs in the trophozoite
and schizont stages. PfEMP-1 promotes the sequestration of IEs
into the vessel walls to prevent the destruction of IEs in the
spleen by binding to molecules expressed on vascular endothelial
cells such as CD36, intercellular adhesion molecule-1 (ICAM-1),
June 2022 | Volume 13 | Article 901864
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and endothelial protein C receptor (EPCR) through its CIDR and
DBL domains (7). The IE sequestration into the cerebral
microvasculature is known to cause a severe form of malaria,
cerebral malaria (CM) (8). It has also been shown that IEs form
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aggregates, termed ‘rosettes’, by binding to non-infected
erythrocytes via PfEMP-1 (9). The formation of these rosettes
is thought to interfere with recognition by immune cells and
antibodies (10). PfEMP-1 has been reported to have direct effects
A

B

FIGURE 1 | The genomic location of inhibitory immune receptors and the structure of VSAs. (A) The genomic location of inhibitory immune receptors. Inhibitory immune
receptors are located in the leukocyte receptor complex (LRC) region on human chromosome 19q13.4 in tandem. LRC region contains a number of immunoglobulin-like
receptors such as leukocyte immunoglobulin like receptors (LILRs) and leukocyte associated immunoglobulin-like receptors (LAIRs). Each of these receptors forms a
multiple gene family, and LILR family consists of five inhibitory receptors (LILRB1-5), five activating receptors (LILRA1, 2, 4-6) and one secretory form (LILRA3). It is
thought that activating receptors have evolved from inhibitory receptors to overcome pathogens because some inhibitory receptors such as LILRB1 and LAIR1 are
exploited by pathogens in their immune evasion mechanisms.. (B) The structure of VSAs. PfEMP-1 proteins are divided into groups (A-C) based on chromosomal
location and the direction of transcription. The extracellular region of PfEMP1 is composed of the combination of a Duffy binding-like domain (DBLa-z) and a cysteine-rich
interdomain region (CIDRa-d) depending on the organization and the length. This figure shows the typical structure of group (A-C) PfEMP-1. The larger PfEMP1 proteins
have additional DBL domains between DBL and CIDR domains. PfEMP-1 can bind to molecules such as CD36, intercellular adhesion molecule-1 (ICAM-1), and
endothelial protein C receptor (EPCR) via its CIDR and DBL domains. RIFIN is divided into type A and type B RIFIN, and type A RIFIN contains a 25 amino acid sequence
inserted at the N-terminus (Indel) that is not present in type B RIFINs. RIFIN interacts with immune receptors via its variable region (V2).
TABLE 1 | Summary of P. falciparum-infected surface antigens in this Review.

Surface antigens Genes Gene numbers Expression stages Host receptors Functions References

PfEMP-1 var ~60 Trophozoite, Schizont CD36, ICAM-1, EPCR Sequestration of IEs,
Rosette formation,
Immunosuppression

(5–13)

STEVOR stevor ~150 Trophozoite, Schizont,
Gametocyte, Merozoite,
Sporozoite

Glycophorin C Rosette formation (5, 14–18)

RIFIN rif ~30 Trophozoite, Schizont,
Gametocyte, Merozoite,

Type A erythrocyte antigen,
Sialic acid on Glycophorin A,
LAIR1, LILRB1, LILRB2

Rosette formation,
Immunosuppression

(5, 19–26)
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on host immune cells beyond sequestration and rosette
formation. Antigenic variation allows IEs to escape from
antibody responses by altering the expression patterns of
PfEMP-1 (5). The stimulation of PfEMP-1 suppresses NF-kB
activity in monocytes and macrophages, and eventually causes
the suppression of cytokine and chemokine production (11).
Further, PfEMP-1 binds to dendritic cells (antigen-presenting
cells) via CD36 and CD51, and significantly reduces their
antigen-presenting ability (12), while also suppressing cytokine
release by innate lymphocytes such as NK cells and gd T cells
(13). Therefore, PfEMP-1 induces direct immunosuppressive
effects on various types of immune cells.

-STEVOR
STEVOR is a small-molecular weight protein (30-40 kDa), with
the extracellular region of STEVOR mainly composed of
semiconserved and hypervariable regions (14) (Figure 1B).
STEVOR is expressed in various parasite stages, such as
trophozoites, schizonts, gametocytes, merozoites, and
sporozoites (15–17), and it has been suggested that STEVOR
has different functions in each stage. The function of STEVOR as
an IE surface antigen and a merozoite surface antigen is to bind
glycophorin C (GPC) on erythrocytes via the semiconserved
region in STEVOR and form rosettes with uninfected
erythrocytes in a PfEMP-1-independent manner (18).
Antibodies against STEVOR inhibit merozoite invasion into
erythrocytes; therefore, it is suggested that the formation of
these rosettes via STEVOR promotes merozoite invasion into
erythrocytes (18). However, very limited analysis of STEVOR has
been performed, and several things remain unknown.

-RIFIN
RIFIN is a small-molecular weight protein (27-45 kDa) and is the
largest multiple gene family protein in P. falciparum, encoded by
more than 150 rif genes in each P. falciparum genome (19)
(Figure 1B). RIFIN is one of the erythrocyte surface antigens
expressed on IEs, gametocytes, and merozoites and as in the case
of the stevor genes, only a few out of more than 150 rif genes
thought to be transcribed and expressed on the surface of IEs at
once (20, 21). RIFINs are divided into type A and type B RIFINs
based on their structural specificity. Type A RIFINs, comprising
70% of all RIFINs, contain a 25 amino acid sequence inserted at
the N-terminus that is not present in type B RIFINs (19, 22).
Irrespective of type, RIFINs are composed of N-terminal and C-
terminal conserved regions and variable regions (V2) located
between these two conserved regions (Figure 1B). It has been
reported that the function of a single type A RIFIN of the
laboratory strain is to bind to the type A erythrocyte surface
antigen and sialic acid on glycophorin A (GPA) for rosette
formation (21), but the function of most RIFINs remains
unknown. It has been suggested that P. falciparum immune
evasion mechanisms might exist, similar to those seen in viral
infections, as the induction of sufficient acquired immunity is
difficult even after repeated infections with P. falciparum in
malaria-endemic areas. Our recent studies have shown that
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some RIFINs bind to human inhibitory immune receptors
such as LILRB1, LILRB2, and LAIR1 (23, 24). We will discuss
the characteristics of each receptor-binding RIFIN in the
following sections.

-LILRB1-Binding RIFIN
LILRB1 is an inhibitory receptor expressed on various immune
cells, such as monocytes, T cells, B cells, and NK cells, that
recognizes MHC class I molecules as physiological ligands to
suppress immune responses to host cells and maintain host
immune homeostasis (37). It has been reported that LILRB1 is
exploited in viral host immune evasion mechanisms. UL18, an
MHC class I like molecule derived from human cytomegalovirus
(HCMV), is a well-studied molecule that binds to LILRB1 and
suppresses immune cell responses (38, 39) (Figure 2). Dengue
virus (DENV) also exploits LILRB1 to enhance the antibody-
opsonized DENV infection into monocytes via the inhibition of
Fc-gamma receptor (FcgR) signaling for type-I IFN-stimulated
genes (ISGs) (40). Further, LILRB1 is known to contribute to the
immune evasion of various cancers (Figure 2). LILRB1 blockade
enhances anti-cancer immunity of NK cells and CD8+ T cells
similar to the blockade of the PD-1/PD-L1 axis (25, 32, 41–44).
The extracellular domain of LILRB1 is composed of 4 domains
(D1-D4) and is reported to bind HLA class I molecules and other
known ligands via D1D2 (45). Structural basis analysis revealed
that LILRB1-binding RIFIN interacts with LILRB1 D1D2
through its variable region, mimicking the interaction between
MHC class I molecules and LILRB1 (46). The function of
LILRB1-binding RIFINs is to directly interact with LILRB1 on
immune cells and induce the suppression of IgM production by
B cells and the reduction of cytotoxicity of NK cells (23)
(Figure 3). Furthermore, the analysis of infected erythrocytes
from patients with malaria revealed that IEs in severe malaria
cases expressed more LILRB1-binding RIFINs than did those in
mild cases, suggesting that the RIFIN-LILRB1 interaction may
contribute to the severity of the disease (23).

-LILRB2-Binding RIFIN
LILRB2 is an inhibitory receptor of the LILR family expressed on
myeloid immune cells such as monocytes, macrophages, and
dendritic cells, and, similar to LILRB1, MHC class I molecules
are its physiological ligands (47) (Figure 2). It has been reported
that LILRB2 is involved in the host immune evasion mechanisms
of human immunodeficiency virus (HIV) (48) and lung cancer
(49) (Figure 2). For example, conventional dendritic cells (cDC)
enhance the expression of LILRB2 and HLA class I molecules in
the early stages of HIV infection, and this could be involved in
early cDC dysfunction and the failure to induce subsequent
adaptive immune responses to control HIV infection (50). The
structure of LILRB2 is very similar to LILRB1, and its
extracellular region has an 81% amino acid homology (45, 47).
It has been reported that LILRB2 also binds to HLA class I
molecules and other known ligands via D1D2 (47, 51, 52).
However, LILRB2-binding RIFIN has been shown to interact
with LILRB2 D3 through its variable region based on the results
June 2022 | Volume 13 | Article 901864
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of a blocking assay with anti-LILRB2 antibodies and a binding
assay with recombinant LILRB2 proteins (24) (Figure 3). This
suggests a new binding mode of LILRB2 to the ligand through
D3, and further studies are needed to clarify the function of this
LILRB2-binding RIFIN.

-LAIR1-Binding RIFIN
LAIR1 is an inhibitory receptor expressed on almost all immune
cells and recognizes collagens (53) and molecules with collagen-
like domains as physiological ligands (54, 55) (Figure 2).
Overexpression of collagens by cancer cells is known to be
associated with poor overall survival in several tumors such as
lung (56, 57), colorectal (26, 58) and ovarian cancers (59, 60), and
cancer cells are thought to exert LAIR-1-mediated immune
evasion mechanisms through the remodeling of collagens in the
tumor microenvironment (61) (Figure 2). Our study showed that
some kinds of RIFINs interact with naïve LAIR1 (23), and recent
conformational analysis revealed that LAIR1-binding RIFIN binds
to LAIR1 via a variable region similar to LILRB1- and LILRB2-
binding RIFINs (23, 24, 46). Furthermore, LAIR1-binding RIFINs
are suggested to have immunosuppressive functions against
LAIR1-expressing immune cells based on a LAIR1 reporter cell
assay (62) (Figure 3).
Frontiers in Immunology | www.frontiersin.org 5
-Receptor-Containing Antibodies
Targeting RIFINs
Receptor-containing antibodies with a portion of the LAIR1 and
LILRB1 exons were produced in malaria patients in malaria-
endemic areas (63, 64). These antibodies are types of broadly
neutralizing antibodies (bnAbs) that can recognize multiple
LAIR1- and LILRB1-binding RIFINs at once, and in vitro
experiments have also shown ADCC activity of NK cells with
LAIR1-containing antibodies (65) (Figure 3). Most of the
identified LAIR1-containing antibodies have amino acid
mutations in the collagen binding motifs of LAIR1, and these
mutations reduce the binding affinity with collagen while
increasing the binding affinity with RIFIN (66). Further, these
LAIR1-containing antibodies block the interaction of LAIR1-
binding RIFINs and LAIR1 on immune cells (62) (Figure 3).
LILRB1-containing antibodies have LILRB1 D3D4 or D3 alone
in the VH-CH1 elbow, and these antibodies bind to the variable
region of LILRB1-binding RIFIN through its D3 (64), similar to
the interaction of LILRB2 and LILRB2-binding RIFIN (24).
These LILRB1-containing antibodies are unlikely to inhibit the
same physiological function as LILRB1 because LILRB1 interacts
with physiological ligands through its D1D2 (38). Therefore,
receptor-containing antibodies can induce specific immune
FIGURE 2 | The signaling pathways mediated by inhibitory immune receptors. The phosphorylation of immunoreceptor tyrosine-based inhibition motifs (ITIMs) in the
intracellular domain is induced by the binding of ligands to the extracellular domain of inhibitory immune receptors including LILRB1, LILRB2, and LAIR1.
Phosphorylation of ITIMs induces phosphatases such as SHP-1 and SHP-2, resulting in immunosuppressive effects such as decreased cytokine production via
various intracellular signaling pathways.
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responses against P. falciparum without causing any
autoimmune responses. This discovery is the first indication
that the host uses unusual antibodies, such as receptor-
containing antibodies, to induce immunity to P. falciparum.
CONCLUSION

It has been seen that IE surface antigens possess mechanisms
through which P. falciparum attempts to evade the host immune
cell responses by interacting directly with host immune cells.
Research on the interactions of human inhibitory immune
receptors with RIFIN and other IE surface antigens is still at a
preliminary stage. However, our understanding of ligand-
receptor interactions not only reveals the overall immune
Frontiers in Immunology | www.frontiersin.org 6
evasion mechanisms used by P. falciparum but may also lead
to the development of new malaria treatments and vaccines.
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