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A pocket‑based 3D molecule 
generative model fueled 
by experimental electron density
Lvwei Wang1,3, Rong Bai1,3, Xiaoxuan Shi1,3, Wei Zhang2, Yinuo Cui1, Xiaoman Wang1, 
Cheng Wang1, Haoyu Chang1, Yingsheng Zhang1, Jielong Zhou1, Wei Peng2,  
Wenbiao Zhou 1* & Bo Huang 1*

We report for the first time the use of experimental electron density (ED) as training data for the 
generation of drug‑like three‑dimensional molecules based on the structure of a target protein 
pocket. Similar to a structural biologist building molecules based on their ED, our model functions 
with two main components: a generative adversarial network (GAN) to generate the ligand ED in 
the input pocket and an ED interpretation module for molecule generation. The model was tested on 
three targets: a kinase (hematopoietic progenitor kinase 1), protease (SARS‐CoV‐2 main protease), 
and nuclear receptor (vitamin D receptor), and evaluated with a reference dataset composed of over 
8000 compounds that have their activities reported in the literature. The evaluation considered the 
chemical validity, chemical space distribution‑based diversity, and similarity with reference active 
compounds concerning the molecular structure and pocket‑binding mode. Our model can generate 
molecules with similar structures to classical active compounds and novel compounds sharing similar 
binding modes with active compounds, making it a promising tool for library generation supporting 
high‑throughput virtual screening. The ligand ED generated can also be used to support fragment‑
based drug design. Our model is available as an online service to academic users via https:// edmg. 
stone wise. cn/#/ create.

Abbreviations
ED  Electron density
GAN  Generative adversarial network
NCI  Non-covalent interactions
QED  Quantitative estimate of drug-likeness
SAS  Synthetic accessibility score
VQ-VAE  Vector quantized variational autoencoder
t-SNE  T-distributed stochastic neighbor embedding
SOM  Self-organizing-map
SMU-RUL  Small-molecule-universe representative universal library
HPK1  Hematopoietic progenitor kinase 1
3CLpro  SARS‐CoV‐2 main protease
VDR  Vitamin D receptor

Molecular generative models using the three-dimensional (3D) information of target pockets have garnered 
increasing attention in the field of de novo drug  design1–3. The process of drug design is generally perceived as 
an inherently multi-constrained optimization process. The major constraints include complementarity between 
the ligand and protein, regarding multiple aspects, such as shape and non-covalent interactions (NCI), and 
requirements of the ligand itself, including synthesizability and low strain energy binding conformation. There-
fore, efficiently maintaining these constraints during the training of the molecular generative model is subject to 
intensive discussions. Some representative attempts include the following: (1) using autoregressive algorithms or 
introducing conditional tokens in the training process for models generating molecules in a sequential  manner4; 
(2) leveraging generative adversarial networks (GAN) and reinforcement learning to reflect the desired bias 
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in the output  distribution5,6; (3) employing Bayesian optimization for the search of appropriate regions in the 
latent space from trained models such as variational autoencoder (VAE)7. These approaches all possess delicately 
designed architecture and have accomplished great achievements by working in an end-to-end manner in the 
fields of machine translation, games, and image processing. However, when applied to molecule generation for 
drug design, additional challenges arise, including an increased number of constraints and the lack of data. As 
a result, the application of end-to-end design that intends to satisfy all the constraints at one stroke by using 
massive amounts of training data is not as effective as in other fields. Therefore, researchers pursue solutions in 
two directions: (1) reducing the constraints by generating non-3D molecules, in which the molecules are repre-
sented as strings (i.e. SMILES) or  graphs8–10; (2) expanding the dataset, for example, by generating ligand–protein 
complex data using docking  approaches11. Although these attempts are inspiring, a groundbreaking strategy that 
can pour additional experimental data in the models is still absent. The current data expansion approaches are 
based on calculations heavily relying on computer-aided drug design (CADD) theory. This promotes artificial 
intelligence (AI) models learning from well-established rules instead of “real world” information.

There are over 120,000 high quality experimental electron density (ED) maps accumulated globally in the Pro-
tein Data Bank (PDB)12 over the past 60 years. However, only part of the information in these experimental EDs 
is used for the determination of atom coordinates, whereas other information reflecting  NCI13, time-averaged 
conformational  change14,15, and solvent  distribution16 remains untapped. In addition to being considered as data 
source, ED is also an ideal representation for molecules because it naturally reflects the physical and chemical 
properties of a molecule. Specifically, the ED intensity isosurface describes the shape of a molecule; electron 
localization function (ELF)17 describes the bond properties; and ED topology, such as saddle points, indicates 
the NCI between  molecules13. Therefore, compared to the traditional 3D molecule representations including the 
node-edge based  representation18,19 and dot-cloud-based representation such as Gaussian  filtering20 and van der 
Waals  radius21, there is no need for ED to involve multiple channels to enhance the representation of physical and 
chemical properties, thereby avoiding the data sparsity problem. Furthermore, ED is continuously smoothing 
and compatible with convolutional neural networks (CNN).

Based on the forementioned reasons, we used ED as molecule representation and introduced experimental 
ED as training data in this work. Our model was trained to first generate ED from the pocket and then interpret 
the generated ED into molecules. We evaluated our model using classical CADD indicators, such as the quanti-
tative estimate of drug-likeness (QED)22 and synthetic accessibility score (SAS)23, to test the molecular validity. 
Additionally, we employed a set of more intuitive indicators to test whether our model could generate novel 
compounds with similar binding modes to active compounds: (1) the generation of compounds with reasonable 
diversity reflected by their distribution in chemical space; and (2) the generation of novel molecules sharing 
similar binding modes with the classical active compounds. We also demonstrated the superiority of our model to 
a state-of-art 3D molecule generative model by testing them on three targets including hematopoietic progenitor 
kinase 1 (HPK1), SARS‐CoV‐2 main protease  (3CLpro), and vitamin D receptor (VDR).

Results
Model design. We trained our model to learn constraints and generate molecules in three major steps. Ini-
tially, a GAN was used to take the ED of a pocket as input to learn pocket-ligand complementarity and generate 
the ligand ED (Fig. 1a). We termed the generated ligand ED at this step as “filler ED” in this study. Subsequently, 
an ED interpretation module powered by vector quantized variational autoencoder (VQ-VAE2)24 was used to 
learn constraints on ligand validity and compress them in latent spaces. Then,  PixelCNN25 was used to balance 
the complementary and molecular validity by sampling in the latent space using filler ED as conditions and 
thereby generate reconstructed ED (Fig. 1b). Such sampling process may produce multiple reconstructed EDs 
and thus achieve diversity. Next, reconstructed EDs were fragmented and thereby substituted with molecule 
fragments to generate final molecules. Experimental EDs were used to train the GAN, and quantum mechanics 
(QM) based computational ED as well as force field based molecular conformations were used to train VQ-
VAE2 and PixelCNN. To assure the efficiency of retaining constraints during the training of GAN, we increased 
the weight of the region where the ligand and pocket show NCI. Details of the model design are provided in 
“Methods” section.

To demonstrate the working process of our model, we applied the model to a kinase target, HPK1. The 
complex structure of HPK1 binding with a reference ligand (PDB:7KAC; Fig. 2a) was used as a starting point. 
The pocket was defined as the residues within 5 Å from the reference ligand. Using experimental ED at a reso-
lution of 2.5 Å for the pocket as input (Fig. 2b), the filler ED was generated as shown in Fig. 2c. Interestingly, 
the generated filler ED replaced the region originally occupied by water molecules and covered the unoccupied 
cavities (indicated with red arrows in Fig. 2c), demonstrating the complementarity of the generated filler ED to 
the pocket. Then, the generated filler ED was converted into several reconstructed EDs (Fig. 2d). For each recon-
structed ED, a map skeleton was recognized to assist the fragmentation of reconstructed ED and the subsequent 
substitution of ED fragments with molecule fragments. For a kinase target, it is not a surprise to observe that the 
classical hinge binding groups could be well fitted into the reconstructed EDs (Fig. 2e). Finally, the molecular 
fragments were connected to create intact molecules (Fig. 2f,g). In the above process, the diversity of generated 
molecules could be achieved during reconstructed ED sampling and ED fragment substitution. On average, to 
generate one million molecules, over 2000 reconstructed EDs need to be sampled using the filler ED generated 
based on the pocket.

Model evaluation. As shown in Fig.  1c, our molecule generative model was evaluated from three per-
spectives: (1) the ability to generate valid molecules in terms of QED and SAS while maintaining a reasonable 
diversity; (2) the ability to generate molecules similar to classical active compounds, defined as generation of 
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Figure 1.  Model architecture. (a) The GAN for generating filler ED based on pocket ED. (b) ED interpretation 
module for molecule generation. VQ-VAE2 and PixelCNN used for latent space construction and autoregressive 
sampling, as well as the subsequent process of ED fragment substitution are illustrated. (c) The evaluation 
framework for generated molecules.
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molecules with over 0.5 Tanimoto  similarity8,26 with the reference active compounds; (3) the ability to generate 
novel binders, defined as the generation of molecules with novel scaffolds relative to the reference active com-
pounds but possessing similar binding modes.

We selected three targets including HPK1 (PDB: 7KAC),  3CLpro (PDB:7VU6), and VDR (PDB: 1S19), to test 
the performance of our model. They were selected as representatives of kinase, protease, and nuclear receptors. 
Regarding references (Supporting information Table S1), 6334, 1101, and 757 compounds with reported activity 
were used for HPK1,  3CLpro, and VDR, respectively (Supplementary material 1). In addition, a state-of-art 3D 
molecule generative  model27 reported in NeurIPS 2021 was used as a comparison benchmark.

Validity test. We generated 10,000 molecules for each of the three targets using our model and the bench-
mark model and compared the QED and SAS of the generated molecules. To make the comparison results easy 
to understand, we also calculated the QED and SAS of the reference compounds and used them as positive 
controls. As shown in Table 1, although both our model and the benchmark model performed well for QED, our 
model outperformed the benchmark model on SAS.

Chemical space distribution. To understand the diversity and novelty of the molecules generated by our 
model, we calculated the Tanimoto-similarity-based diversity and compared the scaffold similarity of gener-
ated molecules with reference compounds. As shown in Table S2 and Figure S1 (Supporting information), the 
molecules generated by the benchmark model exhibit higher diversity and novelty than those generated by our 
model. However, such general diversity and novelty are not suitable for the evaluation of molecules generated 
with constraints, because well-functioning constraints may reduce the general diversity and novelty. To per-
form a comprehensive evaluation, we referred to the small-molecule-universe representative universal library 
(SMU-RUL) chemical  space28, a self-organizing-map (SOM)-supported chemical space used to describe the 
distribution of molecules with molecular weight less than 500 Da. To simplify the comparison results, samples 
from PubChem were used to represent molecules lacking target-specific constraints, and active reference com-
pounds were used to represent molecules with tight constraints. As shown in Fig. 3, we observed that our model 
achieved a better balance between the diversity and novelty and the constraints than the benchmark model (i.e., 
the molecules generated by our model are concentrated towards the region where the active compounds are 
positioned, whereas the molecules of the benchmark model are distracted toward some other regions and thus 
appear more diverse).

Generation of molecules similar to classical active compounds. To test whether our molecular 
generative model can generate molecules with structures similar to already known active compounds, one mil-
lion molecules were generated for each of the three targets and compared to reference compounds by measuring 
the Tanimoto similarity of the ECFP4 fingerprint. In this study, a molecule with over 0.5 Tanimoto similarity 
against a reference compound was considered a similar molecule to this reference compound. Our model suc-
cessfully generated molecules similar to reference compounds for all three targets (Supplementary material 2). 
Taking HPK1 as an example, some reference compounds and their generated counterparts are listed in Fig. 4.

Furthermore, when we sorted reference compounds by their activity, we observed that our model tended to 
generate molecules with higher similarity to active and medium-active rather than inactive compounds, for all 
three targets (Table 2). Apart from the similarity trend, our model also generated more molecules similar to active 
and medium-active compounds than to inactive ones for HPK1 and  3CLpro. Regarding the comparison with the 
benchmark model which failed to generate million-level molecules within a reasonable time frame (Supporting 
information Table S3), it would be unfair to use all the 1 million molecules generated by our model. Therefore, 
our molecules that were subjected to the comparison were randomly selected from the 1 million previously gen-
erated to match the capacity of the benchmark model. As shown in Table S4 (Supporting information), although 
neither of the two models generated molecules similar to active reference compounds under the condition that 
only tens of thousands of molecules were generated, our model still provided molecules with better Tanimoto 
similarity to the references than the benchmark model did.

Generation of novel compounds possessing similar binding modes as active compounds. If 
a molecule generative model can only generate classical active compounds, it will not be attractive to research-
ers searching for new drugs. To test our model’s ability to generate active compounds with novel structures, 
we searched the generated library for the molecules exhibiting a < 0.5 Tanimoto similarity with reference com-
pounds while sharing a similar binding mode.

Taking HPK1 as an example, 2769 HPK1 reference compounds with reported Ki or Kd were selected and 
docked into the 7KAC pocket by using Glide  SP29,30 to provide a background for binding mode analysis. This is 
because the binding mode is more theoretically related to Ki and Kd than to EC50 or IC50. However, as shown 

Figure 2.  ED-based 3D molecule generation for HPK1. (a) Binding pocket and reference ligand (PDB code 
7KAC). Experimental ED (2Fo-Fc map at 1.2 σ contour level) for the pocket and ligand is shown as blue mesh. 
(b) Pocket ED with ligand removed. (c) Generated filler ED. For the rainbow color scheme, red indicates 
a strong ED intensity, and blue indicates a weak ED intensity. The extension of generated ED to the region 
originally occupied by water molecules and cavities originally unoccupied is indicated by red arrows. (d) 
Reconstructed ED generated based on filler ED. (e) Hinge binding fragments fitted in the reconstructed ED; 
map skeletons shown as white lines. (f) Examples of generated molecules and their map skeletons aligned with 
reconstructed ED. (g) List of examples of generated molecules.

▸
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in Fig. 5a, the Glide score could not efficiently distinguish the reference compounds with different activities, 
which implies the need for a more powerful descriptor of binding mode. Thus, we referred to NCI fingerprints 
depicted using the independent gradient model (IGM)  method31. The IGM method calculates NCIs by analyzing 
the topological properties of EDs, and thus can provide a full spectrum of  NCIs13, whereas the traditional rule-
based method only provides a short list of classical NCIs. Compound clustering based on the NCI fingerprint 
was conducted using T-distributed stochastic neighbor embedding (t-SNE)32. As shown in Fig. 5b, the clustering 
results aligned quite well with the activity: compounds sorted into one cluster tended to possess similar activi-
ties despite the low discriminative capability for samples with very high activity (separating compounds below 
1 nM from those below 10 nM).

To analyze the binding mode of molecules generated for HPK1, we randomly selected 10,000 generated mol-
ecules with < 0.5 Tanimoto similarity against the reference compounds and then scored them using Glide by only 
employing the minimization and scoring functions. This operation was conducted for both our model and the 
benchmark model. Similarly to the reference compounds, the Glide score was unable to efficiently distinguish 
between the performances of our model and the benchmark model (Fig. 5a). Therefore, we randomly selected 
200 molecules from each of the two models and conducted NCI fingerprint clustering. As shown in Fig. 5b, the 
molecules generated by the benchmark model tended to be more concentrated and farther from the cluster of 
active compounds than those generated by our model. Molecules at different positions on the NCI fingerprint 
map are listed in Fig. 5c,d, and their NCI fingerprints are provided in Fig. S2 (Supporting information). The 
hinge region-related NCIs, which are considered crucial for active compounds, were exhibited for molecules 
generated close to the cluster of active compounds. These NCIs were weak for molecules far from the clusters, 
such as #2-BM and #3-BM. Although there were cases (#4-BM and #5-ours) where the molecule from our model 
was close to the benchmark model molecule in the NCI fingerprint map, and both of them were close to the 
cluster of active compounds, our molecules are still easily distinguished for their superior synthetic accessibility.

Discussion
Our model is designed under the principle of learning constraints in separated phases: in phase I, less abundant 
experimental ED data supports the GAN to learn pocket-ligand complementarity, which is reflected by filler ED; 
in phase II, relatively abundant computational data support the VQ-VAE2 to learn the constraints on molecule 
validity, which is reflected by latent space. To balance the constraints learned in different phases, an autoregres-
sive sampling process (i.e., PixelCNN) is designed, in which phase I generated filler ED is used as conditions 
to sample in phase II generated latent space. Such sampling has the additional advantage of diversifying the 
generated molecules. In summary, because an optimal filler fulfilling all the NCIs with a pocket may not exist as 
a valid druglike molecule, the above design makes it possible to first focus the use of high-value experimental 
data in a single task and then balance the constraints learned from different tasks.

However, the above design also raises additional challenges, such as the evaluation of ED and the efficiency 
of inheriting constraints such as NCI in different tasks. To address these challenges, we again refer to the concept 
of “map skeleton” which is previously used to assist the fragmentation of reconstrued ED. Because one recon-
structed ED has only one map skeleton and the nodes of a map skeleton represent the most possible positions 
where atoms locate, whether a map skeleton of an ED is druglike and capable of forming NCI indicate the qual-
ity of that ED. Specifically, the following indices can be used for ED quality evaluation: (1) what percentage of 
contacts between filler ED and solvent accessible hetero atoms (SAHA) of the pocket is retained in reconstructed 
EDs and map skeletons; (2) whether a map skeleton can be interpreted into valid SMILES; (3) whether a map 

Table 1.  Evaluation of molecular validity. 10,000 molecules each were generated by our model and the 
benchmark model for each target; aBM refers to a  model27 reported in NeurIPS 2021 and used as the benchmark 
here; bReference compounds (Supporting information Table S1); Regarding the color scheme: all the values of 
reference compounds have their cells colored yellow. For generated molecules, if their values are better than or 
equal to that of the reference, then their cells are colored green; otherwise, their cells are colored red. Specifically, 
for QED, higher values are better; for SAS, lower values are better.

Metric for validity test

Target

HPK1 3CL
pro

VDR

Ours BM
a

Ref.
b

Ours BM
a

Ref.
b

Ours BM
a

Ref.
b

QED

Avg.

Med.

SAS

Avg.

Med.
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Figure 3.  Chemical space distribution of generated molecules and references. A 120 × 120 SOM was created using SMU-RUL28 
compounds. The color indicates the number of molecules on a logarithmic scale. The distributions of molecules from PubChem are 
listed in panel a. The distributions of reference active compounds and molecules generated using different models for HPK1,  3CLpro, 
and VDR are listed in panel (b–d), respectively. The number of molecules generated by our model is adjusted to match the number 
that can be generated by the benchmark model within a reasonable time frame. The SMILES of the molecules and their positions in the 
chemical space are provided in Supplementary material 3.
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skeleton contains rings. Taking 2500 reconstructed EDs generated by our model as example, the reconstructed 
EDs and map skeletons retain around 100% (e.g., 82%/82% for HPK1) and 70% (e.g., 59%/82% for HPK1) of 
the contacts between filler ED and pocket SAHA (Supporting information Fig. S3), respectively. To check from 
the perspective of drug likeness, 97% and 80% of the reconstructed EDs have map skeletons with at least one 
ring and as valid SMILES, respectively.

To further improve the performance of our model, there are two major points under consideration. First, we 
are considering the use of multi-resolution ED for the GAN training. Currently, the pockets used for training 
were represented as ED at a resolution of 2.5 Å, and therefore, some of the PDB entries with a resolution higher 
than 2.5 Å had their data at high-resolution shells unused. One possible method for utilizing these valuable data 
is to create multiple channels for different resolutions. However, one must strike a balance between creating 
multiple channels and avoiding the data sparsity problem for high-resolution channels receiving PDB entries 
with low-resolution data. Second, the fragment substitution approach employed in this study is to demonstrate 
the ED-based idea and thus has a relatively simplified design whose performance is highly related to the quality 
of the fragment library. To upgrade the approach, we can train a clustering model to cut the ED into more frag-
ments with smaller size than the current approach does. Doing so will reduce the size of the fragment library 
to be searched, as the number of conformations decreases sharply along with the shrink of the size of molecule 
fragments. In addition, we are considering expending the training set of VQ-VAE2 to cover all eight million 

Figure 4.  Examples of generated molecules that are similar to reference compounds for HPK1.

Table 2.  Test for the generation of molecules similar to classical active compounds. a Similar: for a reference 
compound, if a generated molecule has over 0.5 Tanimoto similarity with it for ECFP4, then this reference 
compound is considered to have similar counterparts generated. The SMILES of the generated molecules and 
their similar reference compounds are provided in Supplementary material 2.

Metrics

HPK1 3CLpro VDR

Active Medium Not active Active Medium Not active Active Medium Not active

# of reference com-
pounds 3847 2319 168 222 248 631 329 67 361

# of molecules generated 1 million 1 million 1 million

Max. of Tanimoto simi-
larity to ref. cpd 0.76 0.72 0.51 0.58 0.73 0.61 0.57 0.44 0.55

# of reference molecule 
with  similara counter-
parts generated

58 53 1 3 15 11 1 0 7

# of generated molecules 
similar to ref. cpd 30 20 2 14 158 42 1 0 10
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molecules in SMU-RUL and more molecules from PubChem. Doing so will improve the quality of latent space 
and reconstructed ED so that the subsequent V-Net may directly produce high-quality molecules instead of 
map skeletons, making the fragments assembling unnecessary. Another approach worth trying is to generate a 

Figure 5.  Binding mode analysis of the generated molecules for HPK1. (a) Glide Score distribution for active 
reference compounds and generated molecules. (b) Results of t-SNE clustering using IGM calculated NCIs 
as features. Red circles are used to indicate our generated molecules with novel cyclic  skeletons33 (CSK) with 
respect to reference compounds. A generated molecule is defined as having novel CSK if the highest Tanimoto 
similarity between its CSK and that of all the reference compounds is less than 0.5. (c) Binding mode of selected 
molecules generated by our model. (d) Binding mode of selected molecules generated by benchmark model. For 
panel c and d, NCI regions are indicated with dots colored using the rainbow scheme, in which blue indicates 
weak interactions and red indicates strong interactions. More details are provided in Supplementary material 4, 
5, and 6.
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caption in the format of SMILES that best describes the reconstructed ED. Then, the generated SMILES can be 
fitted in the reconstructed ED to get 3D conformation.

Another point that should be considered is how to use our model in a scenario in which there is no experi-
mental ED data as input. Such a scenario could occur when the generative model is used for a pocket provided 
by a molecular dynamic approach. Our model, although trained using experimental ED data as input, also works 
when using a calculated Fourier synthesis-based ED map as input. Specifically, one only needs to add reasonable 
B factors (e.g., 20 with a Gaussian perturbation) for each atom and then calculate the ED map using the Fourier 
synthesis. Furthermore, the application of our molecule generative model to the representative conformations 
obtained from molecular dynamics may provide potential solutions for some challenging tasks. First, it is pos-
sible to remove the bias introduced by using only one conformation of the pocket. We can generate molecules 
for all the representative conformations and all the available experimental EDs for the pocket (if any), and then 
combine the generated molecules to compile the library. Second, it is possible to support cosolvent MD simula-
tions (CMD) in the study of allosteric pockets and hidden  pockets34,35. Because such pockets usually require 
the presence of a ligand to open from an apo state, the incorporation of the right cosolvents is highly associated 
with the success of sampling the open state. Usually, general probes such as benzene and isopropanol are used 
as  probes34. With our model, specific probes can be generated for the cavity of interest. In addition, if the cavity 
exhibits conformational changes after the probe binds to it during CMD, we can use the new conformation of 
the cavity to generate new probes.

Another potential use of our model is the detection of small molecule binding regions for protein–protein 
interaction (PPI) interfaces. Because an electron density map can represent the physical and chemical proper-
ties of the molecule and is continuously smoothing, it can fully utilize the potential of CNN in representing 
the local environment. Specifically, although we did not train our model with PPI samples, our model can still 
recognize the “pocket-like” region in PPI interfaces and generate fragment-sized molecules (Supporting infor-
mation Figure S5).

Methods
Molecule design. Ligand ED generative model. As show in Fig. 1a, the pocket EDs were input into a V-Net 
3D image generation network, which acts as a generator. In addition to the generator, two discriminators, called 
complex and ligand discriminators, were designed. The complex discriminator was responsible for examining 
the level of complementarity between the ligand and the pocket, and the ligand discriminator was responsible 
for verifying ED validity from the perspectives of gradient and connectivity.

The protein-ligand pairs used to train the filler ED generative model were from the PDBbind  database36. 
In total, 27,006 ligand-protein pairs were extracted from 12,905 complexes. The number of the ligand-protein 
pairs was larger than that of the complexes because we included drug-like molecules as well as other binders 
with molecular weight less than 600, such as ATP, ADP, and sugars. To avoid the appearance of similar pockets 
in both the training and the testing sets, training-testing split was done by referring to the pocket classification 
from previous studies focusing on the 1D and 3D pocket  similarity11,37. The key NCIs identified using a previously 
reported  method13 were also included in the model during training with the purpose of making the network 
more attentive on the NCI related regions. Smooth L1 loss was performed separately to strengthen the loss of 
the NCI related regions.

The GAN and its loss were expressed using the following equations:

where Dcomplex represents the complex discriminator, and Dligand represents the ligand discriminator. L(G) indicates 
the regression loss of GAN, x represents the input pocket, y represents the ground truth ligand, and α, λ, β, γ, 
ε, δ are hyper parameters. Ltv1 and Ltv2 are used to measure the similarity of two EDs from the perspectives of 
the first and second orders derivative of intensity, respectively. The addition of Dligand and the incorporation of 
Ltv1 and Ltv2 in L(G) are to ensure the learning of ED topology properties which reflect not only the geometrical 
information such as molecule shape but also chemical information such as atom type.

The components of L(G) are defined as follows:

where I indicates the entire region, and NI indicates the number of elements in I.

(1)G∗ = argminGmaxD
(
LcGAN

(
G,Dcomplex

)
+ αLGAN

(
G,Dligand

))
+ �L(G)

(2)LcGAN
(
G,Dcomplex

)
= Ex,y

[
logDcomplex

(
x, y

)]
+ Ex,y

[
log

(
1− Dcomplex(x,G(x))

)]

(3)LGAN
(
G,Dligand

)
= Ex,y

[
logDligand

(
x, y

)]
+ Ex,y

[
log

(
1− Dligand(G(x))

)]

(4)L(G) = βLgen + γ Lligand + εLNCI + δ(Ltv1 + Ltv2)

(5)SmoothL1 =

{
0.5x2, if |x| < 1

|x| − 0.5, otherwise

(6)Lgen =
1

NI

∑

i∈I

SmoothL1(G(x)i − yi)
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where Gt indicates the region covered by the ground truth, and NGt indicates the number of elements in Gt

where NCI indicates the region covered by NCI, and NNCI indicates number of elements in NCI

where ⊕ indicates the operator of concatenate.
To prepare data for model training, the experimental EDs (i.e. sigma scaled 2Fo-Fc map) for pockets were 

generated using  Phenix38 and experimental ED coefficients downloaded from PDB. These pocket EDs were used 
as input features for the AI model. The computational ED for ligands were prepared as labels. The software  xtb39 
were used to calculate computational ED for ligands at GNF2-xTB level using ligand coordinates as input. Since 
the ED intensity within the nuclear region is much stronger than that within the region where the NCIs take 
place and where the shape of the molecule is defined (i.e., the isosurface at 0.03 e/Å3), the range of values were 
compressed using logarithms and then used as labels for the AI model.

ED was featured using 3D CNN, and data augmentation was used to achieve rotational invariance.

Ligand structure generative model. As shown in Fig. 1b, VQ-VAE2 was used to compress the ED into a discrete 
latent space and learn a codebook in which EDs are represented by a series of embeddings. To retain the con-
straints in the input ED while ensuring that the output ED can match a valid molecule, a separate autoregressive 
prior (PixelCNN) was taught to sample the latent space with input ED as a given condition. Two codebooks 
were learned during training: the top-level codebook focusing on the extraction of general profile information 
(such as shape) and the bottom-level codebook focusing on the detailed information (such as local conforma-
tions). Regarding sampling with the two codebooks, the input ED was used as a condition to sample the top-level 
codebook, and the top-level encoding was used as the condition to sample the bottom-level codebook. Thus, the 
relationship between the conditional ED (i.e., input ED) and the generated ED was decoupled.

EDs were voxelized into a discrete 0.5 Å cubic grid with a side size of 24 Å. There were represented as a ten-
sor p ∈ R

1×48×48×48 , where channel size was 1, expressing the intensity of ED. The VQ-VAE2 loss is shown in 
Eq. (9),where x is the training instance, D is the decoder of the VQ-VAE2 and e is the encoder. The reconstruction 
loss is shown in Eq. (10). It combines the LSoftDiceLoss as well as LSmoothL1 . To generate better ED reconstructed 
shapes, we adopted LSoftDiceLoss as shown in Eq. (11) for segmenting ED and the background where y is the target 
and ŷ  is the prediction. The target label of the pixel with the ED value was set to 1, and the rest of the background 
part was set to 0. Further, LSmoothL1 was obtained using Eq. (12); similarly, y is the target and ŷ  is the prediction.

PixelCNN optimized the negative log-likelihood of the training data to maximize the probability 
p(x|h) =

∏HWD
i=1 p(xi|x1, ..., xi−1, h) , where H represents height, W represents width, and D represents depth of 

the 3D cube where h is the condition. Top-level and bottom-level prior networks were modeled with 6 × 6 × 6 and 
12 × 12 × 12 latent variables, respectively. Additionally, the condition of the top-level PixelCNN was the previously 
generated filler ED. The bottom-level network was conditioned on the top-level prior.

(7)Lligand =
1

NGt

∑

i∈Gt

SmoothL1(G(x)i − yi)

(8a)LNCI =
1

NNCI

∑

i∈NCI

SmoothL1(G(x)i − yi)

(8b)Ltv1 =
1

NI

∑

i∈I

SmoothL1(t̂v1i − tv1i)

(8c)Ltv2 =
1

NI

∑

i∈I

SmoothL1(t̂v2i − tv2i)

(8d)tv1 =

(
I
(i+1,j,k)∈I − I

(i,j,k)∈I

)
⊕

(
I
(i,j+1,k)∈I − I

(i,j,k)∈I

)
⊕

(
I
(i,j,k+1)∈I − I

(i,j,k)∈I

)

(8e)tv2 =

(
tv1

(i+1,j,k)∈I − tv1
(i,j,k)∈I

)
⊕

(
tv1

(i,j+1,k)∈I − tv1
(i,j,k)∈I

)
⊕

(
tv1

(i,j,k+1)∈I − tv1
(i,j,k)∈I

)

(9)L(x, D(e)) = LReconstruction(x, D(e))+ �sg[E(x)− e]�22 + β�sg[e] − E(x)�22

(10)LReconstruction(x, D(x)) = LSoftDiceLoss(x, D(x))+ αLSmoothL1(x, D(x))

(11)LSoftDiceLoss(ŷ, y) = 1−
2
∑

i∈I−1 ŷiyi∑
i∈I−1 ŷ

2
i +

∑
i∈I−1 yi

2

(12)LSmoothL1(ŷ, y) =
1

NI

∑

i∈I

SmoothL1(ŷi − yi)
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To prepare the data for modeling training, two million molecules with a QED exceeding 0.3 were extracted. 
For each molecule, 20 conformers were generated using  ConfGen40. EDs of the 40 million conformers were 
generated using  xtb39 and then used as training data for the VQ-VAE2.

Map skeleton assisted ED fragment substitution with molecule fragment. First, the reconstructed ED was sub-
mitted to a V-Net framework for atom detection. This step is similar to that of key point detection in human 
skeletons in the field of image processing. The V-Net was trained using the above 40 million EDs as features and 
the conformers used to generate these EDs as labels. The ground truth was represented as a tensor, where 10 
channels were denoted based on atom type: PAD (no atoms), C, N, O, S, P, F, Cl, Br, and I. The cross-entropy loss 
was used for atom type classification. The V-Net output was comprised of connected atoms and called a map 
skeleton.

Then, a molecular fragment library was prepared. The molecules from PubChem were matched with 35 
reaction  templates41 according to the substructure superposition supported by  RDKit42, and then cut into two 
fragments at the matching site. If a molecule matched multiple reaction templates, it was still cut into two frag-
ments each time, but the cutting site was different. In this way, over 270,000 fragments with labeled cutting sites 
were obtained. Then  OpenBabel43 was used to generate a maximum of 20 conformations for each fragment, 
and it finally produced a library with 3.5 million 3D conformations. GFN0-xtb EDs of the conformations were 
calculated for future use.

Next, the map skeleton was cut into several fragment pairs in the following manner: each time the whole 
molecule was cleaved at one acyclic single bond, two fragments were generated; next time, the whole molecule 
was cleaved at another acyclic single bond; the process was repeated until all acyclic single bonds had been 
cut. Each cut on the map skeleton generates a pair of map skeleton fragments and a pair of ED fragments. The 
above-established 3.5 million 3D conformation library was searched for entries that could be well fitted in the ED 
fragment in terms of shape and intensity and similar to the map skeleton fragment in terms of atomic position. 
Specifically, an entry in the library was first superimposed with the map skeleton fragment by minimizing root-
mean-square deviation of atomic positions and then subjected to the measuring of Dice using Eq. (11) between 
its ED and the ED fragment. Next, the two groups of selected entries were assembled in an enumerative way to 
make a list of target molecules. Subsequently, several filters were applied to remove the unqualified molecules. 
These filters include the following:

1. Collisions with the pocket : the distance from the pocket heavy atom is less than 2.5 Å.
2. Collisions between the fragments: the distance from the non-bonded heavy atom is less than 2.0 Å.
3. Stability and synthetic accessibility filters and drug-like filter reported by Virshup et al.28

Illustrations can be found in Figure S4 and Table S5 in Supporting Information.

Model evaluation. The data used for chemical space construction consisted of 8.8 million molecules from 
SMU-RUL28.

The evaluation data were collected from 144 publications including research papers and patents.

Chemical space construction. Chemical space was constructed mainly based on the method described in 
a previous  study28. In our work, four properties including carbon-scaled atomic mass, carbon-scaled atomic van 
der Waals volume, carbon-scaled atomic Sanderson electronegativity, and carbon-scaled atomic polarizability 
were used to calculate the autocorrelation fingerprint. The autocorrelation descriptors were calculated using 
 PyBioMed44.

The  SOM45 with size of 120 ×120 was implemented using MiniSom  library46.

NCI fingerprint analysis. Docking was implemented by using  Glide29,30. IGM-based NCI analysis was 
implemented using  Multiwfn47. The atom-pair-based NCI list output by Multwfn was further annotated with 
the Mol2/Sybyl atom types for both of the atoms using  OpenBabel48 and  PyBel43 packages, and then submitted 
to Scikit-learn49 for t-SNE32 clustering analysis.

Benchmark model. The source code of benchmark model is downloaded from its official website: https:// 
github. com/ luost 26/ 3D- Gener ative- SBDD.

Data availability
The data analyzed during this study are included in this published article and its supplementary information files. 
Partial codes are available from the corresponding author on reasonable request. Our model provides service to 
academic users via https:// edmg. stone wise. cn/#/ create.
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