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Abstract: Determining the chronological age of children or adolescents is becoming an extremely
necessary and important issue. Correct age-assessment methods are especially important in the
process of international adoption and in the case of immigrants without valid documents confirming
their identity. It is well known that traditional, analog methods widely used in clinical evaluation
are burdened with a high error rate and are characterized by low accuracy. On the other hand, new
digital approaches appear in medicine more and more often, which allow the increase of the accuracy
of these estimates, and thus equip doctors with a tool for reliable estimation of the chronological age
of children and adolescents. In this study, the work on a fast and effective metamodel is continued.
Metamodels have one great advantage over all other analog and quasidigital methods—if they are
well trained, a priori, on a representative set of samples, then in the age-assessment phase, results
are obtained in a fraction of a second and with little error (reduced to ±7.5 months). In the here-
proposed method, the standard deviation for each estimate is additionally obtained, which allows the
assessment of the certainty of each result. In this study, 619 pantomographic photos of 619 patients
(296 girls and 323 boys) of different ages were used. In the numerical procedure, on the other hand,
a metamodel based on the Proper Orthogonal Decomposition (POD) and Gaussian processes (GP)
were utilized. The accuracy of the trained model was up to 95%.

Keywords: chronological age; dental age; age assessment; digital pantomography; digital image
analysis; artificial intelligence; Gaussian processes; proper orthogonal decomposition

1. Introduction

Metric age estimation is most often used in anthropology and forensics, but also for
doctors in planning and evaluating treatment outcomes, for confirming the age of illegal
immigrants or children from international adoptions. Incorrect classification can lead to
serious consequences, so it is extremely important to develop reliable procedures for deter-
mining the metric age. Subjective, analogue techniques used to assess the development
of dentition in a young patient, despite their popularity in the clinical assessment, are
characterized by low accuracy. Additionally, clear discrepancies are often noticed between
the chronological age and the predicted age determined by means of appropriate scientific
atlases, charts and/or tables [1–18]. The differences can be significant [1–3] as they can
reach even 36 months [3]. Another disadvantage of the currently used methods is their
time-consuming nature. This is mainly due to the fact that the assessment of the devel-
opment stage of tooth buds must be accurate on the basis of tables and studies by the
doctors themselves.

Dental age assessment methods can be divided into (A) clinical methods, where
the time of eruption of particular groups of teeth is compared, and (B) pantomographic
methods, where the process of mineralization of tooth buds is assessed. During routine
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dental checkups, which belong to clinical methods, the presence of groups or individual
teeth in a patient can be checked. This allows dentists to determine the patient’s dental
age. The advantages of this method include the fact that it is easy to use, relatively fast and
noninvasive. The main disadvantages, however, include inaccuracy, which results, among
other factors, from (i) the difficulty in determining whether a tooth undergoing eruption
should be classified as one that has already reached the occlusal plane, and (ii) the difficulty
in determining the presence of factors disturbing the eruption process [4]. Dental age can
also be determined on the basis of tables and charts from which the average eruption time
is determined [5]. Currently, these methods are used to detect possible dental abnormalities
and to make a preliminary estimate of the patient’s age.

The pantomographic methods include techniques based on the evaluation of the
mineralization of tooth buds. These methods of dental age assessment are more accurate
than those based on the use of tables and charts. In the literature, one can find many
proposals that differ in the number of individual stages of tooth development, as well as
their type [6–9]. There are many methods for estimating metric age from a pantomographic
image, such as the Demirijan, Uberlaker, and Schour and Massler methods [6–9,11–17].
Most of these methods were developed in the 20th century. One of the most recent methods
for assessing a patient’s age is the London Atlas, which was developed in 2009 [18].

For this reason, researchers from all over the world are looking for a method to estimate
a patient’s age using the latest technological advances.

In medicine, the latest innovations in the field of computer science are used more
and more often, with particular emphasis on methods based on artificial intelligence,
including metamodels, which help to improve the effectiveness of treatment and the
accuracy of diagnosing various diseases [19,20]. The use of artificial neural networks,
especially in the processing of medical images and information, allows the generalization
of data contained even in noisy X-ray images [21,22], thus avoiding misdiagnosis and more
efficient diagnostics [23]. Currently, artificial neural networks (ANN) are the core of many
expert systems that support doctors in the daily management of information about patients.
Neural networks also help manage data during difficult procedures such as the Da Vinci
Robot [24,25].

The literature also includes studies on age assessment based on the analysis of the
deterioration of the condition of the teeth [26]. The study describes the use of Cone Beam
Computed Tomography (CBCT) in the assessment of tooth deterioration. Age estimation
was there determined on the basis of the structural changes of the tooth. The CBCT
technique used in these studies is much more precise; however, it is significantly more
expensive than traditional techniques and it is not common in less-developed countries.
The methodology itself is not based on metrics or indexes, nor does it use automated
image-analysis methods. The method does not lead to high accuracy either, as the obtained
R value was only 0.85.

At the beginning of 2021, several articles regarding the estimation of the age of children,
adolescents and adults with the use of artificial intelligence appeared. For example, the
work of Mauer et al. [27] presents the possibility of determining age using three-dimensional
images of the knee joint. However, despite the use of algorithms based on deep learning,
the quality of the model was 90% and the Mean Absolute Error (MAE) was ±6 months.
An additional disadvantage of this method was its high cost and time consumption. The
validity of the use of artificial neural networks is questioned in the study [28], where a
population of over 3000 cases aged 4 to 40 was studied. The method presented in this paper
gives better results than those presented in the previous paper. Convolutional networks
and measurements on cephalometric images were used, which concern not only the teeth,
but also other bone parameters. Unfortunately, despite analyzing nearly 300 images, the
obtained results, although indicating a correlation, were not satisfactory.

The recent work on the assessment of the metric age of children and adolescents
by Zaborowicz et al. [29] follows a clear trend of using advanced digital techniques and
successively increasing the accuracy of the obtained results. The paper presents a very
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innovative methodology based on carefully selected 21 coefficients describing the propor-
tions of the geometrical dimensions of the selected teeth. Measurements are carried out
fully automatically using the specialized tools for the analysis of pantomographic images
of the patients’ dentition. The use of artificial intelligence in the work allowed to obtain
very accurate results.

The present work is an extension of the work presented by Zaborowicz [29]. New
elements that are additionally included here are: (a) automatic sensitivity analysis of all
21 indices to see which of them carry more information; (b) the use of data compression
techniques based on the Proper Orthogonal Decomposition (POD) [30–33], which allows not
only the reduction of the size of the input vector but also the denoising of the data, thereby
reducing the risk of overfitting the model; (c) the use of Gaussian processes (GP) [34,35],
which allows results and their uncertainty to be obtained. This model is trained once-for-all
and can later be used as a ready-made tool for in situ identification of the dental age of
new patients. The only requirement is the correct parameterization of the pantomographic
image of a patient from the same ethnic group for which the model was constructed, based
on the precollected training data. Moreover, in the process of learning hyperparameters, a
sensitivity analysis is performed, thanks to which the metamodel can be further optimized
in a fully automated way. The proprietary procedures have been implemented in the
Mathworks software—Matlab 2021b [36]. The effectiveness of the proposed algorithms for
the amplitude vectors truncated to just 7 values reached a classification accuracy of 95%.

The most important improvement compared to the previous work is the ability to
perform fully automatic prioritization of geometric indicators without the need to analyze
in more detail which ones are more important and which ones are less. This is particularly
important in the case of patients who do not have some of the selected features, which
may disturb the operation of the algorithms estimating the child’s age. Another equally
important improvement is the ability to determine the age of the child and adolescent with
equally good precision, but at the same time obtaining information about the uncertainty
of the measurement in the form of standard deviation.

2. Materials and Methods
2.1. Research Material—Pantomographic Photos

The research material consisted of 619 digital pantomographic photos of children
and adolescents obtained from the patient base of the University Center for Dentistry and
Specialist Medicine in Poznan. As tooth development is most visible between the ages of
4 and 18, 296 photos of girls and 323 photos of boys in this age interval were included in
the research group. Photographs showing developmental disorders and abnormalities,
such as changes in the face, diseases of the hard tissues of teeth and pulp, systemic diseases
or developmental defects of the face and teeth, were excluded from the study. All patients
were citizens of Poland. The study did not have the characteristics of a medical experiment,
therefore the Bioethics Committee of the Medical University of Poznan agreed to use them
in this study.

In the conducted research, a set of 21 indicators was used, estimated by Zaborowicz [37].
These indicators were selected to capture most of information about the condition of teeth
of children and adolescents. As pantomographic images are not made on a fixed scale,
all indicators are calculated as proportions of individual geometric distances, lengths of
selected teeth, etc. Please refer to the latest work by Zaborowicz et al. [29], where all
the details and descriptions of the indicators can be found. In this work, in order to
avoid repetition, only the most important description of the methodology for calculating
empirical data is given. Pantomographic photos taken with the Duerr Dental VistaPano
S Ceph apparatus were used for the tests. This camera records digital images in the DI-
COM 3.0 format, which is supported by the specialized software DBSWIN [38] used for
the analysis of 16-bit grayscale, i.e., images dedicated to medicine, including oncology,
ophthalmology, cardiology, surgery and dentistry [38]. To collect all indices, i.e., tooth and
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bone parameters the free, open-source software ImageJ 1.52a [39] was used. Figures 1 and 2
show sample photos and measurements.
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2.2. Proper Orthogonal Decomposition

The following training pairs were used here: target vectors ti (i = 1, . . . , M) corre-
sponding to the known age of the patient in months (in total M = 619 patients aged
between 52 to 214 months) and the training data collected in a matrix UN×M in which the
m-th column um is a vector (snapshot) containing N geometrical indexes of the teeth (in
total N = 21 selected indicators) for each patient tm.

As the differences between individual indicators result only from the variability of the
parameters sought within a given range, snapshots are often correlated, i.e., they create
almost parallel vectors in their N-dimensional space (N = 21). In order to minimize
these correlations, the POD method is employed here [40,41]. This method is based on
the truncation of the information contained in the snapshot matrix U = [u1, . . . uM]. Such
compression eliminates the elements of the input vector that are characterized by the least
variability (i.e., the system is not sensitive to their change). The mathematical theory and
computational procedures related to POD have their origins dating back to the early 20th
century and are applicable in various fields [30–33,42,43].

The matrix U, as defined above, initially collected from M = 619 patients, is used
to construct the symmetric, positive (semi)definite matrix D = UUT . Then, by calcu-
lating its eigenvalues λi and the corresponding eigenvectors Φi an orthonormal matrix
AN×M, consisting of the amplitudes am of the snapshots um, can be described by the
following relationship:

A = [a1, . . . , aM] = ΦTU. (1)

The noticed correlation between vectors with geometric indices of individual patients
means that many amplitudes ai in the new basis Φ can be neglected. In the literature, one
can find mathematical evidence that the negligibility of such amplitudes can be quantified
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by the eigenvalues λi of matrix D, see, e.g., [44]. By arranging eigenvalues in descending
order, one can notice a specific threshold below which eigenvalues do not significantly
increase the cumulative sum of all eigenvalues. So, by keeping only the few, say N largest
eigenvalues, with N � N, the approximation UN×M of the snapshot matrix UN×M is
obtained by using the truncated basis ΩN×M and the corresponding truncated amplitudes
XN×M:

X = ΩTU, (2)

In cases where the number of training pairs is very large, this procedure turns out
to be computationally demanding and often time-consuming, but it is performed only
once as preparatory work to generate the matrices Ω and X. After this work is done, each
new snapshot u∗ with geometric indices of the teeth corresponding to the new patient t∗

(new because it was not used in the learning process) can now be determined by (2) by its
truncated amplitude N-vector x(t∗).

2.3. Gaussian Processes

Gaussian processes can be illustrated by a linear regression (LR) model, which consists
pf a linear function of the model parameters w and a nonlinear function of the input vector
(i.e., truncated amplitude vector x):

y(x, w) =
M

∑
j=1

wj ϕj(x), (3)

where ϕj(x) is a fixed basis functions of the input variables (e.g., polynomial or radial
basis functions).

For the M given training patterns (xm, tm), xm being the input vector and tm the
response for m = 1 . . . M, the parameters vector w of the linear model might be solved by
the penalized least squares method:

w =
(

ΘTΘ + αI
)−1

ΘTt, (4)

where ΘN×M is a design matrix with elements defined as θm(xn). Here, the regularization
parameter α is called a hyperparameter and can be computed by using a validation set or
by maximizing evidence of dataset p(t|α ) with respect to α [45] within Bayesian inference.

Gaussian processes according to Bayesian theory are a double representation of a
linear model [45], while the kernel function is here a GP covariance function. Therefore, the
regression model leads to the decomposition of the target variable y(x∗) which become the
prediction for the new input vector x∗. Now, taking the conditional distribution p(y|t) as
the Gaussian distribution, the mean can be determined by:

mean(x∗) = kTC−1t, (5)

while the covariance by the following formula:

σ2(x∗) = c− kTC−1k, (6)

where CN×M is the covariance matrix:

C
(
x, x′

)
= k

(
x, x′

)
+ β−1I, (7)

where β is the variance of the target distribution and I is an identity matrix. The covariance
matrix C(x, x′) identifies vectors x and x′ closely adjacent in the input space, which then
generate strongly correlated values of y(x) and y(x′) in the output space. Any function that
will generate a specific non-negative covariance matrix can be used as a function of the
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covariance for any ordered set of (input) vectors (x1, . . . , xM), e.g., a stationary, nonisotropic
squared exponential covariance function k(x, x′):

k
(
x, x′

)
= ν exp

(
−1

2

M

∑
i

ωi
(
xi − x′i

)2
)
+ b, (8)

where: ωi controls a different distance measure in each i-th dimension; ν controls the
vertical scale of the process; b represents the deviation that controls the vertical parallel
shift of the Gaussian process. If ωi is small, it means that it has little effect on the input
data, therefore the i-th input data is scaled down. In general, hyperparameters play a
very important role because they have a direct relationship to the sensitivity of the model
with respect to the input parameters, and thus allow us to measure the importance of the
input parameters.

Having defined the covariance function, it is possible to make predictions of the new
input vectors. Before that, however, it is necessary to determine the hyperparameters

r = [ν, ω1, . . . , ωN , b, β]. (9)

In order to find those parameters, one can search for the most probable set by maxi-
mizing the log likelihood function given by the following equation:

ln p(t|r) = 1
2

ln|C| − 1
2

tC−1t− N
2

ln 2π, (10)

Using any gradient-based optimization algorithms, such as a first-order batch Levenberg–
Marquardt Algorithm (LMA) or Trust Region Algorithm (TRA) [46]. In this study, TRA,
which provides fast convergence, was used.

2.4. Metamodel—Training and Testing

First, the experimental data set was divided into training and test data. A different
number of patient data was used for testing the model, ranging from 1/18 of all photos,
that is, 34 random vector patterns, to 17/18 of all photos, which consists of 585 records.
The remaining records were used to train the model. In the first stage, all 21 geometric
indices without the POD procedure were used in order to determine the sensitivity of
the model to individual indexes. In a model based on Gaussian processes, sensitivity is
automatically determined in the learning process by scaling the hyperparameters. Next, the
POD procedure was included, where the number of elements in the truncated amplitude
vectors ranged from 1 to 21 in order to check for which value, the model achieves the
highest efficiency.

It is expected that the fewer elements in the input vector x, the worse the estimate be-
comes due to insufficient information carried by the truncated amplitude vectors. Likewise,
if there are more items, the estimation error becomes greater as the data contains more
noise. Therefore, the search for the optimal truncation level in POD procedure seems to be
extremely important and is an alternative to the sensitivity analysis built into the training
algorithm in Gaussian processes.

3. Results

The result of this research is a new stochastic methodology for determining the chrono-
logical age of children aged 4 to 18 (52 to 214 months). A set of 21 tooth and bone parameters
were used here. Those indicators were developed on the basis of digital pantomographic
images by Zaborowicz [37]. A metamodel based on Gaussian processes was used here with
and without compressing the input data with proper orthogonal decomposition. Two error
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measurements were used here to compare the performance of different models, namely
scaled mean absolute error (%):

SMAE = 100
1
N

N

∑
i=1

(
1− yi

ti

)
, (11)

and mean absolute error (months):

MAE =
1
N

N

∑
i=1
|ti − yi|, (12)

First, a model was built without using the POD procedure. A full 21-element vector
with normalization of each element was used for training. The error of the training set
(MAE) ranges from 1 to 7.5 months, while the error of the test set (MAE) from 8.8 to almost
20.8 months (see Figure 3), depending on the ratio of the training set to the test set.
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Then, a model was prepared in which the cut-off level of the amplitude vector was
changed from 1 to 21 elements. Results in the form of calculated eigenvalues of matrix
D, cumulative sum of eigenvalues, the SMAE and MAE values for both the training set
and the testing set are shown in the Table 1. The cumulative sum was calculated using the
following formula:

rj = 100
N∗

∑
j=1

λj

N

∑
i=1

λ−1
i , (13)

where N∗ is the cutoff level and N is the number of all eigenvalues (here N = 21).

Table 1. Results for both the analysis of the input data and the model performance. Eigenvalues of
matrix D (column 2); cumulative sum of eigenvalues (column 3); mean absolute error for training
and testing data (column 4–7).

Amplitude ID Eigenvalues Cumulative Sum of Eigenvalues
SMAE (%) MAE (Months)

Training Testing Training Testing

1 914,248.1 91.0098 13.7810 14.5104 14.44 14.31
2 71,644.2 98.1417 13.0938 15.3405 13.89 15.05
3 9452.9 99.0827 8.8653 6.4658 10.18 7.68
4 6619.8 99.7417 8.5683 7.0547 9.86 8.38
5 730.1 99.8144 8.3660 6.3758 9.64 7.70
6 490.9 99.8632 7.9806 6.4921 9.27 7.68
7 341.9 99.8973 7.8005 6.1207 9.07 7.53
8 323.0 99.9294 7.1876 6.6766 8.35 8.64
9 207.2 99.9500 7.1220 6.6229 8.23 8.28

10 162.4 99.9662 6.5054 6.9369 7.49 8.40
11 112.8 99.9775 5.5446 7.1527 6.37 8.74
12 76.3 99.9850 4.8145 7.0072 5.52 8.57
13 45.7 99.9896 3.4102 7.8680 3.87 10.97
14 30.3 99.9926 1.7540 7.0906 2.00 11.01
15 21.0 99.9947 1.2501 6.9232 1.42 10.43
16 17.0 99.9964 0.5975 7.0517 0.68 9.79
17 12.1 99.9976 0.5466 6.9142 0.62 9.02
18 11.2 99.9987 0.3128 6.9345 0.36 10.34
19 6.3 99.9994 0.2733 7.0676 0.31 11.99
20 4.1 99.9998 0.2075 7.0424 0.24 10.83
21 2.2 100.0000 0.2068 7.1006 0.24 15.37

Table 1 presents the results of the estimation using models with different levels of
truncation of the input vector. The results are intentionally presented separately for the
training set and the test set as it is obvious that the training set will achieve a much lower
MAE or SMAE value. This is especially important when these results are to be compared
with the results obtained with other commercial tools, where the quality of the prediction is
often given as the weighted error MAE from two sets. This is an obvious false assumption,
because summing these values for large training sets that produce very small error values
and a small test set that has a relatively large error, the actual fit of the model to the new
patterns is completely distorted. Therefore, in the further part of this work, all results
obtained by the proposed models will be presented for the test set (1/18 of all set, never
used to train the model).

Figure 5 shows the graph of the SMAE error for the training and test set depending on
the number of amplitudes at the model input.
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The seventh row is marked in the Table 1—in this cut-off level, the smallest SMAE and
MAE error for the testing set was obtained. In the further part, the detailed values of the
obtained predictions for this particular case are presented.

Figures 6 and 7 show the detailed results obtained with the model in which the
amplitude vector was cut to 7 elements.
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A statistical measure of the quality of the model may be the coefficient of determination—R
square—which can be determined using the formula:

R2 = 1−
M

∑
i=1

(ti − yi)
2

M

∑
i=1

(yi − y)−2, (14)

where: M is number of targets, ti is a target, yi is a model prediction, y is a mean of
target vector:

y =
1
M

M

∑
i=1

yi, (15)

Figure 8 presents the R square values for testing and training sets of the two models:
(1) with 7 amplitudes; (2) with 17 amplitudes.
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4. Discussion

From the preliminary case study presented in Figure 3, it can be concluded that the
model presented here is practically independent of the ratio of the selected test set to the
training set. Only when the training set is below 10% of the whole set, the results obtained
with the use of the model for the test set did not exceed 12 months of the MAE error.
The best results for the test set were obtained for the ratio (testing to training set) of 10%.
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Therefore, with more training elements, the test error decreases; however, the MSE error
for the test set to the training set ratio at 10% and 90% was only between 9 and 13 months.

The first significant observation from the conducted research is the fact that the model
based on all indicators but without the POD procedure is not the most optimal. It is visible
in Figure 4 that the model is sensitive to only a few of the selected indicators—the greatest
sensitivity of the model is to changes in the index X08, then X01, X14, X07, less to X06, X05,
X12, the others have almost no impact on the sensitivity of the model.

This observation is the basis for using POD procedures, which allow the reduction of
the input vector by cutting off the least important components (amplitudes). It is worth
noting that the first 7 amplitudes contain almost 99.9% of the information (see Table 1).
Analyzing the SMAE generated by the model during training, it can be seen that this error
systematically decreases with the increase in the number of amplitudes at the model input,
but the same error for the testing set remains constant starting from three amplitudes
(see Figure 5 and Table 1). This means that when training the model with a data vector
containing more amplitudes, the noise is also introduced due to measurement errors,
inaccuracies, etc. This can also be seen in Figure 8, where the R squared value increases
when the model was trained with 17 amplitudes (with respect to model trained with
7 amplitudes), but the same model for the testing set generates a lower value coefficient
of determination.

The results presented in Figures 6 and 7 show that the model, in 30 out of 34 cases,
generated results with an error of less than 10% (in 15 cases, with an error less than 5%). This
is very promising, however it is puzzling why a slightly better result cannot be achieved.
For a deeper analysis, a histogram was built (see Figure 9), which shows how many patients
were in specific age groups—the largest number of patients is between 80–150 months. For
example, for patients in the range of 120–130 months, statistical data on the variability of
all indicators are summarized in Figure 10. It can be clearly seen that some parameters
have very low variability (X07–X10).

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 11 of 14 
 

 

error. The best results for the test set were obtained for the ratio (testing to training set) of 
10%. Therefore, with more training elements, the test error decreases; however, the MSE 
error for the test set to the training set ratio at 10% and 90% was only between 9 and 13 
months. 

The first significant observation from the conducted research is the fact that the 
model based on all indicators but without the POD procedure is not the most optimal. It 
is visible in Figure 4 that the model is sensitive to only a few of the selected indica-
tors—the greatest sensitivity of the model is to changes in the index X08, then X01, X14, 
X07, less to X06, X05, X12, the others have almost no impact on the sensitivity of the 
model.  

This observation is the basis for using POD procedures, which allow the reduction of 
the input vector by cutting off the least important components (amplitudes). It is worth 
noting that the first 7 amplitudes contain almost 99.9% of the information (see Table 1). 
Analyzing the SMAE generated by the model during training, it can be seen that this er-
ror systematically decreases with the increase in the number of amplitudes at the model 
input, but the same error for the testing set remains constant starting from three ampli-
tudes (see Figure 5 and Table 1). This means that when training the model with a data 
vector containing more amplitudes, the noise is also introduced due to measurement 
errors, inaccuracies, etc. This can also be seen in Figure 8, where the R squared value in-
creases when the model was trained with 17 amplitudes (with respect to model trained 
with 7 amplitudes), but the same model for the testing set generates a lower value coef-
ficient of determination. 

The results presented in Figures 6 and 7 show that the model, in 30 out of 34 cases, 
generated results with an error of less than 10% (in 15 cases, with an error less than 5%). 
This is very promising, however it is puzzling why a slightly better result cannot be 
achieved. For a deeper analysis, a histogram was built (see Figure 9), which shows how 
many patients were in specific age groups—the largest number of patients is between 
80–150 months. For example, for patients in the range of 120–130 months, statistical data 
on the variability of all indicators are summarized in Figure 10. It can be clearly seen that 
some parameters have very low variability (X07–X10). 

 
Figure 9. Patient age distribution. 

Unfortunately, in other age ranges the situation is completely different—for exam-
ple, the X02 parameter varies in the range from 0.235 to 464.53, similarly the X04 param-
eter (0.519–323.68) and the X15 parameter (0.214–43.14). This means that some of the in-
dicators are based on the geometry of the teeth, which, for example, have not yet formed 
or some proportions have been incorrectly determined. Therefore, a certain increase in 
the accuracy of the model can be obtained, for example, by checking and, if necessary, 
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Unfortunately, in other age ranges the situation is completely different—for example,
the X02 parameter varies in the range from 0.235 to 464.53, similarly the X04 parameter
(0.519–323.68) and the X15 parameter (0.214–43.14). This means that some of the indicators
are based on the geometry of the teeth, which, for example, have not yet formed or some
proportions have been incorrectly determined. Therefore, a certain increase in the accuracy
of the model can be obtained, for example, by checking and, if necessary, comparing
selected indicators and selecting the geometry based on their impact on the sensitivity of
the model.
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In order to fairly compare the results obtained with the use of the model presented
in this paper with the results obtained with the use of very popular and widely used
neural networks based on deep learning, only the test sets obtained by both models were
selected for comparison. Deep learning network results for the same case can be found
in our recent paper [47]. Since in the work by Zaborowicz et al. [47] the test set consisted
of 25% of the whole set, the model presented in this work was also rebuilt so as to fairly
compare the results. Ultimately, the error MAE = 8.8 ± 1.0 month was obtained, while
the same error for test set obtained with the use of deep learning neural networks was
MAE = 10.0 months. This observation allows to draw a general conclusion that PG-POD
models can be successfully used to estimate the age of children and adolescents using large
sets and are not inferior to other methods generally used in the modern world.

5. Conclusions

The proposed metamodel based on Gaussian processes with the input data compacting
procedure using the proper orthogonal decomposition gives stable results, with mean
absolute error at the level of ±7.5 months (±6.12%). Which is a significant improvement
over analytical methods that can provide ±12 months at best, and a slight improvement
over deep learning-based methods (±8 months). The use of POD made it possible to
significantly reduce the input data—down to 7 amplitudes only—without noticeable loss
of information, while maintaining only the necessary information. Once prepared (i.e.,
trained on collected data—panthomographic images), the model can be used to quickly
assess the chronological age of children and adolescents from 4 to 18 years of age. For each
new patient, the age assessment procedure is as follows: (a) a pantomographic photo is
taken; (b) the geometric indices of teeth and bones are recalculated in accordance with
the prepared pattern of indexes; (c) the input vector of 21 indexes is projected onto the
prepared orthogonal space; (d) amplitudes are truncated to the selected level—in this case
to the first 7 values; (e) the amplitude vectors are introduced into the model that generates
the age of the young patient. This allowed for an easy (compared to analogue techniques)
and precise assessment (up to ±7.5 month) of the dental age of a person whose age cannot
or is difficult to be determined.

Author Contributions: Conceptualization, K.Z. and B.B.; methodology, K.Z., M.Z. and T.G.; software,
T.G.; validation, K.Z., B.B., M.Z. and T.G.; formal analysis, T.G. and M.Z.; investigation, K.Z.; resources,
K.Z.; data curation, M.Z.; writing—original draft preparation, K.Z. and T.G.; writing—review and
editing, K.Z., T.G. and M.Z.; visualization, K.Z. and T.G.; supervision, B.B.; project administration,
K.Z.; funding acquisition, K.Z. and M.Z. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.



Int. J. Environ. Res. Public Health 2022, 19, 2952 13 of 14

Institutional Review Board Statement: The Bioethics Committee of the Medical University of Poz-
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Poland, 2011.
11. Liliequist, B.; Lundberg, M. Skeletal and tooth development. Acta Radiol. Diagn. 1971, 11, 97–111. [CrossRef]
12. Mughal, A.M.; Hassan, N.; Ahmed, A. Bone age assessment methods: A critical review. Pak. J. Med. Sci. 2014, 30, 211–215.

[CrossRef]
13. Panchbhai, A.S. Dental radiographic indicators, a key to age estimation. Dentomaxillofac. Radiol. 2010, 40, 199–212. [CrossRef]
14. Lee, K.-S.; Jung, S.-K.; Ryu, J.-J.; Shin, S.-W.; Choi, J. Evaluation of Transfer Learning with Deep Convolutional Neural Networks

for Screening Osteoporosis in Dental Panoramic Radiographs. J. Clin. Med. 2020, 9, 392. [CrossRef] [PubMed]
15. Demirjian, A. A new system of dental age assessment. Hum. Biol. 1973, 45, 211–227. [PubMed]
16. Demirjian, A.; Goldstein, H. New systems for dental maturity based on seven and four teeth. Ann. Hum. Biol. 1976, 3, 411–421.

[CrossRef] [PubMed]
17. AlQahtani, S.J.; Hector, M.P.; Liversidge, H.M. Accuracy of dental age estimation charts: Schour and Massler, Ubelaker and the

London Atlas. Am. J. Phys. Anthropol. 2014, 154, 70–78. [CrossRef]
18. AlQahtani, S.J.; Hector, M.P.; Liversidge, H.M. Brief Communication: The London Atlas of Human Tooth Development and

Eruption. Am. J. Phys. Anthropol. 2010, 142, 481–490. [CrossRef]
19. Prados-Privado, M.; García Villalón, J.; Martínez-Martínez, C.H.; Ivorra, C.; Prados-Frutos, J.C. Dental Caries Diagnosis and

Detection Using Neural Networks: A Systematic Review. J. Clin. Med. 2020, 9, 3579. [CrossRef]
20. Wang, Z.; Li, X.; Duan, H.; Su, Y.; Zhang, X.; Guan, X. Medical image fusion based on convolutional neural networks and

non-subsampled contourlet transform. Expert Syst. Appl. 2021, 171, 114574. [CrossRef]
21. Górny, A.; Tkacz, M. Komputerowe wspomaganie badań medycznych. Balneol. Pol. 2005, 1–2, 65–67.
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