
life

Article

Biomechanical Performance of BoneHelix® Compared with
Elastic Stable Intramedullary Nailing (ESIN) in a Pediatric
Tibia Fracture Model

Laura Leonie Brandes 1,†, Luis Fernando Nicolini 1,†, Johannes Greven 1, Philipp Lichte 1,
Thomas Thaddäus Stopinski 2, Martin Sattler 3, Frank Hildebrand 1 and Miguel Pishnamaz 1,*

����������
�������

Citation: Brandes, L.L.; Nicolini, L.F.;

Greven, J.; Lichte, P.; Stopinski, T.T.;

Sattler, M.; Hildebrand, F.; Pishnamaz,

M. Biomechanical Performance of

BoneHelix® Compared with Elastic

Stable Intramedullary Nailing (ESIN)

in a Pediatric Tibia Fracture Model.

Life 2021, 11, 1189. https://doi.org/

10.3390/life11111189

Academic Editor: Peter Zioupos

Received: 13 October 2021

Accepted: 2 November 2021

Published: 5 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital,
Pauwelsstr. 30, 52074 Aachen, Germany; laura.brandes@rwth-aachen.de (L.L.B.);
lnicolini@ukaachen.de (L.F.N.); jgreven@ukaachen.de (J.G.); plichte@ukaachen.de (P.L.);
fhildebrand@ukaachen.de (F.H.)

2 Institut für Versuchstierkunde, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany;
tstopinski@ukaachen.de

3 Johannes Wesling Klinikum Minden, Hans-Nolte-Straße 1, 32429 Minden, Germany;
Martin.Sattler@muehlenkreiskliniken.de

* Correspondence: mpishnamaz@ukaachen.de
† Shared first authorship.

Abstract: Tibial shaft fractures are common injuries in the pediatric and adolescent populations.
Elastic stable intramedullary nailing (ESIN) is the treatment of choice for cases that require surgical
stabilization. A new intramedullary device, BoneHelix® (BH), may be an alternative for use with
fractures that cannot be satisfactorily stabilized with ESIN. This study aimed to assess the biome-
chanical performance of BH compared with ESIN in a porcine tibia fracture model, observing cyclic
fatigue and load to failure. Computed tomography was used to monitor the implant position and to
rule out unintended damage. No implant or bone failure occurred during the fatigue testing. An
increase in the cumulative plastic displacement was observed in both test groups over the loading
cycles applied. Both implant–bone constructs displayed a trend toward closure of the osteotomy gap.
During the load-to-failure test, the average loads at failure in specimens instrumented with ESIN
and BH were 5364 N (±723) and 4350 N (±893), respectively, which were not statistically significant
(p = 0.11). The values of both groups were two to three times higher than the estimated maximal load
(2000 N) during physiological weight bearing. The biomechanical results thus indicate equivalent
performance and stability by the implants tested.

Keywords: fracture; tibia; pediatric; cyclic testing; elastic stable intramedullary nailing (ESIN);
BoneHelix®; biomechanics

1. Introduction

Tibial shaft fractures are among the most common skeletal traumas seen in children
and adolescents [1]. Isolated tibial fractures with spiral or oblique fracture lines are the most
frequent type [2]. The choice of treatment is based on several factors, including age, fracture
pattern, associated soft-tissue injuries, and comorbidities [3,4]. Many cases can be managed
satisfactorily with nonoperative treatment by closed reduction and casting [3,5–7]. These
are usually associated with fast healing and a low complication rate [4,8]. However, surgical
treatment is required in fractures that cannot be aligned and secured within the limits of
spontaneous correction by using conservative methods [6,7,9]. Elastic stable intramedullary
nailing (ESIN) is currently considered the gold standard for surgical fracture management.

Since it was first introduced in the early 1980s, ESIN has established itself as the
surgical treatment of choice [10–12]. It is based on a minimally invasive approach using
two titanium or stainless steel elastic nails to form a double arch inside the medullary
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cavity, providing a three-point-fixation [11,13,14]. Micromovements at the fracture zone are
possible due to the flexible character of the nails [15], resulting in secondary bone healing.
Nevertheless, ESIN does not come without its flaws. Possible complications include
delayed union or malunion, failed fixation, leg length discrepancy, and superficial infection,
among others [16–23]. Tibial fracture fixation with ESIN can be demanding, and the
achievement of a correct three-point fixation is not always easy to assess intraoperatively.

BoneHelix® (BH) is a helical steel coil spring with limited bending flexibility, designed
for the intramedullary stabilization of long bone fractures [24–26]. Its multiple coils provide
long-segmental contact to the spongiosa and corticalis of the bone, generating internal
friction, while a high vertical spring rate prohibits impression and secures axial stability [27].
Its strictly limited flexibility allows micromovements at the fracture zone, which encourage
callus formation, while preventing excessive bending [24]. In the pediatric tibia, the helix
is inserted in the antegrade direction, sparing the open physis. Fixation of the implant is
achieved by traction. Exercise and partial loading with a walker are allowed immediately
after surgery [28]. A clinical study shows promising results in adult humeral shaft fractures
treated with BH [29].

The present experimental study aimed to investigate and compare the biomechanical
performance of BH and ESIN in cyclic fatigue testing, simulating an 18-week postoperative
period [30], and also in load to failure, using a pediatric tibial fracture model.

2. Materials and Methods

2.1. Sample Acquisition and Preparation

Experiments were performed on eight pairs of fresh frozen tibiae, collected from
juvenile pigs with an average weight of between 30 and 40 kg (Department for Laboratory
Animal Science, RWTH Aachen University Hospital). Due to close similarities in anatomy
and morphology, porcine bone is a suitable alternative to human bone for investigation of
bone implants [31,32]. Specimens were stored at −18 ◦C and were thawed for over 16 h
at 8 ◦C before testing [33,34]. Each tibia was separated from the knee joint and the fibula,
and all soft tissue was removed from the bone. The tibiae were then fixated at their distal
end in a 7◦ valgus alignment in a methyl methacrylate (MMA)-based synthetic material
(Technovit® 3040, Kulzer GmbH, Hanau, Germany). The valgus alignment represents
the physiological leg axis in adults [30] and is completed in children by the age of 8 to
10 years [35,36]. The fixation was performed with the help of a custom-made rail system,
a stencil, and a laser to achieve the correct alignment.

2.2. Surgical Groups and Implantation Procedure

Each pair of bones was randomly instrumented with a gliding nail system for ESIN
(Königsee Implantate GmbH, Allendorf, Germany) or a BH device (H&R Medizintechnik
GmbH & Co. KG, Lennestadt, Germany), in either the left or the right tibia.

For ESIN, titanium nails with wire diameters of 2.0 and 2.5 mm and a length of
450 mm with flattened ends were selected in accordance with the bone size and the
expected diameter of the intramedullary canal (Figure 1). The nails were implanted to fill
80% of the intramedullary canal isthmus [9,13].
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final position was secured by applying hammer taps to the pliers holding the nails. 

The chosen BH was inserted into the medullary cavity via a guiding rod through a 
hole cranial to the tibial tuberosity. The helix was turned further in until resistance was 
noted, indicating the correct position inside the distal metaphysis. The construct was con-
sidered stable when at least six helical coils were positioned inside the bone. 

The positions of both implants were checked with computed tomography (CT) (Fig-
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Figure 2. Specimens with ESIN (a) or BH (b) after instrumentation before fracture creation. The CT scans are shown on 
the right side of each subfigure. 

The implants were trimmed to the minimum, and the proximal ends of the specimens 
were embedded. It was ensured that the implant ends had no contact with the embedding 
material so that the compressive load was transferred to the implant via the bone, and no 
force was acting directly on the implants during testing under compressive loads. A trans-
verse midshaft fracture (classified as a 42t-D/4.1 fracture by PCCF [37] or a 4.2.s.3.0 frac-
ture by LiLa [38]) was created 7 cm from the distal epiphysis using a handheld saw. A gap 
of 3 mm was kept between the fracture fragments to establish an unstable situation [39]. 

2.3. Biomechanical Tests 
All biomechanical tests were performed at room temperature. A servo-pneumatic 

material testing machine (DYNA-MESS Prüfsysteme GmbH, Stolberg, Germany) was 
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BH implants are made from surgical long-term implant steel alloy (1.4441). The
pediatric sizes C1 and C2, measuring an outer diameter of 7.0 or 8.0 mm, respectively,
were used in accordance with the bone size (Figure 1). The aim is for the diameter of the
selected helix to be 1 mm less than the narrowest point of the tibial diaphysis [28]. Implants
intended for children have a standard length of 300 mm and a wire gauge of 2.5 mm.

For ESIN, two prebent C-shaped nails were introduced into the medullary cavity
through openings medial and lateral to the tibial tuberosity using an inserter. The aim was
to position the bent nails in a double-arch configuration within the medullary cavity. Their
final position was secured by applying hammer taps to the pliers holding the nails.

The chosen BH was inserted into the medullary cavity via a guiding rod through a
hole cranial to the tibial tuberosity. The helix was turned further in until resistance was
noted, indicating the correct position inside the distal metaphysis. The construct was
considered stable when at least six helical coils were positioned inside the bone.

The positions of both implants were checked with computed tomography (CT)
(Figure 2).
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Figure 2. Specimens with ESIN (a) or BH (b) after instrumentation before fracture creation. The CT scans are shown on the
right side of each subfigure.

The implants were trimmed to the minimum, and the proximal ends of the specimens
were embedded. It was ensured that the implant ends had no contact with the embedding
material so that the compressive load was transferred to the implant via the bone, and
no force was acting directly on the implants during testing under compressive loads. A
transverse midshaft fracture (classified as a 42t-D/4.1 fracture by PCCF [37] or a 4.2.s.3.0
fracture by LiLa [38]) was created 7 cm from the distal epiphysis using a handheld saw. A
gap of 3 mm was kept between the fracture fragments to establish an unstable situation [39].

2.3. Biomechanical Tests

All biomechanical tests were performed at room temperature. A servo-pneumatic
material testing machine (DYNA-MESS Prüfsysteme GmbH, Stolberg, Germany) was used
for the cyclic compressive fatigue testing (Figure 3). Each implant–bone construct was
exposed to three series of increased sinusoidal cyclic loading, each including 40,000 test
cycles. In total, 120,000 load cycles at a frequency of 2 Hz were performed. The chosen
load protocol (Figure 4) followed a protocol by Tschegg et al. [30], which was designed to
simulate physiological loading conditions on the tibia.
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One series of 40,000 cycles simulates normal weight bearing for a 6-week postop-
erative period [30]; therefore, with the present experimental design, about 18 weeks of
physiological loading was simulated. Applied loads were chosen according to the average
weights of children in various age groups [40]. In the first test series, the load oscillated
from a middle compressive load of 175 N, with an amplitude of 75 N, simulating the full
body weight (BW) of children aged 4–8 years. The second test series applied 250 N at
middle load, with a 150 N amplitude, simulating full BW at 8–12 years. In the third series,
loading was increased to 350 N at middle load, with an amplitude of 250 N, simulating full
BW at 12–16 years (Figure 4).

If 120,000 cycles of fatigue loading were tolerated without failure, the bone–implant
construct was exposed to axial compression testing. A material testing machine (modern-
ized with RetroLine testControl II, ZwickRoell GmbH & Co. KG, Ulm, Germany) was used
to determine the individual maximal load until failure occurred for each bone–implant
construct (Figure 5). Tests were started with a preload of 100 N and a testing speed of
1 mm/s until a predefined upper force limit was reached, or until a reduction of 10% of the
applied load was detected, implying specimen failure (force shutdown threshold at 10%).
Upper force limits (Table 1) were chosen according to maximal peak forces expected on the
tibia in a subject of 60 kg (approximately girls at 16 years and boys at 15 years [40]) during
normal daily activities.
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pilot tests.

Table 1. Load protocol of load-to-failure testing. First, peak loads of 50%, 75%, and 100% were
applied. Loads were increased in steps of 1000 N until failure was observed. An amount of 2000 N
was expected to be the tibial peak load in a subject of 60 kg, representing 3.5 times the body
weight when descending stairs. A 100% peak load was estimated to cover the forces occurring in
everyday activities.

Test Upper Force Limit (N) Percentage of Expected Peak Load

1 1000 50%
2 1500 (walking) 75%
3 2000 (stairs) 100% (3.5 × 60 kg)

4–n 3000–n 150%–n
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Peak forces reach 2 to 2.5 times the BW during level walking and 3.5 times the BW
when descending stairs [41]. A maximal peak force of about 1200–1500 N for walking and
of about 2000 N for descending stairs can be derived from this consideration. Load-to-
failure tests started with an upper force limit of 1000 N (approximately 50% of expected
peak load) and were continued with 1500 N (75%) and 2000 N (100%) if no signs of failure
were observed. Loading continued in steps of 1000 N until failure in the form of visual
fracturing, implant failure, or embedding failure occurred.

2.4. Data Acquisition and Analysis

Load and axial displacements were recorded by a load cell and a displacement sensor
at a frequency of 100 Hz in both fatigue and quasi-static compression tests. The sensors
have a maximum error of 1% with respect to the target value. The measured axial dis-
placements correspond to the reduction in specimen size. The first 10 cycles were used
as preconditioning for adjusting the machine to the specimens. The definitions of elastic
displacement (ED), plastic/permanent displacement (PD), cumulative plastic displace-
ment, and stiffness are shown in Figure 6. ED describes reversible displacement that is
reduced to zero after load removal [42]. PD is defined as displacement that persists after
unloading the specimen [30], and it is associated with a reduction of the fracture site during
testing. These variables were calculated by considering the displacement of the piston of
the machine at the time of maximal and minimal loading of a loading cycle at the beginning
(10th test cycle), at an early stage of testing (2000th test cycle), and at the end (40,000th
test cycle) for each loading sequence (Figure 6). The ED was calculated by subtracting the
PD from the total displacement. Stiffness was calculated by taking the slope considering
the force–displacement datapoints at the maximum and minimum force. The cumulative
plastic displacement represents the permanent displacement that occurred in the specimen
from the beginning of the test until a certain cycle.
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Figure 6. Definitions of elastic displacement and plastic displacement calculated for one cycle
(loading and unloading), and cumulative plastic displacement calculated until the end of the 10th
cycle. Stiffness was calculated by taking the slope considering the force–displacement datapoints at
the maximum and minimum force (100 N) of the half cycle. Source: adapted from Tschegg et al. [30].

The fracture gap size was additionally measured with a digital caliper before and
after cyclic testing. The caliper had an accuracy of ±0.2 mm and a resolution of 0.1 mm.
CT images were captured by a 2 × 128-slice SOMATOM Definition Flash CT scanner
(Siemens Healthcare AG, Zurich, Switzerland). Specimens were scanned after implant
instrumentation to confirm the correct position inside the bone, after the cyclic fatigue tests,
and again after the quasi-static compression tests were completed. Images were viewed
and analyzed with the software IntelliSpace PACS Enterprise (version 4.4, Philips GmbH
Market DACH Health System, Hamburg, Germany).

Statistical analyses were performed in Microsoft Excel (version 16.44, Microsoft Cor-
poration, Redmond, DC, USA). The means of both test groups were compared using
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two-sample two-tailed t-tests or paired t-tests, respectively, when looking at values within
the same test groups at different times of testing. All statistical tests were based on a 5%
alpha error. Results with p values < 0.05 were considered statistically significant.

For the load-to-failure tests, the shortening of the specimen was analyzed from a load
of 150 N to a maximum value representing a physiological situation (e.g., 1000 N). This load
of 150 N served to reduce to zero the gap between the parts of the machine (e.g., interface of
the specimen with the mechanical parts of the machine) so that the obtained displacement
would be only from the specimen. The software G*Power (version 3.1.9.6) [43] was used to
perform a power analysis at the point of discussing the maximal load tolerated at the point
of failure.

3. Results

3.1. Cyclic Loading Fatigue Testing

All 16 specimens survived 120,000 cycles of increased fatigue loading without showing
signs of implant or bone failure. This statement is supported by the data collected during
testing and the CT imaging after the experiments were completed.

3.1.1. Axial Displacements

ED was significantly reduced in the ESIN specimens in all loading series between
the 10th and 40,000th test cycle (paired t-tests: first: p = 0.0028, second: p = 0.0032, third:
p = 0.0036). For the BH specimens, the reduction of ED was not verified to be statistically
significant (paired t-tests: first: p = 0.058, second: p = 0.42, third: p = 0.39). Both implants
showed a decreasing trend in the development of ED in all test series. However, the change
in ED within each series was negligible (Figure 7). For the first loading series, it was
0.059 mm (±0.042) for ESIN and 0.023 mm (±0.032) for BH.
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Figure 7. Elastic displacement (ED) and cumulative permanent displacement (PD) for the (A)
beginning (10th test cycle), (B) early stage (2000th test cycle), and (C) end (40,000th test cycle) of
the first loading sequence. ESIN specimens showed significantly greater cumulative PD than BH
specimens (t-test; p = 0.014).

An increase in the cumulative PD was observed in both test groups over the loading
cycles applied. The PD was greatest during the first 2000 loading cycles for each sequence
when the force was increased, presenting an asymptotic behavior (Figure 8). For the
first series, in the 2000th cycle it reached values of 0.92 and 0.58 mm for ESIN and BH,
respectively (Figure 7). In the 40,000th cycle, the cumulative PD was 1.35 mm for ESIN and
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0.93 mm for BH. The ESIN specimens showed a significantly greater cumulative PD than
the BH specimens (t-test; p = 0.014).
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Figure 8. Development of cumulative PD over 120,000 test cycles with increased loading at 40,000th
and 80,000th cycles. PD was greatest during the first 2000 cycles of each test series. ESIN specimens
showed a significantly greater PD during the first loading sequence (t-test; p = 0.014). No statistically
relevant difference in the development of cumulative PD was observed in the subsequent test series
(t-test: second: p = 0.98, third: p = 0.13).

Cumulative PDs of 2.71 mm (±0.71) in the ESIN and of 2.12 mm (±0.58) in the
BH specimens were seen after 120,000 cycles of fatigue loading (t-test; p = 0.092). These
results display an equivalent accumulated PD after simulated physiological weight-bearing
modelling for an 18-week period. The manually measured reduction in the fracture gap
(ESIN: 2.0 mm (±0.5), BH: 1.3 mm (±0.7)) showed the same trend toward closure, analogous
to the increase in PD.

3.1.2. Axial Stiffness

An increase in stiffness was observed for both test groups in relation to the increasing
number of test cycles (Table 2). The increase was confirmed to be statistically significant for
the ESIN group in all test sequences (paired t-test: first: p = 0.00016, second: p = 0.00028,
third: p = 0.00081). However, the BH group only showed a significant increase in stiffness
in the first and third sequences, but not in the second (first: p = 0.0088, second: p = 0.19,
third: p = 0.0024).

Table 2. Development of axial stiffness in cyclic loading fatigue testing. A significant increase in
stiffness was observed in ESIN specimens for all test series. Increase in stiffness in BH specimens was
verified to be significant in the first and third test series only.

Series Cycles Stiffness ESIN (N/mm) Stiffness BH (N/mm)

1 10
40,000

1044 (±606)
1685 (±733)

1070 (±191)
1639 (±513)

2 40,010
80,000

911 (±279)
1406 (±336)

1433 (±434)
1562 (±339)

3 80,010
120,000

1122 (±246)
1709 (±339)

1594 (±477)
1824 (±435)

Early stiffness was significantly higher in BH specimens in the second and third test
series (t-test: second: p = 0.013, third: p = 0.026), while in the first series, no difference was
revealed in early stiffness between groups (p = 0.91). This indicates a higher capacity for
deformation, allowing more movement for specimens operating with ESIN under increased
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loading in comparison with BH. Late stiffness was equivalent for the test groups in all
three test sequences (t-test: first: p = 0.89, second: p = 0.37, third: p = 0.57).

3.2. Load-to-Failure Testing
3.2.1. Location and Type of Failure

Neither of the test groups showed signs of implant failure during loading or in the
following CT. A homologous fracture pattern was seen in both test groups. Fractures or
fissures were located exclusively in the upper bone fragment, mostly in relation to the
previously created transverse fracture site in the middle third of the tibia (Figure 9). An
exception was seen in one ESIN specimen, where a fissure started at the lateral drill hole
created for the implant insertion. Longitudinal stress fissures were displayed in three ESIN
and two BH specimens. Incomplete, displaced, simple longitudinal fractures were seen
in one ESIN and two BH specimens. In the BH group, fatigue loading resulted once in a
complete, longitudinal, displaced multifragment fracture with blasted-out bone fragments.
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Figure 9. Implants after failure loading (examples): (a) ESIN specimen displaying a simple, displaced
fracture after testing (left) and in CT (right); (b) BH specimen displaying multifragment, displaced
fracture after testing (left) and in CT (right). Arrows indicate fractures. More examples are available
as supplementary material in FigShare at DOI 10.6084/m9.figshare.16910611.

3.2.2. Load at Failure

Loadings of 50% (1000 N), 75% (1500 N), and 100% (2000 N) of the expected peak load
were tolerated by all bone–implant constructs in both test groups. The mean maximal load
detected at failure in both test groups was 4801 N (±885). This equals about 240% of the
expected peak load of 2000 N. ESIN specimens tolerated 5364 N (±723) on average, while
BH specimens were loaded with 4350 N (±893) before bone failure occurred (268% vs.
218% of the expected peak load). The maximal loads at failure did not differ significantly
between test groups (t-test; p = 0.11). The original data for the load-to-failure tests are
available as Supplementary Material in FigShare at DOI 10.6084/m9.figshare.16910611 (last
accessed on 1 November 2021).

3.2.3. Axial Displacement at Maximal Load

Load–displacement graphs display a linear, proportional, and statistically relevant in-
crease in axial displacement according to increased loading in both test groups (Figure 10).
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Displacement data at 1000, 1500, 2000, and 3000 N were compared for each group.
In the ESIN specimens, displacement increased significantly from 0.55 mm (±0.18) at
1000 N to 0.75 mm (±0.14) at 1500 N (paired t-test; p = 0.025), to 0.99 mm (±0.18) at
2000 N (p = 0.001), and to 1.52 mm (±0.30) at 3000 N (p = 0.0034). In the BH specimens,
displacement increased from 0.75 mm (±0.19) at 1000 N to 1.09 mm (±0.25) at 1500 N
(p = 0.00020), to 1.40 mm (±0.27) at 2000 N (p = 0.000028), and to 2.32 mm (±0.57) at 3000 N
(p = 0.0035).

No relevant difference of displacements between test groups was observed for the
upper force limits of 1000 N (t-test; p = 0.17) and 1500 N (p = 0.050). In contrast, BH
specimens displayed a greater axial displacement when loaded until 2000 N (p = 0.037)
and 3000 N (p = 0.041) (Figure 10). BH specimens apparently suffered greater displacement
than ESIN specimens when exposed to greater loading.

4. Discussion

This is the first study that compares the biomechanical effects of fracture stabilization
by BH or ESIN on a porcine tibial fracture model simulating a pediatric trauma with
18 weeks of postsurgical mobilization. BH is an innovative treatment option for the
treatment of long bone fractures, which are common skeletal trauma patterns. A clinical
study on adult humeral shaft fractures treated with BH presented promising results [29].
However, limited data are available regarding the fatigue and load-to-failure performance
of BH, which could contribute to clinical findings, and there is no analysis from the
biomechanical point of view of the possibility of using BH as an alternative to ESIN.

Several studies attest that ESIN has a low complication rate and positive outcomes
after treatment, and they promote it as an effective and reliable method for the surgical
management of pediatric tibial shaft fractures [21,44–47].

However, possible complications, such as delayed union, malunion, and failed fixation,
can occur [16–23]. The main reasons for the failure of ESIN are errors during the insertion
process or, in particular, insufficient intraosseous three-point fixation. This problem can
occur because of complex fracture scenarios (oblique or multifragmentary) or due to
adverse angles of the insertion axis of ESIN in the long bone, resulting in a weak bracing
of the wires in the bone shaft [13,20,48–52]. The rate of complications, such as malunion
or delayed union, is also higher in heavier adolescent patients [9,16–19], although greater
weight alone does not seem to predict a higher rate of malunion [16,46,53]. These limitations
indicate the need to develop alternative surgical treatment options for cases in which ESIN
does not provide sufficient stabilization for adequate bone healing.
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Stabilization of the fracture is an important requirement for tibial implants. The
implants need to withstand forces occurring at the knee joint under normal weight bearing
during activities of daily life, since they must compensate for the temporary loss of function
of the traumatized bone. The absence of signs of implant or bone failure as analyzed by
visual inspection or with CT scans indicates that simulated physiological loading after
surgical treatment of a tibial shaft fracture with ESIN or BH in the pediatric and adolescent
age group is tolerated without causing failure of implants or of the osteosynthesis–bone
construct.

This demonstrates that both types of implants are capable of fixing and keeping the
bone parts together while the bone–implant construct is submitted to physiological loads
adapted to the bone healing process of a child [54].

The increase in cumulative PD and the reduction of fracture gap present in both
groups indicate that the load exceeded the yield strength of the bone–implant construct,
causing it to compress. This effect led to an increase in the axial stiffness of the system
when the results of the last series were compared against those of the first series. The
cumulative PD tended to converge to a specific value until the external load was increased
in our testing protocol, suggesting that the amount of damage tends to stabilize.

The results demonstrated that the bone–implant constructs tested can withstand
loading beyond physiological conditions with no statistical differences between groups,
while the magnitude of the load is limited to the weight tolerance of the fractured tibial
bone structure.

For both implants, the load at failure was two to three times higher than the expected
peak load experienced by the tibia of a subject of 60 kg performing daily activities, such as
walking and descending stairs. Additionally, collapse of the bone or the interface with the
embedding material was observed during load to failure; however, there were no signs of
implant damage. This suggests that the weakest structure is the bone volume close to the
fracture site, and therefore, from a purely mechanical point of view, further improvement
of the instrumentation to resist higher forces would require a reduction of the forces exerted
on the tibia close to the fracture site. The implant itself does not seem to be the problem in
resisting physiological stress inside the tibia since none of the implants failed. Moreover,
the bone instrumented with BH had an equivalent load tolerance to that instrumented
with ESIN.

This study has some limitations. The in vitro testing differs from the in vivo condition
due to the missing vasculature and soft tissue envelope, and also in terms of the loading
condition. This was also the reason why no tests were performed with regard to the rota-
tional stability of the two implant types, as the surrounding soft tissue plays a decisive role
here. More complex tests must be carried out to simulate further physiological parameters
and loads and to investigate whether or not BH is superior to ESIN in certain scenarios.
The physiological forces acting on the tibia adapt to a complex system of muscular forces
that change to control movements and to keep the body in equilibrium when external loads,
such as the gravity, are acting. We approximated this configuration by using a compressive
force that acted along the tibia shaft. However, several authors perform simplification of the
loads [30,55–58], and this is frequently necessary to make the testing reliable. Furthermore,
we used pig bones instead of human cadaver specimens. However, animal specimens do
represent a suitable alternative to human bones because of their low variance in material
properties, low cost, and availability [32].

In summary, all test results implied equivalent biomechanical performance by the
two types of implants investigated, with BH providing higher stability in the early weight
loading period, paired with greater stiffness than ESIN. This might be an advantage in
the stabilization of more complicated fractures or in heavier adolescent patients in whom
fractures need a longer time to form callus and are prone to develop complications [16–19].
Our model, specifically designed to address the issue of axial load parameters, provides
the basis for further investigation of BH in regard to rotational stability. Nevertheless, for
the first time we obtained results for axial load experiments to attest to BH’s satisfactory
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biomechanical properties for use in pediatric and adolescent tibial shaft fractures, which
could compensate for the possible limitations of ESIN.

Supplementary Materials: The following are available online in https://www.mdpi.com/article/10
.3390/life11111189/s1 and FigShare at DOI 10.6084/m9.figshare.16910611 (last accessed on 1 Novem-
ber 2021). Figure S1: Images of specimens with ESIN implants after load to failure tests. Arrows
indicate fractures; Figure S2: Images of specimens with BoneHelix implants after load to failure
tests. Arrows indicate fractures; Table S1: Experimental data after load-to-failure tests of BoneHelix;
Table S2: Experimental data after load-to-failure tests of ESIN.
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