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During hypoxia, cells undergo transcriptional changes to adjust to metabolic stress, to pro-
mote cell survival, and to induce pro-angiogenic factors. Hypoxia-induced factors (HIFs)
regulate these transcriptional alterations. Failure to restore oxygen levels results in cell
death by necrosis. IL-1α is one of the most important mediators of sterile inflammation
following hypoxia-mediated necrosis. During hypoxia, IL-1α is up-regulated and released
from necrotic cells, promoting the initiation of sterile inflammation. This study examined
the role of IL-1α transcription in initiation of hypoxic stress and the correlation between
IL-1α transcription and HIFα factors. In an epithelial cell line cultured under hypoxic condi-
tions, IL-1α transcription was up-regulated in a process mediated and promoted by HIFα

factors. IL-1α transcription was also up-regulated in hypoxia in a fibroblast cell line, how-
ever, in these cells, HIFα factors inhibited the elevation of transcription.These data suggest
that HIFα factors play a significant role in initiating sterile inflammation by controlling IL-1α

transcription during hypoxia in a differential manner, depending on the cell type.
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INTRODUCTION
During infections, injuries, infarcts, or other ischemic events,
tissue cells experience hypoxic stress, which can result in cell
necrosis that induces inflammation. In infectious diseases, in
addition to molecules originating in necrotic tissue, bacterial
products alert the immune system following pattern recognition.
However, dying cells in a sterile environment use self-molecules
alone to signal the surrounding cells and the immune system
of the danger which confronts the tissue (Matzinger, 1994).
Among the cell molecules released from necrotic cells, some are
inducers of sterile inflammation, and were termed “alarmins”
or “danger-associated molecular patterns” (DAMPs; Oppenheim
and Yang, 2005; Bianchi, 2007; Rubartelli and Lotze, 2007; Chen
and Nunez, 2010). The immune response to dead cells includes
myeloid cell recruitment. These cells, mostly granulocytes and
macrophages, migrate to the hypoxic area, counter to the oxy-
gen gradient (Lotfi et al., 2009; Eltzschig and Carmeliet, 2011),
where they can promote debris clearance and tissue repair or
a pro-angiogenic response (Nizet and Johnson, 2009). Alter-
natively, myeloid cells can expand the inflammatory response
which can lead to additional tissue damage. Several alarmin
molecules have been described. Among these are HMGB1, S100
proteins, heat-shock proteins, and IL-33 (Hofmann et al., 1999;
Basu et al., 2000; Raucci et al., 2007; Moussion et al., 2008; Chen
and Nunez, 2010; Andersson and Tracey, 2011). IL-1α is a major
alarmin molecule that was shown to be a key inducer of sterile
inflammation (Chen et al., 2007; Eigenbrod et al., 2008; Cohen
et al., 2010; Dinarello et al., 2012). In addition to its alarmin
property in response to dying cells, IL-1α can also differentiate

between apoptosis and necrosis, by its restricted release from
necrotizing but not apoptotic cells (Luheshi et al., 2009; Cohen
et al., 2010).

During hypoxia, cells alter their transcriptome in order to
adjust to changes in the availability of oxygen and to metabolic
stress. The alteration in transcription is mediated by hypoxia-
induced factors (HIFs), which are heterodimer transcription
factors, composed of a stable beta subunit and an alpha subunit
that has a half-life of several minutes. The alpha subunit is targeted
for the ubiquitin proteasome degradation pathway, as long as its
specific proline residues are hydroxylated by prolyl hydroxylases
(PHDs; Bruick and McKnight, 2001), which allows recognition
by von Hippel–Lindau (VHL) ubiquitin E3-ligase (Jaakkola et al.,
2001). HIFα proteins include HIF-1 to -3, while HIF-1α and
HIF-2α are considered to be the major HIF transcription factors
that control vast gene transcription and can have differential or
even opposing effects (Hu et al., 2003; Wang et al., 2005; Keith
et al., 2012). HIF-1α and HIF-2α correlated not only with cell
metabolism and angiogenesis accompanied by hypoxia, but also
with the inflammatory response during infection or tissue damage
(Nizet and Johnson, 2009).

It was shown that during hypoxia, macrophage secretion of
IL-1α increased in conjunction with pro-angiogenic factors such
as VEGF (Carmi et al., 2009). While bone marrow-derived cells
can respond to tissue stress or infection by secreting many pro-
inflammatory cytokines, chemokines, proteases, reactive oxygen
species (ROS), etc., non-hematopoietic tissue resident cells can
also induce inflammation, but in a more restricted manner, by
secreting IL-1α, one of the most potent cytokines found in these
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cells. Among such cells are fibroblasts (Kawaguchi et al., 2006),
keratinocytes (Kong et al., 2006; Lee et al., 2009; Rider et al., 2011),
endothelial cells (Berda-Haddad et al., 2011), and hepatocytes
(Sakurai et al., 2008; Kamari et al., 2011). Recently, we showed
that hypoxic cell-derived IL-1α induces inflammation in Matrigel
plugs. IL-1α was up-regulated in hypoxic cells which eventually
died by necrosis. The up-regulation was observed both on the
mRNA and protein levels in keratinocytes cells. However, whether
HIFα proteins where involved in this up-regulation was not yet
studied. The up-regulation and release of IL-1α mediated an influx
of neutrophils in early stage, followed by macrophage infiltra-
tion, which was an IL-1β-dependent phase of the inflammatory
process (Rider et al., 2011). Thus, in the present study, we exam-
ined the role of major hypoxic transcription factors, the HIFα

proteins, on the initiation of the transcription and regulation of
IL-1α, the alarm cytokine, which characterizes sterile inflamma-
tion. A link between HIFα regulation and the elevation of IL-1α

can add a new functional role for the HIFα proteins, as regulators
of sterile inflammation, which when chronic local angiogenesis is
switched on.

MATERIALS AND METHODS
CELL CULTURE
WI-38, A549, HeLa, and HEK-T293 cells were cultured in DMEM
(Invitrogen, Carlsbad, CA, USA), supplemented with 10% heat-
inactivated fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/ml
penicillin, and 100 μg/ml streptomycin (Biological Industries,
Beit Haemek, Israel). For hypoxic stress, cells were cultured in
a sealed anaerobic workstation (Concept 400; Ruskinn Technol-
ogy/Jouan) providing conditions of O2 < 0.3%, 5% CO2, 95% N2,
and 37◦C.

siRNA SILENCING
Cells were transfected using the jetPRIME transfection reagent
(Polyplus transfection), according to the manufacturer’s instruc-
tions, with 100 nM of non-targeting pool control siRNA, on-target
plus SMARTpool human HIF1A (3091) or EPAS1 (2034), all from
Thermo Scientific.

VECTORS AND TRANSFECTIONS
A549, WI-38, and HeLa cells were transfected using the Jet-
PEI reagent (Polyplus transfection), while HEK-T293 were
transfected using the calcium-phosphate method as described
before (Rider et al., 2011), with plasmids encoding HA-HIF-1α-
P402A/P564A and HA-HIF-2α-P405A/P531A mutated sequences
which were previously described (Kondo et al., 2003), and were
a gift from Professor William Kaelin (addgene plasmid #18955
and #18956). In order to obtain a control plasmid, the insert
of HA-HIF-2α-P402A/P564A vector, was liberated with BamHI
and NotI restriction enzymes, overhang ends were filled with
DNA polymerase I large (Klenow) fragment enzyme and ligated
to obtain control circular plasmid encoding HA with no HIFα

insert. All enzymes in this procedure were from New England
Biolabs.

WESTERN BLOT
Nuclear and cytosol fractions of HEK-T293 transfected cells
were prepared with NE-PER Nuclear and cytoplasmic extraction

reagents (Thermo Scientific). Nuclear fractions were separated
over 8% PAGE and transferred to PVDF membranes (Milli-
pore). Detection of HIFα proteins was performed using mouse
anti-HIF-1α (Novus Biological) and rabbit anti-HIF-2α (Abcam)
antibodies. To detect IL-1α, cells were centrifuged and pellets were
re-suspended in 0.5% Triton-X100 in PBS supplemented with pro-
tease inhibitor cocktail (Calbiochem). Lysates were centrifuged
and protein concentrations were calculated using the Bradford
reagent (Bio-Rad). Lysates were separated over 15% PAGE, and
IL-1α was detected on PVDF membranes using mouse anti-IL-1α

antibodies (R&D).

QUANTITATIVE RT-PCR
Total RNA was extracted from the cells using RNeasy kit (Qiagen,
Valencia, CA, USA), and quantified using a NanoDrop spectropho-
tometer (ND-1000 spectrophotometer, NanoDrop Technologies,
USA). cDNA reverse-transcription was performed with 1 μg
of total RNA as a template, using the qScript cDNA Synthesis
Kit (Quanta Biosciences). The quantitative RT-PCR was per-
formed with PerfeCta SYBR Green FastMix, Low ROX (Quanta
Biosciences) on ABI Prism 7500 sequence detection system
(Applied Biosystems). In house SYBR Green based assays were
used to quantify human β-actin: AGCCTCGCCTTTGCCGATCC,
TTGCACATGCCGGAGCCGTT; IL-1α: GCCCAAGATGAA-
GACCAACCAGTGC, GCCGTGAGTTTCCCAGAAGAAGAGG;
VEGF: CTACCTCCACCATGCCAAGTGGTCC, ATGTCCACCA-
GGGTCTCGATTGGA; HIF-1α: AGACTTTCCTCAGTCGA-
CACAGCCT,GCGGCCTAAAAGTTCTTCTGGCTCA; and EPAS1:
TGCTCCACGCCCAATAGCCC, GGGTGCCAGTGTCTCCAA-
GTCC.

Relative quantification was calculated by the 2 �̂�Cq method.
Averages of �Cq from biological replicates or from differ-
ent experiments were analyzed by two-tailed Student’s t-test
for statistical significance using GraphPad Prism 4 (GraphPad
Software).

RESULTS
IL-1α TRANSCRIPTION IS UP-REGULATED DURING HYPOXIA
IN THE HUMAN EPITHELIAL CELL LINE A549
We recently reported that IL-1α is up-regulated in mouse ker-
atinocytes during hypoxia (Rider et al., 2011). This up-regulation
of IL-1α together with the accompanied necrosis following
extended periods of hypoxia (24 h) resulted in increased lev-
els of IL-1α in the cell supernatants. Therefore, we sought to
elucidate the initial steps of up-regulation of IL-1α transcrip-
tion before cells are damaged due to acidosis and necrosis. We
cultured the lung epithelial A549 cell line in either normal or
hypoxic conditions, and detected up-regulation of the 31 kDa
precursor protein and to some extent the 17 kDa mature cytokine
(Figure 1A), similar to data with mouse keratinocytes reported
in our recent paper (Rider et al., 2011). Since our goal was to
study the initial phase of IL-1α up-regulation, we evaluated mRNA
levels during hypoxia. Cells were cultured in a hypoxic chamber
for 6 h and then analyzed for IL-1α transcription by real-time
PCR. Indeed, IL-1α transcription during the initial phase of
hypoxia was up-regulated compared to cells cultured in normoxia
(Figure 1B).
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FIGURE 1 | IL-1α transcription is up-regulated during hypoxia in A549

epithelial cells. (A) A549 cells were cultured in either normoxic or hypoxic
conditions for 12 h. Cells lysates were analyzed by Western blot for IL-1α

detection. Bands are marked as precursor or mature. (B) A549 cells were
cultured in either normoxic or hypoxic conditions for 6 h, and were analyzed
for relative quantification (RQ) of IL-1α transcription. Graph represents
mean ± SD of three biological repeats.

SILENCING HIFα PROTEINS DURING HYPOXIA RESULTS IN
ATTENUATED IL-1α TRANSCRIPTION
Since IL-1α transcription was altered during hypoxia, we exam-
ined whether HIFα proteins are involved in IL-1α up-regulation.
First, we assessed HIF-1α siRNA silencing, and no significant
change in IL-1α transcription was observed (Figure 2A). Levels
of HIF-1α were also measured in order to assure that silenc-
ing was successful. Next, we examined whether silencing of the
other major HIFα transcription factor, HIF-2α, altered the tran-
scription of IL-1α. We observed that HIF-2α silencing resulted
in a minor reduction of IL-1α mRNA levels (Figure 2B). How-
ever, the use of both HIF-1α and HIF-2α as targets for siRNA
silencing resulted in significantly attenuated levels of IL-1α mRNA
in A549 cells, similar to that of VEGF (Figure 2C). These data
indicates that HIFα factors promote the up-regulation of IL-
1α during hypoxia and increase the inflammatory potential in
cases of hypoxia-mediated necrosis. In addition, silencing HIFα

factors in order to decrease angiogenesis, for example, by inhibit-
ing VEGF transcription, can result in decreased levels of IL-1α

as well.

SILENCING HIFα PROTEINS DURING HYPOXIA RESULTS IN INCREASED
IL-1α TRANSCRIPTION IN WI-38 LUNG FIBROBLASTS
Following the observation of decreased IL-1α transcription in
A549 cells following HIFα silencing, we sought to confirm or
decline whether the up-regulatory effect of HIFα factors on IL-1α

expression is general observation or it is unique to this cell type,
by testing different type of cells. Since fibroblasts and epithelial
cells play different roles in inflammation and are known to inter-
act and promote structural changes during inflammatory disease,
such as asthma (Knight, 2001), we decided to test WI-38 fibrob-
lasts cell line. These cells are capable of expressing IL-1α in similar
way to the A549 cells (Figure S1 in Supplementary Material). The
cells were incubated in hypoxic conditions for 2–6 h, time periods
in which initial transcription alterations can be observed. Indeed,

FIGURE 2 | Silencing HIFα proteins down-regulates IL-1α transcription

in hypoxic A549 epithelial cells. A549 cells were transfected with HIF-1α

siRNA (A) or HIF-2α siRNA (B) 24 h prior to hypoxia (6 h). Each graph
represents mean ± SEM of three independent experiments. (C) Cells were
transfected with both HIF-1α and HIF-2α mixed siRNA 24 h prior to hypoxia
(6 h). Graph represents mean ± SEM of five independent experiments. P
values of HIF-2α or HIF-1/2α siRNA-transfected cells vs. control (Ct)
siRNA-transfected cells are annotated in the graphs.

real-time PCR analyses showed that elevated levels of IL-1α mRNA
correlated with the prolongation of hypoxia (Figure 3A). WI-38
fibroblast cells responded differently to HIFα silencing than A549
cells. While silencing HIF-1α or HIF-2α alone resulted in no sig-
nificant change in levels of IL-1α mRNA (Figures 3B,C), silencing
both HIF-1α and HIF-2α resulted in elevated levels of IL-1α tran-
scription (Figure 3D). These data indicate that although IL-1α

transcription is inhibited following HIFα silencing in A549 cells,
fibroblasts respond in an opposite manner. To assure that this
elevation was genuine and unaffected by the treatment itself, we
ruled out differences in levels of cell death between A549 and
WI-38 cells following the hypoxic culture (Figure S2 in Supple-
mentary Material), and also examined VEGF levels, as VEGF is
the most well-known pro-angiogenic factor controlled by HIFα
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FIGURE 3 | Silencing HIFα proteins up-regulates IL-1α transcription in

hypoxic WI-38 fibroblasts. (A) WI-38 fibroblasts were cultured in either
normoxic or hypoxic conditions for 2, 4, or 6 h, and were analyzed by
qRT-PCR for RQ of IL-1α transcription. Graph represents the average ± SEM
of two different experiments. RQ of IL-1α transcription in WI-38 cells
transfected with HIF-1α (B), HIF-2α (C) siRNA 24 h prior to 6 h culture in
hypoxic conditions. Each graph represents mean ± SEM of three
independent experiments. (D) Cells were transfected with both HIF-1α and
HIF-2α mixed siRNA 24 h prior to hypoxia (6 h). Graph represents
mean ± SEM of four independent experiments. P values of HIF-1/2α siRNA
transfected cells vs. control (Ct) siRNA-transfected cells are annotated in
the graphs.

factors. Indeed, while IL-1α mRNA levels increased following
HIFα silencing, VEGF mRNA levels decreased as expected. These
results indicate that in hypoxic fibroblasts, IL-1α transcription
up-regulation is restrained by HIFα factors, and silencing these

factors, for example for therapeutic intervention, can result in
an increased inflammatory response, due to increased levels of
IL-1α.

OVEREXPRESSION OF HIFα FACTORS INCREASE IL-1α TRANSCRIPTION
IN EPITHELIAL CELLS BUT NOT IN WI-38 FIBROBLASTS
We next decided to use a different approach to verify the results
we obtained by siRNA silencing during hypoxia. We trans-
fected WI-38 and A549 cells with plasmids encoding a proline
to alanine muted form of HIF-1α and HIF-2α. These specific
proline residues are hydroxylated under normal oxygen levels,
and therefore mediate the degradation of the proteins by allow-
ing the recognition of pVHL ubiquitin E3-ligase. In order to
verify the stability of the muted proteins during normoxia, we
obtained transfectant nuclear fractions and analyzed them by
Western blot with anti-HIF-1α and anti-HIF-2α specific anti-
bodies (Figure 4A). Indeed, increased levels of the proteins were
obtained, as described before (Kondo et al., 2003). Next, we eval-
uated the effects of HIFα transfection on IL-1α levels in WI-38
and A549 cells. While higher mRNA levels of IL-1α were seen
in A549 cells, IL-1α levels were not up-regulated in WI-38 cells,
where, in fact, we noted a non-significant reduction in IL-1α lev-
els (Figures 4B,C). Another epithelial cell line, the HeLa cell line,
was transfected and evaluated for IL-1α by real-time PCR, and
showed similar patterns to A549 cells, i.e., up-regulation of IL-1α

transcription following an increase of HIFα factors by transfection
(Figure 4D).

DISCUSSION
Sterile inflammation is a process in which the immune system
recognizes danger rather than stranger (Matzinger, 1994). IL-1RI
was found to be the major innate receptor mediating the sterile
inflammation response to dying cells (Chen et al., 2007). More-
over, a study made by our group shows that IL-1α, and not IL-1β,
is the major mediator of the inflammatory response to necrotizing
cells. In addition, IL-1α is retained together with the chromatin of
apoptotic cells, preventing its release and the subsequent induc-
tion of inflammation. However, necrotic cells release IL-1α and
recruit myeloid cells in an IL-1α-dependent manner (Cohen et al.,
2010). Recently, we demonstrated that supernatants of hypoxic
cells contain IL-1α, thus inducing sterile inflammation by recruit-
ing neutrophils to the site of injury (Rider et al., 2011). The initial
infiltration of neutrophils was dependent on IL-1α originating
from necrotic cells. The cells were necrotic due to prolonged
hypoxia, in which IL-1α was up-regulated, and finally released.
As in the inflammatory process the first few hours are critical
(Serhan and Savill, 2005) and include an influx of neutrophils, it
was of interest to study the initial transcriptional response of IL-
1α in cells undergoing hypoxic stress. Here, we show that IL-1α

transcription increases during hypoxia in human cell lines. This
allows the cells to adjust their transcriptome in order to alarm
the surroundings of an approaching danger. When normoxic con-
ditions are not restored, the cell will eventually die by necrosis.
Some cells, such as keratinocytes, express large amounts of IL-
1α under homeostatic conditions; nonetheless, IL-1α increases
during hypoxia (Rider et al., 2011). Other cells should also exhibit
increased expression of IL-1α immediately upon stress conditions,
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FIGURE 4 | Overexpression of HIFα proteins increases IL-1α

transcription in A549 and HeLa cells but not in WI-38 fibroblasts. (A)

Western blot using anti-HIF-1α or anti-HIF-2α antibodies of nuclear fractions
obtained from HEK-T293 cells transfected with the annotated vectors.
WI-38 (B), A549 (C), or HeLa (D) cells were transfected with either control
vector or with HIF-1α (P402A/P564A) and HIF-2α (P405A/P531A), and 24 h
later were analyzed for IL-1α and VEGF RQ of mRNA levels by real-time
PCR. Graphs represent mean ± SEM of four independent experiments for
each cell type. P values of HIFα-transfected cells vs. control (Ct)
transfected are annotated in the graphs.

such as hypoxia. Indeed, both human epithelial cells and fibrob-
lasts exhibit up-regulation of IL-1α during culture under hypoxic
conditions. These data raised the question of whether HIFα fac-
tors were involved in IL-1α transcription. HIF-1α and HIF-2α

were shown to up-regulate IL-1β in hypoxic macrophages (Fang
et al., 2009). However, it was not evaluated whether these fac-
tors regulate also the expression of the alarmin cytokine IL-1α

and whether it happens also in non-hematopoietic cells. Cul-
turing the cells in a hypoxic chamber following siRNA silencing
of HIFα factors, enabled us to determine that HIFα factors do
regulate IL-1α transcription. In addition, we were able to distin-
guish between two different effects of HIFα regulation. In hypoxic
A549 epithelial cells IL-1α is up-regulated by HIFα factors. How-
ever, in WI-38 fibroblasts, which originate in the lungs, as do
A549 cells, HIFα factors regulate and restrain the transcription
of IL-1α. This was verified using HIFα encoding vector transfec-
tions in normoxic cultures. The differential regulation of IL-1α

transcription by HIFα proteins is still not clear. Further study is
required in order to elucidate the opposing effect of these tran-
scription factors on IL-1α in different types of cells. Indeed, in
spite of numerous studies published concerning HIFα and inflam-
mation, there have been no clear conclusions about the role of
HIFα in inflammation. Injection of HIF-1α encoding vectors into
mice showed a reduction in the IL-1α cytokine in splenocytes
obtained one week after injection (Ben-Shoshan et al., 2009). Sev-
eral other models of inflammation showed attenuating effects of
HIFα (Kojima et al., 2007; Cummins et al., 2008; Kobayashi et al.,
2012). However, HIFα factors in hypoxia were shown to cause
an increase in cytokine levels, myeloid cell infiltration, and in
the innate response (Nizet and Johnson, 2009). During inflam-
mation, HIFα factors can play a significant role even without
hypoxia, as HIFα proteins can be stabilized by NF-κB (Cummins
et al., 2006; Rius et al., 2008). IL-1 signaling itself can increase
the stability of HIFα and increase transcription of its target genes
(Hellwig-Burgel et al., 1999). In addition, A549 epithelial cells,
stimulated with IL-1β, were shown to increase the stability of
the HIF-1α protein (Jung et al., 2003). Furthermore, viral infec-
tions of the lungs can stabilize HIFα proteins (Haeberle et al.,
2008). However, when sterile inflammation occurs, hypoxia and
not pathogens drives the inflammatory response (Nizet and John-
son, 2009). A growing number of studies show that IL-1α is a
major mediator of sterile inflammation (Eigenbrod et al., 2008;
Luheshi et al., 2009; Berda-Haddad et al., 2011; Lee et al., 2011;
Rider et al., 2011; Gross et al., 2012; Norton et al., 2012). As such,
its transcription during hypoxia has a special significance. Linking
IL-1α up-regulation during hypoxia, a process which results in
increased myeloid cell recruitment and HIFα transcription reg-
ulation raises the issue of the physiological relevance of these
transcription factors in cases of sterile inflammation. Hypoxic
factors are targeted in cancer therapy to use hypoxia-mediated
cell death to kill cancerous cells; therefore, it is important to
take into consideration that while pro-angiogenic factors, such
as VEGF will be down-regulated, this treatment may either up-
or down-regulate IL-1α, depending on the cell type. Elevated
IL-1 levels can induce massive inflammation in the tissue; how-
ever, IL-1 itself can induce angiogenesis and compensate for
the anti-angiogenic effects of HIFα inhibition, since IL-1 is an
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important mediator in angiogenesis (Carmi et al., 2009). Overall,
our data suggest that HIFα factors can control the transcription
of IL-1α during hypoxia. While transcription of IL-1α increased
with HIFα in the lung epithelial cell line, A549, and in the HeLa
cell line, IL-1α mRNA levels were attenuated by HIFα factors in
lung fibroblasts. This is novel data concerning the induction of
IL-1α-mediated sterile inflammation at the transcriptional level,
in cells which are sensitive to hypoxic stress and are prone to
necrosis.
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SUPPLEMENTARY MATERIAL
Supplementary Material for this article can be found online at:
http:/ /www.frontiersin.org/Inflammation/10.3389/fimmu.2012.
00290/abstract

Figure S1 | A549 and WI-38 cells express IL-1α. Cells were stained by
immunofluorescence for IL-1α and were analyzed by confocal microscopy
(×600 magnification).

Figure S2 | Cell viability following 6 h hypoxia. A549 and WI-38 cells were
cultured with either normoxic or hypoxic conditions for 6 h. Cells were analyzed
for annexin–PI by flow cytometer.
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