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to determine the statistical signifi cance of event-related responses 
in intracranial recordings. We adapted this quantitative approach 
for auditory ECoG studies conducted at our epilepsy center. ECoG 
is useful for investigating the functional organization of auditory 
cortex and is used clinically for pre-surgical functional mapping 
and, more recently, for brain–computer interfaces (Howard et al., 
2000; Lachaux et al., 2007; Brugge et al., 2009; Hong et al., 2009; 
Sinai et al., 2009). We will examine how complementary methods 
can be combined to evaluate statistically signifi cant changes in 
multiple aspects of auditory event-related ECoG activity: evoked 
responses, spectral responses, event-related (causal) connectivity, 
and spatial distribution (normalization). Each method is illustrated 
with examples from recent auditory ECoG studies. We begin with 
a brief overview of intracranial recording methods and cortical 
auditory event-related responses. We discuss the advantages of 
using multiple complementary methods (e.g., single-channel and 
multichannel) to analyze the same ECoG data sets. Methodological 
issues, including multiple comparisons, as well as future directions 
for development of new statistical approaches are also discussed.

INTRODUCTION
Multichannel intracranial recordings are used increasingly to inves-
tigate the functional organization of human cortex. Intracranial EEG 
recordings, known as electrocorticography (ECoG), use electrodes 
implanted for clinical purposes, including seizure localization and 
surgical planning for treatment of intractable epilepsy. This clinical 
circumstance provides a rare opportunity to record focal neuronal 
population activity directly from cortex. ECoG recordings offer 
excellent temporal resolution (1 ms) and the proximity of recording 
electrodes to underlying cortical sources enhances spatial resolution, 
signal-to-noise ratio, and sensitivity to a broad range of EEG frequen-
cies. Recent ECoG studies have investigated cortical sensory (audi-
tory, visual), motor, language, and cognitive systems (Crone et al., 
2006, 2009; Miller et al., 2007; Brugge et al., 2009; Jacobs and Kahana, 
2009; Sinai et al., 2009). ECoG recordings are usually obtained from 
large numbers of electrodes, yielding high dimensional data sets.

In this methods paper, we propose a novel quantitative frame-
work that integrates multiple existing methods for analyzing high 
dimensional ECoG data sets. This quantitative approach is used 
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INTRACRANIAL RECORDING METHODS
RECORDING ELECTRODES
Intracranial recordings are obtained with subdural or stereotactic 
depth electrodes. Subdural electrodes are positioned on the lateral 
surface of cortex; depth electrodes are inserted through cortex to 
record from deeper structures, such as hippocampus. Recordings 
can be obtained intraoperatively by moving electrodes to different 
locations on the exposed cortex, or extraoperatively by leaving 
implanted electrodes indwelling for up to 10 days of monitor-
ing. Although microelectrodes have been used for single-neuron 
recording studies (Howard et al., 1996; Schwartz et al., 2000; 
Ojemann et al., 2002; Gelbard-Sagiv et al., 2008), most clinical 
centers use macroelectrodes to record from neuronal popula-
tions. At our center, intracranial auditory recordings are usually 
obtained extraoperatively with subdural and depth macroelec-
trodes (Crone et al., 2001a; Boatman and Miglioretti, 2005; Sinai 
et al., 2009).

ELECTRODE PLACEMENT
For extraoperative recordings, subdural and depth electrodes are 
implanted by craniotomy under general anesthesia. Typically, 
electrodes are implanted over one hemisphere where the seizure 
focus is suspected based on clinical data. Subdural electrodes con-
sist largely of platinum-iridium disks, 2–3 mm in diameter, spaced 
5–10 mm apart center-to-center and embedded in 1.5-mm-thick 
arrays of medical grade silastic. Common subdural electrode array 
confi gurations are 4 × 5, 6 × 8 or 8 × 8 grids and 1 × 8 or 2 × 8 
strips (Figure 1). Most patients have multiple grids and/or strips 
implanted to ensure adequate spatial sampling for seizure locali-
zation, with the total number of recording electrodes per patient 
at our center typically between 48 and 184 (maximum to date). 
Depth electrodes are one-dimensional arrays typically of 1 × 4 or 
1 × 8 contacts, 2-mm in diameter, inserted through gyri or sulci. 
While subdural electrodes record primarily from gyral structures 
because they are located over the cortical surface, depth electrodes 
can record from both gyral and sulcal structures. Intracranial 
recordings can also be made from electrodes implanted in the 
epidural space. Although signal amplitude is reduced by the dura 
mater and epidural electrodes cannot cover as many brain areas 
as can subdural electrodes, they potentially can be implanted less 
invasively and can offer an important alternative to subdural elec-
trodes in patients with severe subdural adhesions from prior sur-
gery. These electrodes have been used for presurgical evaluations 
for intractable epilepsy, and their use has also been considered for 
brain–machine interface applications (Barnett et al., 1990; Blount 
et al., 2008; Slutzky et al., 2008). In this paper, we focus on intrac-
ranial recordings using subdural electrodes.

Intracranial electrode confi guration and placement are deter-
mined individually, based on each patient’s clinical circumstances. 
Many of our patients have subdural electrode coverage of the supe-
rior temporal gyrus corresponding to auditory cortex (Boatman 
et al., 2000; Miglioretti and Boatman, 2003; Boatman, 2004, 2006; 
Boatman and Miglioretti, 2005). During implantation, electrode 
grids and strips are sutured to the overlying dura to prevent move-
ment during closure of the craniotomy. Post-implantation CT scans 
are obtained the following day to confi rm electrode locations. After 
implantation, patients are monitored in the neurological critical 

care unit and then admitted to the epilepsy monitoring unit for 
ECoG recordings and monitoring. Auditory ECoG studies are usu-
ally initiated 3–5 days after electrode implantation, when surgery-
related edema and discomfort are reduced. All patient research 
participants provide informed written consent in compliance with 
our Institutional Review Board. Patients are tested individually 
at bedside in private rooms with measured ambient noise levels 
≤45 dB SPL. Recordings are made from the same subdural elec-
trodes used clinically for seizure localization; they introduce no 
additional risk to the patient and do not interfere with the ongoing 
clinical video recordings of patients’ seizures for localization of 
the epileptic zone. Once suffi cient clinical information has been 
obtained, patients return to surgery for removal of the electrodes 
and possible resection for treatment of seizures.

RECORDING PARAMETERS
ECoG recodings are obtained using standard clinical parameters. 
The ECoG signal is amplifi ed (Schwarzer amplifi er) at a channel 
gain of 1408 and recorded digitally from all channels (Stellate 
Systems Inc.) at a minimum sampling rate of 1000 Hz with a 
bandwidth of 0.1–350 Hz (6 dB/octave). We routinely use a refer-
ential montage in which all subdural electrodes are referenced to 
a single intracranial electrode. A benefi t of referential recordings 
is that they can be remontaged readily for analysis, in contrast to 
bipolar recordings (see Signal Pre-processing). Ideally, the electrode 

FIGURE 1 | (A) Shows three different electrode confi gurations used for 
intracranial recordings: (1) a 4 × 5 subdural electrode array (Ad-Tech, 
Racine, WI, USA); (2) a 1 × 8 electrode strip; and (3) an 8-contact depth 
electrode. (B) A coronal 3D MRI reconstruction showing depth 
electrodes (white) in right temporal lobe; (C) a 3D MRI reconstruction with 
8 × 8 subdural electrode array and additional 2 × 8 strip implanted over the 
lateral left hemisphere.
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selected for the reference has minimal electrical artifact and elec-
trographic abnormalities and is distal to the recording region of 
interest (e.g., superior temporal gyrus). Although it is not possible 
to have an entirely inactive reference, choosing a reference distal to 
recording sites of interest can reduce its potential contributions and 
the need for spatial reformatting. Extracranial reference electrodes 
are not used to avoid contamination by muscle activity that has 
prominent spectral energy in high frequencies (e.g., gamma band). 
Markers for stimulus onset times are recorded simultaneously to 
ECoG marker channels.

SIGNAL PRE-PROCESSING
The continuous ECoG signal is pre-processed for event-related 
analysis. Pre-processing is performed to identify and exclude from 
analysis channels and trials with artifact and to remontage the 
recording data. The continuous ECoG recording is fi rst inspected 
visually to identify and reject channels with excessive artifact or epi-
leptiform activity. The continuous ECoG signal is then segmented 
into individual trials containing pre-stimulus baseline and post-
stimulus intervals; these are then visually inspected to reject trials 
with artifact or epileptiform activity. Review by an epileptologist or 
clinical neurophysiologist is helpful to ensure correct identifi cation 
of channels and trials with artifact. At our center, an epileptologist 
also routinely inspects the intracranial EEG prior to recording to 
rule out the presence of excessive spiking or epileptiform activity 
that can reduce the quality of the recordings. Once channels and 
trials with artifact have been excluded, the remaining channels can 
be remontaged for event-related analysis.

For our ECoG studies, we remontage to a common average 
reference (Sinai et al., 2005, 2009). For each sample of the ECoG 
signal in a given trial, an average of the voltages in all channels, 
excluding those with artifact or frequent epileptic discharges, is 
subtracted from the voltage in each individual channel. This spa-
tial reformatting reduces variations in signal amplitude across the 
recording array that result from differences in distance between 
active electrodes and the reference electrode. Although this pro-
cedure is sometimes used in scalp EEG studies to approximate 
a neutral reference, this cannot be assumed, particularly in the 
case of intracranial recordings. The choice of reference electrode 
should be considered carefully so that noise and other promi-
nent electrical activity are not inadvertently introduced into the 
signal. More complex reformatting, such as a Laplacian or local 
average reference, are not usually performed in ECoG studies. 
This is because they are diffi cult to implement with intracranial 
arrays, requiring exclusion of edge electrodes or use of a spline 
to approximate sites off the array. Moreover, these procedures 
were originally developed for scalp EEGs to approximate local 
sources, effectively functioning as high-pass spatial fi lters and, 
therefore, may not be necessary or appropriate for ECoG record-
ings. Although volume conduction from distant sources (i.e., far 
fi eld potentials) can occur, signals recorded with intracranial elec-
trodes are dominated by local sources within a few millimeters 
of the contacts such that signal features in adjacent electrodes 
are often very different (Crone et al., 2001a; Sinai et al., 2005, 
2009). Nevertheless, these procedures, as well as simpler alter-
natives (bipolar derivations), are important alternatives to con-
sider, particularly when volume conduction from distant sources 

is suspected. Additional signal pre-processing for multichannel 
connectivity analyses is described separately below (see Signal 
Pre-processing for ERC Analysis).

CORTICAL AUDITORY EVENT-RELATED RESPONSES
Cortical auditory event-related responses are electrophysiology-
based measures of neural activity generated, in response to sound, by 
neural sources in primary and non-primary auditory cortex located 
in the superior temporal gyrus of both cerebral hemispheres. We 
will focus on three types of cortical auditory event-related activity 
in ECoG signals: evoked responses; spectral (induced) responses; 
and multichannel event-related connectivity.

EVOKED AUDITORY RESPONSES
Evoked responses, also known as evoked potentials or ERPs, are syn-
chronized, low-voltage, typically low-frequency (<50 Hz) electrical 
signals with latencies and amplitudes phase-locked to a stimulus. 
Because of their low amplitude, trial averaging in the time domain 
is used to extract evoked responses and identify individual com-
ponent peaks (positive, negative). One of the earliest and largest 
cortical evoked responses is the vertex-negative N1 that peaks in 
adults around 75–120 ms after stimulus onset and is an automatic, 
transient response to sound onset or change, with generators in 
primary and non-primary auditory cortex (Scherg and von Cramon, 
1986; Naatanen and Picton, 1987; Godey et al., 2001). The N1 is 
embedded between two positive peaks – the P1 and the P2–  forming 
a three-component evoked complex known as the P1-N1-P2. 
Later cortical auditory evoked responses include the N2, occurring 
approximately 200 ms post-stimulus onset (Halgren et al., 1998; 
Hong et al., 2009); the mismatch negativity that refl ects pre-attentive 
detection of stimulus differences (Tiitinen et al., 1994; Naatanen, 
2001; Naatanen et al., 2007); and the P3 (or P300) response that has 
been investigated extensively in studies of auditory attention and 
other higher level cognitive and language functions (Knight et al., 
1989; Polich and Kok, 1995). A variety of auditory stimuli can be 
used to elicit cortical event-related responses, ranging from simple 
sinusoidal tones to complex speech (Sinai et al., 2009). Similarly, a 
number of different paradigms can be used to elicit cortical audi-
tory event-related responses including passive listening tasks and 
active discrimination tasks (Crone et al., 2001b; Sinai et al., 2009). 
The choice of stimulus and paradigm is determined largely by the 
research hypothesis to be tested. Dependent variables in auditory 
ERP studies include peak latency (ms) and amplitude (dB).

SPECTRAL RESPONSES
It is well established that auditory stimuli also induce event-related 
changes in ECoG spectral power that are not phase-locked to the 
stimulus (Crone et al., 2001a; Edwards et al., 2005; Lachaux et al., 
2007; Sinai et al., 2009). A variety of induced spectral responses, 
once considered ‘noise’ in the analysis of evoked responses, are now 
associated with perceptual and cognitive processing. Because spectral 
responses are not phase-locked to a stimulus, they are not evident 
in the averaged evoked waveform. To identify event-related spectral 
power changes, time–frequency analyses are used for averaging in 
the frequency domain rather than in the time domain. A number 
of different time–frequency methods are used to measure event-
related changes in the ECoG spectrum, including short-time Fourier 
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 transform, wavelet transform, and matching pursuit (MP) (Mallat 
and Zhang, 1993). Scalp recording studies have associated changes in a 
variety of EEG frequency bands with task-related cortical processing, 
including increases and decreases in theta (4–7 Hz), alpha (8–13 Hz), 
and beta (14–20 Hz) oscillations under different functional task con-
ditions (Klimesch et al., 1993; Neuper and Pfurtscheller, 2001; Jensen 
and Tesche, 2002; Struber and Herrmann, 2002). Previous studies 
have also identifi ed higher frequencies, including gamma (≥30 Hz), 
as potential indices of task-related cortical processing (Crone et al., 
1998; Tallon-Baudry and Bertrand, 1999; Edwards et al., 2005; Sinai 
et al., 2005; Lachaux et al., 2007). Event-related gamma activity has 
been associated with auditory, visual, and motor functions (Pantev 
et al., 1995; Tallon-Baudry and Bertrand, 1999; Pfurtscheller et al., 
2003; Sinai et al., 2009). The same stimuli and experimental para-
digms used to elicit cortical auditory evoked responses are used to 
induce changes in spectral power. Modulation of spectral intensity 
is measured in units of natural log power change.

EVENT-RELATED CONNECTIVITY
Recent advances in signal processing have engendered investigations 
of event-related functional interactions in the cortical networks 
associated with sensory, motor, cognitive, and language functions. 
Two main types of functional network interactions are recognized: 
functional connectivity and effective connectivity. Functional con-
nectivity is defi ned as the temporal relations (coherences) between 
distant cortical regions, without reference to their directionality 
(causality). Effective connectivity refers to the causal interactions 
of cortical networks (Friston et al., 1994; Astolfi  et al., 2004; Sporns 
et al., 2007). A number of multichannel analysis methods have been 
developed to probe the dynamic interactions of auditory and other 
cortical functional networks, including Granger causality (Oya 
et al., 2007; Gow et al., 2009), dynamic causal modeling (Friston 
et al., 2005; David et al., 2006; Garrido et al., 2007), independent 
component analysis (Onton et al., 2006), direct Directed Transfer 
Function (dDTF) (Korzeniewska et al., 2003), Short-time Directed 
Transfer Function (SDTF) (Ginter et al., 2001, 2005), and more 
recently Short-time direct Directed Transfer Function (SdDTF) 
(Korzeniewska et al., 2008). We will focus on the SdDTF method 
which was developed at our center for evaluating multichannel 
causal interactions over brief periods (milliseconds) and is well 
suited for studying cortical sound processing. SdDTF originates 
from directed transfer function (DTF) (Kaminski and Blinowska, 
1991; Franaszczuk et al., 1994), which is based on the concept of 
Granger causality. SdDTF uses multiple trials/repetitions (multiple 
realizations of the same stochastic process) to measure the dynam-
ics of event-related functional interactions between cortical sites, 
using short time windows (Ding et al., 2000).

ANALYSIS OF AUDITORY EVOKED RESPONSES
TIME-DOMAIN AVERAGING
Auditory evoked responses are derived by averaging in the time 
domain because their latencies and amplitudes are time- and phase-
locked to the stimulus. In contrast, background electrophysiological 
activity is not phase-locked and, therefore, is reduced by phase 
cancellation. The main goal of most clinical studies is to identify 
the largest evoked response for measurement (amplitude, latency). 
The largest response is often identifi ed visually, without statistical 

testing. Existing analysis methods, such as independent component 
analysis, were developed to address the poor spatial resolution of 
scalp recordings through advanced source localization and sig-
nal de-noising (Makeig et al., 1997; Delorme and Makeig, 2004). 
Because the spatial resolution of intracranial recordings is consid-
erably better than that of scalp recordings, these methods may not 
be necessary or applicable.

Recent ECoG studies have begun using statistical testing to 
compare event-related responses to the baseline signal (Edwards 
et al., 2005; Towle et al., 2008; Sinai et al., 2009). This is useful for 
verifying waveform detection and for reducing potential biases 
associated with reliance on visual identifi cation. This approach 
is also helpful for determining the spatial distribution of cortical 
evoked responses associated with different experimental conditions 
(Lachaux et al., 2007; Towle et al., 2008; Sinai et al., 2009). Although 
there is no standard method for measuring baseline ECoG, the two 
most common approaches are computing the mean amplitude, 
based on a random sample of a fi xed number of time points, and re-
sampling of the time-series (Edwards et al., 2005; Sinai et al., 2009). 
Differences in response latency and amplitude can also be measured 
as a function of experimental conditions (stimulus, task) using 
linear regression with generalized estimating equations to account 
for correlation within subjects, as previously described (Liang and 
Zeger, 1986; Boatman and Miglioretti, 2005). Comparing the tim-
ing and size of evoked responses across multiple channels provides 
useful information on the spatial–temporal profi les of auditory 
cortical responses. However, performing multiple comparisons also 
increases the likelihood for false rejections. To address this issue, 
correction methods such as the Bonferroni method and false dis-
covery rate (FDR) are increasingly used in ECoG studies. We discuss 
the problem of multiple comparisons and correction methods in 
more detail below (see Multiple Comparisons).

SPECTRAL ANALYSIS
To quantify event-related changes in spectral composition, the 
ECoG signal is segmented into temporal epochs and transformed 
to the frequency domain for averaging across experimental tri-
als. There are a number of different algorithms for converting 
the signal into the frequency domain, including discrete Fourier 
transforms, wavelets, and complex demodulation. Each method 
offers trade-offs between time and frequency resolution on the one 
hand and computational transparency and effi ciency on the other. 
We use a time–frequency MP algorithm (Mallat and Zhang, 1993; 
Franaszczuk et al., 1998; Durka et al., 2001; Ray et al., 2003). MP is 
an iterative algorithm for adaptive time–frequency estimates of sig-
nal power. The MP method is well suited for analysis of non-station-
ary changes in the ECoG signal, and combines advantages of other 
time–frequency decomposition approaches –  including short-time 
Fourier transform and wavelet transform – with enhanced time–
frequency resolution, as demonstrated previously (Ray et al., 2003; 
Sinai et al., 2005, 2009). The MP method is implemented in C, 
based on the original software (Mallat and Zhang, 1993), and runs 
under Linux on a cluster of computer nodes (software program 
available upon request).

Spectral analyses of event-related electrophysiological responses 
often distinguish between phase-locked and non-phase-locked 
signal components. Phase-locked components are obtained by 
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where E
M

f(n,k) represents energy of signal f in discrete time n and 
discrete frequency k after M steps of iteration, and E
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m
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resents the Wigner–Ville distribution of atom g
m
. E

v
g

m
(n,k) is rep-

resented as an ellipsoid in two-dimensional time–frequency plane 
for Gabor atoms, as a horizontal line for sines, and as a vertical line 
for Dirac deltas. The presence of electrical artifact (line noise) in 
the recordings is represented in the decomposition by sine or Gabor 
atoms, with a central frequency around 60 Hz in the United States 
(50 Hz in Europe) and its harmonics, and is typically excluded from 
summation in energy computation.

Time–frequency decomposition is performed for each trial sepa-
rately. The lengths of the pre-stimulus and post-stimulus epochs 
are determined largely by the parameters (e.g., inter-stimulus inter-
vals) of the experimental recording paradigm. For each frequency, 
the baseline (pre-stimulus) power is computed by averaging over 
all baseline time points within a trial and over all trials. To test 
the null hypothesis that event-related spectral power changes do 
not differ from baseline, estimates of pre-stimulus (baseline) and 
post-stimulus spectral power in each post-stimulus time point are 
compared. We use a logarithmic transformation and the Student’s 
t-test to assess statistical signifi cance of the differences (Zygierewicz 
et al., 2005). The t statistic is computed as:

t =
E n k B k

sn k
E

,

,[ ]− [ ]
,

 
(3)

where E n k( , ) is the average of log[E
M

(n,k)] for post-stimulus 
time-points n and frequency k over N trials, B k( ) is the average of 
log[E

M
(j,k)] over baseline points j and N trials, and s

E
 is a weighted 

estimator of the standard deviation. The statistics t
n,k

 follow Student’s 
t distribution with N(1 + K) − 2 degrees of freedom, where N is the 
number of trials and K is the number of baseline time points.

Figure 2 shows results of single-channel MP analysis of spectral 
responses to two different stimuli (speech, tones) recorded from 
the same lateral temporal lobe site in one patient. Of interest is the 
observation that both simple tones and complex speech stimuli 
induced high frequency (gamma) spectral responses at sites in 
non-primary auditory association cortex. This fi nding challenges 
the traditional view that non-primary auditory areas are involved 
only in processing complex sounds.

To correct for multiple within-subject comparisons, the 
Bonferroni correction or FDR is applied, as discussed below (see 
Multiple Comparisons) and as previously described (Zygierewicz 
et al., 2005; Sinai et al., 2009). The resulting time–frequency energy 
distribution refl ects the magnitude and statistical signifi cance of 
energy changes over time. Time–frequency points (pixels) repre-
senting statistically signifi cant changes from baseline can also be 
plotted across the frequency range by experimental conditions 
(stimulus, task), as shown in Figure 2.

Quantifying differences in spectral responses across experimental 
conditions (stimulus, task) poses additional challenges. Simple com-
parisons of spectral responses in the same time–frequency pixel in 
different experimental conditions can be readily performed by t-test 
(Figure 3). However, these parametric tests do not capture visible dif-
ferences in the relative size, morphology (shape) and timing of two (or 
more) spectral responses, as seen in Figure 3. Quantifying these differ-
ences in spectral responses will require new statistical approaches.

 averaging across trials in the time domain, yielding traditional 
evoked potentials. When signals are averaged in the frequency 
domain, the resulting time–frequency averages include both phase-
locked and non-phase-locked components. A variety of approaches 
can be used to isolate the phase-locked components in order to 
emphasize the non-phase-locked components of electrophysiologi-
cal responses. The effi cacy of these approaches depends largely on 
the validity of the phase-locked components, which are themselves 
somewhat of a methodological construct. A simple, but arguably 
simplistic, way to try to isolate non-phased-locked components is 
to subtract the time-domain-averaged signal (i.e., evoked poten-
tial) from each trial prior to averaging in the frequency domain 
(Crone et al., 2001b). A similar approach is that of computing the 
inter-trial variance (Kalcher and Pfurtscheller, 1995). Because the 
amplitudes of phase-locked components are typically much smaller 
than the ongoing raw signal, their contributions to the spectral 
analysis results are likely to be small. However, large inter-trial 
variation in the amplitude and latency of the evoked potential can 
introduce spurious energies when subtracted from the raw signal 
(Truccolo et al., 2002). More advanced methods, including single-
trial time–frequency analyses, may reduce the need for this proce-
dure in the future. For now, the best approach may be to perform 
spectral analyses of signals with and without isolated phase-locked 
components, and in combination with time–frequency decomposi-
tion of the time-averaged evoked response itself (Trautner et al., 
2006). While this approach can help to elucidate the contributions 
of phase-locked and non-phase-locked components, it is important 
to recognize that inherent methodological limitations remain.

MATCHING PURSUIT
The MP method decomposes the ECoG signal into a linear combi-
nation of time–frequency functions termed ‘atoms’, drawn from a 
large dictionary of functions well localized in the time–frequency 
plane. We implement the MP method using a dictionary of sine 
functions that have well-defi ned frequencies; Dirac delta functions 
that are localized in time; and sine-modulated Gaussians – Gabor 
functions. Gabor functions are characterized by the highest com-
bined time–frequency resolution based on the uncertainty principle 
in time–frequency analysis that states that σ

f
σ

t
 ≥ 1/2 where σ

f
 and σ

t
 

represent spread of the function in frequency and time, respectively. It 
can be shown that equality is achieved only for Gabor functions (i.e., 
modulated Gaussian functions) (Mallat and Zhang, 1993). The atom 
representing the maximum energy of the signal (i.e., the largest inner 
product with the signal) is selected fi rst; atoms in the dictionary rep-
resenting the maximum energy of the residual are then determined 
iteratively. After M-th iteration the signal f(n) is expressed as:

f n = R f g g n + R f nm
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M
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0
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∑
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where Rmf is the residual after the m-th iteration, g
m
 is the atom 

selected in m-th iteration, n is the digitized signal sample number, and 
〈Rmf,g

m
〉 denotes the inner product of residual Rmf and atom g

m
. The 

time–frequency energy distribution is then computed by summing 
the Wigner–Ville distribution of the Gabor atoms expressed as:
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METHODOLOGICAL CONSIDERATIONS
The length of pre-stimulus (baseline) and post-stimulus epochs is 
determined in part by the experimental protocol and, in particular, 
by the inter-stimulus interval. For our auditory ECoG studies, we 
use relatively short inter-stimulus intervals (∼1–2 s) which allow 
us to record larger numbers of trials. However, using shorter time 
windows can make it more diffi cult to detect power changes in 
lower frequencies (alpha, beta).

The MP method is useful for studying non-phase-locked, event-
related changes in ECoG signals. This approach is well suited for cap-
turing the brief (milliseconds), rapidly changing neural responses 
characteristic of cortical sound processing. We have used this 
approach in our recent studies to characterize spectral responses 
to different auditory stimuli (tones, speech) in auditory association 
cortex (Ray et al., 2003; Sinai et al., 2009). Studies from our center 

and others have shown that spectral and time-domain analyses are 
complementary, each providing important clinical information and 
new insights into the functional organization of the human cortical 
auditory system (Crone et al., 2001a; Edwards et al., 2005; Lachaux 
et al., 2007; Towle et al., 2008; Sinai et al., 2009).

EVENT-RELATED CAUSAL AND EFFECTIVE CONNECTIVITY
Previous intracranial auditory recording studies have identifi ed 
statistically signifi cant event-related changes in ECoG spectral 
power using single-channel time–frequency analyses (Crone et al., 
2001a; Lachaux et al., 2007; Sinai et al., 2009). Non-phased-locked 
changes in spectral power, once considered ‘noise’, are now thought 
to be neural indices of regional and distributed cortical processing, 
providing a useful tool for probing the functional organization 
of cortical networks (Engel and Singer, 2001; Singer, 1993). As a 

FIGURE 2 | Results of matching pursuit analysis showing statistically 

signifi cant spectral power changes (0–200 Hz) occurring 0–250 ms following 

onset of speech (A) and tone (B) stimuli and recorded from the same 

electrode site located on the convexity of the posterior superior temporal 

gyrus in one patient. Scale bar to right of each panel shows color scale of 
spectral power changes (dB). Largest spectral power changes are shown in red.
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result, there is now considerable interest in investigating effective 
neural connectivity based on the dynamic patterns of event-related 
propagation of the non-phase locked activity. Event-related causal-
ity (ERC) is a new method for measuring event-related changes 
in causal interactions between multi-electrode recording sites, to 
estimate the effective connectivity of cortical networks engaged 
by functional tasks (Korzeniewska et al., 2008). The ERC method 
measures statistically signifi cant event-related changes in the direc-
tion, strength, and spectral content of direct electrophysiological 
interactions between brain sites and their timing. In the following 
sections, we describe the multichannel ERC method and its applica-
tion to ECoG data, including auditory event-related recordings.

EVENT-RELATED CAUSALITY
ERC is based on the concept of Granger causality, which was origi-
nally developed for economic modeling and predictions (Granger, 
1969). Granger causality postulates that an observed time series 
x

k
(t) causes another time series x

l
(t) if knowledge of x

k
(t)’s past 

signifi cantly improves prediction of x
l
(t). This approach was imple-

mented in multiple time series by fi tting a multivariate autore-
gressive (MVAR) model, and has been used recently to study the 
dynamics of causal interactions between neural populations for sig-
nals assumed to be either stationary (Brovelli et al., 2005; Krichmar 
et al., 2005; Seth, 2005; Cadotte et al., 2008, 2009; Anderson et al., 

2009; Keil et al., 2009), or non-stationary (Freiwald et al., 1999; 
Hesse et al., 2003). By using frequency decomposition of Granger’s 
time domain (Geweke, 1982) it is possible to examine spectral prop-
erties of Granger causality (sometimes referred as Granger–Geweke 
causality), which is useful for neurophysiological signals, where 
frequency domain is often of interest. The Granger causality tech-
nique is a ‘model-free’ measure of causal interactions in that it is 
not based on a priori assumptions about anatomical or functional 
connections. However, it is based on a statistical linear model and 
cannot describe non-linear causal interactions. The concept of 
Granger causality led to development of multiple related meth-
ods, including structural analysis (Bernasconi and Konig, 1999); 
partial directed coherence (Sameshima and Baccala, 1999; Baccala 
and Sameshima, 2001a,b; Schelter et al., 2006); and DTF (Kaminski 
and Blinowska, 1991; Franaszczuk et al., 1994; Kaminski et al., 2001; 
Astolfi  et al., 2005; Kaminski and Liang, 2005). A number of these 
methods have been compared previously (Kus et al., 2004; Eichler, 
2005; Winterhalder et al., 2005; Schlogl and Supp, 2006; Astolfi  
et al., 2007b). In particular, a study by Kaminski et al. (2001) showed 
equivalence of DTF and bivariate Granger causality. Other methods 
that are not based on the Granger causality concept have also been 
used to determine functional connectivity, including calculations of 
evoked potential covariances (Gevins et al., 1995); adaptive phase 
estimation (Schack et al., 1999); effective information (Tononi and 

FIGURE 3 | Statistical comparisons of event-related spectral power 

responses (dB) elicited with two different auditory stimuli (tones, speech) 

from the same ECoG channel (electrode) on the lateral superior temporal 

gyrus. Spectral responses that differed signifi cantly from their respective 
baselines are shown for (A) tones and (B) speech. Comparisons of two spectral 
responses (A versus B) showed signifi cant differences when the response to 

tones was subtracted from the response to speech, as shown in (C,D). Results 
of two statistical comparisons are shown for: a t-test assuming unequal 
variances (C) and a paired t-test for Z-scores (D). False discovery rate correction 
for multiple comparisons was applied for both tests. The similarity of test results 
indicates similar variances, likely refl ecting the common data sources 
(channel,subject).
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Sporns, 2003); the imaginary part of coherency (Nolte et al., 2004); 
and directed information transfer (Hinrichs et al., 2008). In this 
paper we will discuss only the SdDTF method, which is a modifi ca-
tion of the DTF method and therefore also a linear Granger-like 
causality measure.

The MVAR model assumes that the values of multiple time series 
from K recording sites/channels – vector 

�
x x xK= { ,..., }1  – at time 

t, depend on p previous values of the time series, and the random 
components vector 

�
e . When the MVAR model is fi tted to ECoG 

signals from K channels, they are treated as one multivariate sto-
chastic process, expressed as:

� � �
x t = A x t j + e tj

j=

p

( ) ( ) ( ),− −∑
1  

(4)

where A
j
 is a K × K MVAR coeffi cients matrix and p is the model 

order. To determine the value of model order p, the Akaike 
Information Criterion is applied (Akaike, 1974). The MVAR model 
coeffi cients were computed using a Yule–Walker algorithm imple-
mented in C (Franaszczuk et al., 1985). Because ECoG activity may 
be understood in terms of rhythms and oscillations, it is useful to 
describe the spectral properties of their signals. For this purpose 
the MVAR equation may be transformed to the frequency domain 
(Marple, 1987) as:

X f = H f E f( ) ( ) ( ),  (5)

where

H f = A ej
j=

p
i jf t( ) ,

0

2

1

∑ −

−
⎛

⎝⎜
⎞

⎠⎟
π Δ

 

(6)

H(f) is the transfer function of the multichannel system, f is fre-
quency, and Δt is the sampling interval. The element h

kl
 of the 

matrix H(f) describes the transfer function between the k-th out-
put and the l-th input of the system. If the element h

kl
 of H is 

equal to 0, the hypothesis that x
k
(t) causes x

l
(t) can be rejected. 

The matrix is not symmetric if any of the channel pairs (k,l) have 
unequal fl ows in both directions. As such, the directional proper-
ties of a multichannel system may be interpreted as Granger causal 
relationships, signal fl ows, or activity transfers. If H is symmetric, 
directionality cannot be determined. The direct transfer function 
was developed as a normalized version of H matrix (Kaminski 
and Blinowska, 1991; Franaszczuk et al., 1994; Kaminski et al., 
2001; Astolfi  et al., 2005; Kaminski and Liang, 2005). The DTF 
method has also been used to study activity fl ow in amnesic and 
Alzheimer’s patients (Babiloni et al., 2009); Parkinson’s patients 
(Androulidakis et al., 2008; Lalo et al., 2008); and spinal cord 
injury patients (Astolfi  et al., 2006), and in studies of seizure onset 
and neural circuitry (Franaszczuk et al., 1994; Franaszczuk and 
Bergey, 1998; Ge et al., 2007); wake-sleep transitions (De Gennaro 
et al., 2004, 2005); working memory (Edin et al., 2007); memory 
encoding and retrieval (Babiloni et al., 2006); and animal behavior 
(Korzeniewska et al., 1997). Recently, DTF and related methods 
have also been used to investigate causal infl uences in functional 
MRI (fMRI) data (Deshpande et al., 2006, 2008; Hinrichs et al., 
2006; Sato et al., 2008; Wilke et al., 2009), and to develop brain 
computer interfaces (Shoker et al., 2005).

To capture the dynamics of ERC, various modifi cations of 
MVAR model fi tting can be applied (Astolfi  et al., 2007a, b; Wilke 
et al., 2007). The SDTF (Ding et al., 2000), a modifi cation of the 
DTF method, uses short, overlapping time windows that are shifted 
along the signals when there are multiple task repetitions (consid-
ered as a realization of the same stochastic process), or trials, to 
track brief changes in the fl ow of activity between brain regions 
(Ginter et al., 2001, 2005; Kaminski et al., 2005; Kus et al., 2006, 
2008; Philiastides and Sajda, 2006; Korzeniewska et al., 2008).

Granger causality and DTF methods identify both direct and 
indirect relationships between signals. For example, for three signals 
related as follows: x1 → x2 → x3, these methods will show not only 
fl ows x1 → x2 and x2 → x3 but also x1 → x3 (indirect fl ow). To 
detect only direct relationships, a partial coherence function can 
be utilized. By multiplying this function with DTF, the dDTF is 
obtained which describes only direct fl ows (Korzeniewska et al., 
2003). However, the partial coherence function can also yield spuri-
ous relationships, as when two non correlated signals are added to 
form a third signal. This will result in spurious partial coherence 
between to non correlated signals: the so called ‘marrying parents 
of a joint child effect’ (Schelter et al., 2006). However, in this case 
DTF will show no fl ow and dDTF will avoid the spurious effect. 
The recently developed SdDTF method involves a synthesis of both 
the SDTF and the dDTF collectively (Korzeniewska et al., 2008), 
in the form:

ζ
χ

χ
k,l

k,l k,l

k,l
k,lf

k,l

=
h f f

h f f

( ) ( )

( ) ( )
,

2 2∑∑
 

(7)

where χ
kl
 are elements of partial coherence matrix. The SdDTF func-

tion determines whether a signal component at a given frequency in 
channel k is shifted in time with respect to a signal component of the 
same frequency in channel l, and whether the shifted components 
are coherent and are not explained by components of other chan-
nels. SdDTF takes values from 0 to 1. Zero indicates a lack of direct 
causal relationships. The non-zero values of SdDTF are interpreted 
as a fl ow of activity from one channel to another, that is, ζ

kl
(f) > 0 

indicates fl ow of activity from channel l to channel k(l → k). The 
temporal evolution of causality estimates can then be obtained by 
calculating them in a short window that is shifted along the signal 
of interest, as previously described (Korzeniewska et al., 2008).

The interpretation of event-related causal interactions is con-
strained by the available measurements. As in all scientifi c infer-
ence, missing information can lead to false interpretation. In 
multichannel analyses, it is important to include measurements 
from all brain regions that are responsible for the analyzed task. 
When neural networks associated with functional processing are 
only partially represented, spurious causalities may result (Eichler, 
2005; Krichmar et al., 2005). Removing, adding or replacing crucial 
recording sites from the analysis is most likely to produce artifi -
cial causalities (Eichler, 2005). Conversely, inclusion, deletion, or 
replacement of recording sites that are not crucial for the analyzed 
system may not substantially change the patterns of causal inter-
actions (Korzeniewska et al., 2008). This issue can be addressed 
by using approaches like partial directed coherence, dDTF, and 
SdDTF – all of which emphasize direct fl ows or interactions – and 
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function, especially when the analysis windows are overlapping. 
However some of the noise inherent in the original signal will be 
resistant to this smoothing method. Hence, we employ a formal 
bivariate smoothing model that takes into account both the fre-
quency f, and the temporal window t, which is defi ned as:

Y = g f t +f t f t, ( , ) ,,ε  (8)

where g(f,t) is an unspecifi ed function representing the actual 
SdDTF function and ε

ft
 are independent N(0,σε

2) random vari-
ables capturing the white noise around the signal. There are many 
nonparametric approaches to bivariate smoothing, but here we use 
a penalized thin-plate spline model for g(.,.). The model was imple-
mented in R using the SemiPar software package1. The method and 
its implementation in R has been described previously in detail 
(Ruppert et al., 2003).

The SdDTF is a non-stationary function, both in baseline and 
post-stimulus periods, accounting for the non-stationarity of the 
baseline signal and represents a recent improvement over previ-
ous approaches (Korzeniewska et al., 2008). The mean SdDTF 
value of each pre-stimulus baseline window is compared with the 
mean SdDTF value of each post-stimulus window using a t-test 
designed for the null hypothesis of zero differences between the 
SdDTF means. We conclude that there is signifi cant event-related 
change in causal interactions within a given post-stimulus time 
window if the SdDTF value for this window is signifi cantly different 
from all SdDTF values in the baseline period. If the SdDTF value 
for the post-stimulus time T is signifi cantly higher than all values 
of SdDTF for every time t of the baseline period, we say that there 
is a signifi cant increase in causal interaction. Our goal was to test 
for every frequency f, and for every baseline/stimulus pair of time 
windows (t,T), whether g(f,t) = g(f,T). More precisely, the implicit 
null hypothesis was expressed as:

H g f t g f T g f t

g f T g f t g f T

f T

n

0 1 2, , : , ( , ) ,

( , ) , ( , )

( ) = ( )
= ( ) =

or

or or…  (9)

with the corresponding alternative:

H g f t g f T g f t

g f T g f t g f T

A f T

n

, , : , ( , ) ,

( , ) , ( ,

1 2( ) ≠ ( )
≠ ( ) ≠

and

and and… )).
 

(10)

These hypotheses were tested by constructing a joint 95% con-
fi dence interval for the differences g(f, t) − g(f,T) for t = t

1
,…,t

n
. Let 

ˆ( , )g f t , ˆ ( , )σg f t  be the penalized spline estimator of g(f,t) and its 
associated estimated standard error in each baseline time window. 
Similarly, let ˆ( , )g f T , ˆ ( , )σg f T  be the penalized spline estimator of 
g(f,T) and its associated estimated standard error in each post-
 stimulus time window. Since the penalized spline functions are fi tted 
locally, the residuals are assumed to be independent at points well 
separated in time and randomly distributed. We can also assume 
that for every baseline/stimulus pair of time windows (t,T):

ˆ( , ) ( , ) ˆ( , ) ( , )

ˆ ( , ) ˆ ( , )
~ ( , )

g f t g f T g f t g f T

f t f T
N

g

− − +
+σ σ2 2

0 1

 

(11)

by increasing the number of channels. Nevertheless, it is important 
to have relatively comprehensive coverage of regions known to 
be functionally important, such as the superior temporal gyrus, 
for studying auditory processing. This is also illustrated in the 
application of SdDTF to auditory ECoG data described below 
(see Estimating ERC in auditory event-related ECoG): the patient 
had multiple electrodes covering the superior temporal gyrus and 
recording sites selected for inclusion were identifi ed based on previ-
ous analyses of auditory event-related power spectra.

In drawing conclusions from these analyses, several limitations 
warrant consideration. As in any scientifi c investigation, we are 
limited to the set of recorded signals and these could be infl uenced 
by other processes not detected in the analysis. For example in 
the network x1 → x2 → x3, a fourth undetected process could be 
involved such that x1 → x4 → x3. This limitation underscores the 
importance of carefully choosing recording sites for analysis and 
ensuring adequate representation of all regions associated with the 
function under investigation. The second limitation of methods 
based on Granger causality, including dDTF, is the inability to cor-
rectly identify cyclical interactions (for an excellent discussion of 
these issues, see Eichler, 2006).

Causal interactions can be both linear and non-linear in brain 
systems. Previous studies have suggested that non-linear mecha-
nisms may play an important role in the functional connectivity of 
large-scale neural networks (Friston, 1997; Schanze and Eckhorn, 
1997; Bekisz and Wrobel, 1999; Breakspear and Terry, 2002a,b; 
Senkowski et al., 2007). ERC is a linear method and does not provide 
information about the nature of the causality (linear or non-linear). 
Nevertheless, linear methods may be sensitive to both linear and 
non-linear causal interactions (Freiwald et al., 1999; Chavez et al., 
2003; Gourevitch et al., 2006). Indeed, MVAR models can be used 
to describe non-linear systems (Franaszczuk and Bergey, 1999). The 
detection of dependencies by linear methods does not require that 
those dependencies are linear (Freiwald et al., 1999). Thus, the ERC 
method cannot determine if the observed activity fl ow changes are 
due to linear or non-linear dynamics. However, it has been shown 
that higher-degree non-linearity models do not provide a clear 
advantage over linear ones (Barbero et al., 2009). A recent study 
using a non-linear Granger causality approach (Gourevitch et al., 
2006) showed that functions similar to SdDTF (directed coherence, 
partial directed coherence) appear to correctly identify linear link-
ages even if the autoregressive components are non-linear. On the 
other hand, non-linear Granger causality can yield interesting results 
for complex systems, but remains dependent on the parameters of 
the method (order and scale chosen). Linear methods can correctly 
identify frequency-specifi c causal interactions if the analysis includes 
the relevant frequencies. In the functioning brain, it is likely that 
there are always causal interactions between neural populations in 
multiple brain regions. Therefore, to identify task-specifi c patterns 
of interaction, it is necessary to examine changes in those base-
line interactions that correlate with a task.To evaluate the statisti-
cal signifi cance of event-related changes in SdDTF (i.e., ERC), we 
implement a statistical test to compare pre-stimulus (baseline) with 
post-stimulus SdDTF values. Specifi cally, a semi-parametric regres-
sion model is applied to SdDTF values calculated from pre- and 
post-stimulus periods. The windowing strategy described earlier can 
be viewed as a fi rst step in smoothing the time-dependent SdDTF 1http://www.uow.edu.au/∼mwand/SemiPar.html

http://www.uow.edu.au/%E2%88%BCmwand/SemiPar.html
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approximates a standard normal distribution. We confi rmed these 
assumptions with the Kolmogorov–Smirnov normality test. A 
joint confi dence interval with at least 95% coverage probability 
for g(f,t) − g(f,T) is defi ned as:

ˆ( , ) ˆ( , ) ˆ ( , ) ˆ ( , ),.g f t g f T m f t f Tg− ± +95
2 2σ σ

 
(12)

where m
.95

 is the 97.5% quantile of the distribution:

MAX max
1 1 1

, ,t ,T = Nn n
t t t , T T T , f f f

t T f
n n m

( )
≤ ≤ ≤ ≤ ≤ ≤

,  (13)

where N
t,T,f

 are independent N(0,1) random variables. This test 
rejected H

0,f,T
 if 0 was not contained in any of the correspond-

ing confi dence intervals. To account for multiple comparisons, 
either a Bonferroni correction or the less conservative FDR can 
be implemented. The choice of correction method will depend 
on whether there is greater concern about incorrectly assign-
ing statistical signifi cance to a particular pattern, as in an initial 
exploratory analysis, or about failing to detect statistically relevant 
patterns (for detailed discussion see Korzeniewska et al., 2008). By 
defi nition, the ERC method provides an estimate of the directions 
and magnitudes of statistically signifi cant event-related changes 
in direct activity propagation between brain sites, as a function 
of frequency. In other words, ERC corresponds to SdDTF, but is 
masked according to the statistical signifi cance of event-related 
changes in SdDTF.

ERC METHODOLOGICAL CONSIDERATIONS
The number of data samples and length of the time window are 
two important considerations in applying the ERC method. A suf-
fi cient number of data samples are needed for the MVAR model 
to fi t appropriately the recording data. Similarly, the length of 
the data analysis window should be suffi ciently short to allow 
the data to be treated as stationary, but not so small that it pre-
cludes measuring jitter in the recorded signal across trials. It is 
recommended that the number of parameters be <10% of the 
total number of data samples. The number of data samples should 
also be several times greater than the number of channels (K). 
As in previous studies, we estimate the suffi cient number of data 
samples by the inequality:

K p +

N n
<

1
0.1

( )
s t

,
 

(14)

where N
s
 is the length of the moving window (e.g., the number of 

samples per recording epoch) and n
t
 is the total number of trials. 

Selection of recording channels can be guided by results of the 
single-channel MP analyses (described in Spectral Analysis). The 
rationale for this is that event-related causal interaction between 
ECoG signals is more likely to occur at sites where an event-related 
increase in signal energy is evident.

SIGNAL PRE-PROCESSING FOR ERC ANALYSIS
The raw ECoG time series is fi rst pre-processed as for single-
 channel spectral analyses (see Signal Pre-processing). Remontaging 
to a common average reference (see Signal Pre-processing) is use-
ful for removing unrelated global activity prior to ERC analysis 

(Yao et al., 2005, 2007; Ludwig et al., 2009). For ERC analysis, 
pre-processing is important to remove artifact, including high-
frequency noise, to select specifi c frequency bands for analysis, 
and to remove phase-locked activity from the signal. To accom-
plish the fi rst two objectives, the ECoG signal is digitally band 
pass-fi ltered and down-sampled. Signals can be fi ltered to include 
a single frequency range or multiple frequency ranges. However, it 
is important to ensure that the fi lter does not change the signals’ 
phase properties and that the fi lter’s impulse response is short.

For ERC analysis, the third purpose of signal pre-processing is to 
remove the phase-locked activity. As discussed earlier (see Spectral 
Analysis), the resulting non-phase-locked activity, previously con-
sidered ‘noise’ in ERP studies, contains task-relevant information 
(Kalcher and Pfurtscheller, 1995; Ding et al., 2000) that cannot 
be inferred solely from the ERP (Crone et al., 2001a; Senkowski 
and Herrmann, 2002; Senkowski et al., 2007). Moreover, causality 
analyses with and without subtraction of the ensemble average have 
revealed spurious causality responses when subtraction was not per-
formed (Oya et al., 2007). To remove phase-locked components that 
may obscure non-phase-locked activity and to meet MVAR model 
requirements, the mean signal values in each window are computed 
and subtracted from the signal. This results in a zero mean signal in 
each window, which is required for fi tting the MVAR model (Eq. 4) 
To normalize signal amplitudes across channels, the signal in each 
window is then divided by its standard deviation. This normalization 
allows comparison of fl ow changes between different stages of task 
processing and different channel pairs independent of the relative 
amplitudes of the signals (Ding et al., 2000).

ESTIMATING ERC IN AUDITORY EVENT-RELATED ECoG
Figure 4 illustrates results of a recent ERC analysis of auditory 
event-related responses from an adult patient who had a focal 
right parietal dysplasia, with complex partial seizures, and who 
had a right subdural electrode grid implanted for pre-surgical 
monitoring. The top panel depicts a transmission matrix of sta-
tistically signifi cant event-related changes in the fl ow of activity 
between electrode sites during the fi rst 200 ms after presentation 
of a speech syllable (/da/; 300 ms). A number of relevant trans-
missions can be seen. The location of the most prominent fl ows 
occurs in the fi rst 150 ms at recording sites on the lateral posterior 
superior temporal gyrus, corresponding to auditory areas known 
to be critical for processing complex sounds, including speech 
(Miglioretti and Boatman, 2003; Boatman et al., 2000; Boatman, 
2006; Sinai et al., 2009). The relationships between sites of sound 
processing are illustrated in the bottom panel of Figure 4. The 
arrows represent integrals of changes in causal interactions dur-
ing the time course of sound processing. The color and width of 
the arrows represent the magnitude of integrals, over the ana-
lyzed period, of statistically signifi cant ERC values. The cluster 
of arrows focused on the posterior superior temporal gyrus and 
inferior parietal cortex are consistent with the proposed local 
processing networks for complex sounds in auditory association 
cortex (Crone et al., 2001a; Boatman, 2004, 2006; Boatman and 
Miglioretti, 2005; Edwards et al., 2005; Lachaux et al., 2007). The 
directionality and magnitude of the changes in causal interac-
tions within this local processing network can be represented 
schematically, as shown in Figure 5. These results illustrate the 
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SPATIAL NORMALIZATION
Electrode placement for intracranial monitoring is determined by 
each patient’s clinical circumstances, resulting in restricted spa-
tial sampling in individual patients and variability across patients. 
The ability to compare electrode locations across patients has 
become a challenge as ECoG studies have expanded from single 

utility of multichannel ERC analyses, which provide information 
about effective connectivity between cortical sites that cannot be 
obtained from single-channel analyses. We view these two meth-
odological approaches as largely complementary; each provides 
important information about the functional organization of the 
cortical auditory system.

FIGURE 4 | Results of multichannel event-related causality (ERC) 

analysis of ECoG signals recorded from a patient listening to speech 

sounds (syllables). Top panel shows ERC matrix. Direction of ERC fl ow is 
from the electrode labeled above each column to electrode labeled at left of 
each row. Time is on the horizontal axis (1–250 ms); frequency (0–25 Hz) is on 
the vertical axis. Color scale of ERC values (0 to max) is shown to right of 
array. Black indicates time–frequency points with no signifi cant difference 
between SdDTF values after stimulus and SdDTFs for baseline. Colored 

time–frequency points indicate increases in post-stimulus SdDTF relative to 
baseline SdDTF (red > orange > yellow). Bottom panel depicts integrals of 
ERC for frequency range 0–25 Hz calculated for the same ECoG data set. 
Arrows indicate directionality of ERC. Width and color of arrows represent 
values of ERC integrals. Color scale is at the right. For clarity, only integrals for 
event-related fl ow increases are shown. White projecting lines show how 
matrix cells in top panel correspond to electrode recording channels in 
bottom panel.
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case reports to include larger numbers of subjects. Volumetric 
three-dimensional (3D) MRI scans are obtained routinely before 
electrode implantation surgery and 3D CT scans are often used 
for post- implantation imaging. To localize electrodes in individual 
patients, the pre-implantation MRI and post-implantation CT 
scans must be co-registered. To compare electrode locations across 
patients (groups), individual 3D electrode positions are then trans-
formed to a common reference space. The Talairach and Montreal 
Neurological Institute (MNI) 3D coordinate systems are standard 
reference systems for reporting brain locations in functional neu-
roimaging studies. Here we describe a semi-automated method to 
determine the 3D locations of intracranial electrodes (Ritzl et al., 
2007). This method uses two freely available software programs 
– SPM and MRIcro – to co-register individual CT and MRI images 
and then transform electrode locations to a standard 3D reference 
space (Talairach, MNI) for group comparisons.

DATA PRE-PROCESSING
The pre-implantation volumetric MRI (1–1.8 mm coronal slices) 
and post-implantation CT (1 mm axial slices) scans are acquired 
in digital imaging and communication (DICOM) format. The MRI 
and corresponding CT data are then converted to Analyze format 
using MRIcro2.

CO-REGISTRATION AND NORMALIZATION
The CT data are automatically co-registered onto MRI data from 
the same patient using SPM83 and a six-parameter rigid body trans-
formation (Ritzl et al., 2007). The pre-implantation MRI is then 
normalized onto the standard MNI brain representation included 
in SPM8, using default normalization parameters. The 3D CT scan 
is then normalized using parameters derived from normalization 
of the 3D MRI.

NORMALIZED ELECTRODE COORDINATES
The MRI, CT, and 3D co-registered data can be displayed in spatially 
linked windows in MRIcro (Figure 6). This facilitates visualiza-
tion and selection of individual electrodes. MRIcro automatically 
displays MNI coordinates of selected data points (electrodes). 
Talairach coordinates can be derived from MNI coordinates using 
the MATLAB mni2tal function4.

Advantages of this semi-automatic normalization approach 
include: (1) it uses freely available software programs; (2) it is 
useful for combining different imaging data sets, including fMRI; 
(3) co-registration is automatic, thereby avoiding human error; 
and (4) it can also be used to localize depth electrodes implanted in 
deeper brain structures including the hippocampus. This method 
was developed for extraoperative ECoG studies in which electrodes 
are implanted. Other approaches have been developed for localiza-
tion of electrode positions during intraoperative recording studies, 
including co-registration of electrode locations derived from infra-
red probes with pre-surgical MRI scans (Edwards et al., 2005).

The normalized electrode data may undergo further statistical 
modeling. For example, we have used template mixture modeling, 
a Bayesian hierarchical framework derived from normalized elec-
trode coordinates, to quantify within- and between-patient vari-
ability in the distribution of cortical auditory responses (Miglioretti 
and Boatman, 2003; Boatman and Miglioretti, 2005).

ECoG METHODOLOGICAL AND STATISTICAL 
CONSIDERATIONS
LIMITATIONS OF ECoG STUDIES
A potential limitation of the intracranial (ECoG) method is 
that electrodes are usually implanted only over one hemisphere 
(seizure side), precluding recording from both hemispheres in 

FIGURE 5 | Schematic representation of ERC integrals for frequency 

range 0–25 Hz as shown in bottom panel of Figure 4. Labels around the 
outside represent electrode channels shown in Figure 4. Arrows indicate 
directionality of ERC. Arrow width and color represent the values of ERC 
integrals shown in Figure 4.

FIGURE 6 | Co-registered 3D MRI and CT images from one patient 

displayed in MRIcro. Three linked views are shown with same subdural 
electrode selected at crosshair: coronal (top left), saggital (top right), and axial 
(bottom left). Normalized MNI coordinates for selected subdural electrode are 
displayed in bottom right window.

2http://www.sph.sc.edu/comd/rorden/mricro.html
3http://www.fi l.ion.ucl.ac.uk/spm/software/spm8/ 4http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach

http://www.sph.sc.edu/comd/rorden/mricro.html
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
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hypothesis (Holm, 1979). Alternatively, FDR is the expected pro-
portion of falsely rejected null hypotheses for a specifi ed threshold. 
The original work by Benjamini and Hochberg (1995) and recent 
work (Storey, 2002) has shown how to develop thresholding rules 
that bound FDR, not unlike the rules by which the Bonferroni cor-
rection bounds the family-wise error rate. While the FDR procedure 
tends to be less conservative than the Bonferroni, both methods 
have been used to determine the statistical signifi cance of event-
related responses in multichannel ECoG data (Durka et al., 2004; 
Edwards et al., 2005; Sinai et al., 2009). Because these two correction 
methods have different purposes, they are therefore not mutually 
exclusive.

In our time–frequency studies, the Bonferroni and FDR 
have yielded similar results. One potentially useful strategy is 
to combine both methods in a two-stage process: fi rst imple-
ment the FDR method to identify data trends and then apply 
the Bonferroni method to verify the results. A promising new 
approach for handling multiple comparisons in ECoG data 
involves applying non-parametric permutation testing to esti-
mate statistical signifi cance (Maris and Oostenveld, 2007; Jacobs 
and Kahana, 2009) – a procedure that is gaining wide accept-
ance in neuroimaging studies (Nichols and Holmes, 2002). When 
applying these non-parametric tests, it is important to use a 
suffi ciently large number of permutations to achieve conver-
gence to asymptotic values. As long as test results continue to 
change when the number of permutations is increased, they are 
considered not yet reliable.

CONCLUSIONS
We propose a comprehensive analytic framework that combines 
multiple, complementary methods for evaluating the statistical 
signifi cance of event-related responses in ECoG data sets. We 
demonstrated the utility of this approach for intracranial auditory 
mapping studies. The individual methods described have been 
used in ECoG studies of sensory, motor, language, and cognitive 
functions (Ray et al., 2003; Sinai et al., 2005; Canolty et al., 2007; 
Miller et al., 2007; Oya et al., 2007; Jacobs and Kahana, 2009) 
as well as studies of cortical abnormalities, including seizures 
(Franaszczuk et al., 1994, 1998). The combination of multiple 
complementary single-channel and multichannel methods in 
a comprehensive unifi ed framework is novel and potentially 
more powerful than the traditional single-method approach. 
This methodological framework may also be useful for analyz-
ing intracortical recordings of local fi eld potentials in animal 
studies. Future directions include development of new statistical 
approaches for quantifying differences in the temporal-spectral 
shape of event-related responses across subjects and experimental 
conditions (stimulus, task) and for integration of multimodal 
brain mapping data, including fMRI and whole-head magne-
toencephalography (MEG).
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the same patient. Some patients have strips implanted on the 
contralateral side for improved lateralization, but this is less 
common. Likewise, implanted electrodes rarely cover an entire 
hemisphere, further restricting spatial sampling within patients. 
There is also considerable individual variability in electrode 
placement across patients, and the spatial resolution of electrode 
arrays is high enough that important anatomical distinctions can 
exist between similarly placed arrays. This may pose additional 
challenges for statistical group comparisons. Another potential 
limitation is that patients who undergo invasive recordings usu-
ally have longstanding neurological disorders that may result in 
atypical functional organization. To increase the generalizabil-
ity of results, we routinely screen patients beforehand to detect 
functional abnormalities, including hearing loss and auditory 
dysfunction (Boatman and Miglioretti, 2005; Sinai et al., 2009). 
Another potential concern is that the reliability of ECoG record-
ings has yet to be determined. This is particularly problematic 
since recordings are often done over multiple sessions (days), 
and changes in clinical status due to seizures or medications are 
likely to occur. Studies are underway at our center to examine 
test-retest reliability of different event-related response measures. 
Finally, recent studies have suggested that EEG recordings of 
gamma activity may be contaminated by ocular and muscle arti-
fact. Specifi cally, it has been shown that high frequency responses 
in scalp EEG are infl uenced by micro-saccades (Yuval-Greenberg 
et al., 2008) and that recordings from the temporal pole region 
may infl uenced by myogenic artifact due to the proximity of 
extraocular muscles (Jerbi et al., 2009). These potential limita-
tions need to be taken into consideration in the interpretation 
of ECoG fi ndings.

MULTIPLE COMPARISONS
The multiple comparisons problem arises in ECoG studies because 
the event-related response of interest is measured at a large number 
of electrodes and time points requiring multiple statistical com-
parisons. Large numbers of statistical comparisons come with the 
potential to falsely reject the null hypothesis due to chance asso-
ciations. The family-wise error rate is the probability of falsely 
concluding there is an effect (e.g., difference). The multiple com-
parisons problem can be resolved by controlling the family-wise 
error rate at a specifi ed alpha level (e.g., 0.05). However, it is not 
possible to control the family-wise error rate by means of standard 
statistical methods that operate at the level of single samples (e.g., 
t-test).

Two correction methods are widely used in ECoG studies: the 
Bonferroni correction and the FDR (Benjamini and Hochberg, 
1995). The Bonferroni correction restricts the so-called family-
wise error rate (i.e., the probability of at least one false rejection 
under the null hypothesis) by dividing the type I error rate by the 
total number of comparisons performed. This procedure is very 
conservative because it ignores correlations in the hypothesis test 
outcomes and bounds the family-wise error rate, a criterion that 
is generally too strict to be practical for modern high-throughput 
studies such as ECoG. To address this issue, several modifi cations to 
the Bonferroni method have been developed, including the Holm-
Bonferonni method that controls family-wise error rate at the α 
level, thereby allowing more opportunity for rejection of the null 
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