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ABSTRACT: Abnormal thyroid hormone secretion is the most important feature of hypothyroidism and plays an important role in
lipid metabolism. However, their connection has not been clearly established. This study aimed to identify the serum biomarkers and
metabolic pathways associated with hyperthyroidism and hypothyroidism. The study enrolled discovery and validation sets of 175
and 300 participants, respectively, to identify and validate the serum biomarkers of hyperthyroidism and hypothyroidism via ultra-
high performance liquid chromatography−quadrupole time-of-flight mass spectrometry lipidomics through univariate and
multivariate analyses. Eight and six biomarkers were identified for hyperthyroidism and hypothyroidism, respectively. Spearman
correlation analysis was used to assess the correlation between the biomarkers and thyroid dysfunction indicators; subsequently,
metabolic pathway and network analyses were performed for these biomarkers. Most biomarkers exhibited significant correlation
with thyroid dysfunction indicators, mainly being enriched in the glycerophospholipid (GPL) metabolism. The diagnostic accuracies
of the biomarkers and biomarker panels were assessed via receiver operating characteristic curve analysis. All the biomarkers
demonstrated good diagnostic performance, and the hyperthyroidism and hypothyroidism biomarker panels reached an area under
the curve value of 1.000. The results were validated using the validation set. Therefore, our findings revealed that thyroid dysfunction
primarily affects the human metabolism via the GPL metabolism, thus providing a theoretical basis for the clinical prevention and
control of thyroid dysfunction.

1. INTRODUCTION
The thyroid gland constitutes the largest endocrine gland in
the human body. Its chief function is to synthesize thyroid
hormones to regulate body metabolism.1,2 Thyroid hormones
are key regulators of metabolism, development, and growth,
and adequate levels of circulating thyroid hormones are
essential for the proper functioning of nearly all tissues and
organs in the body.3,4 Owing to lifestyle changes, the incidence
of thyroid diseases due to endocrine disorders is increasing
every year, becoming the endocrine disease second only to
diabetes in prevalence.5,6 Thyroid diseases can disbalance the
circulating thyroid hormones in the body, subsequently
causing thyroid dysfunction and seriously affecting the
human health and threatening the human life.7,8 Hyper-
thyroidism and hypothyroidism are common thyroid diseases

with potentially devastating health consequences that affect the
global population.3,9

The clinical presentation of thyroid diseases is highly
variable and often nonspecific.3 Clinically, thyroid dysfunction
diagnosis is primarily based on biochemical indicators, such as
serum thyroid stimulating hormone (TSH) and serum free
thyroxine (FT4). The diagnostic criteria for hyperthyroidism
include serum TSH levels below the lower reference limit and
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FT4 levels within or above the reference range.10 The
diagnostic criteria for hypothyroidism include serum TSH
levels above the upper reference limit and FT4 levels within or
below the reference range.11 According to current statistics, the
prevalence of hyperthyroidism and hypothyroidism in the
general population ranges from 0.2 to 1.3 and 0.2 to 5.3%,
respectively, with the incidence of thyroid dysfunction
increasing annually.10,12−15 Therefore, characterizing the
metabolic features of patients with hyperthyroidism and
hypothyroidism and clarifying the biomarkers and metabolic
pathways associated with thyroid dysfunction can help broaden
the ideas and measures of clinicians for diagnosing and treating
thyroid diseases and provide metabolic references for
diagnosing and treating hyperthyroidism and hypothyroidism.

Thyroid hormones play an important role in lipid
metabolism.16 Thyroid dysfunction may alter lipid synthesis
and degradation and the functions of various key enzymes
involved in the lipid metabolic pathways.17 Lipidomics
research has been rapidly emerging as a technique for
exploring the role of lipids in body metabolism.18 Lipidomics
studies the interaction of lipids in vivo and their interactions
with lipid-associated proteins to delineate the mechanism of
lipid metabolism regulation.19 It builds a comprehensive map
of the lipidomes of biological samples.20 As lipidomics enables
the comprehensive, large-scale analysis of lipids in biological
systems, it has been increasingly applied in recent years to
discover and identify disease biomarkers and to elucidate
disease development mechanisms.21 Mass spectrometry (MS)
constitutes a common analysis platform for lipidomics. Using
its positive and negative mode ionization methods and versatile
mass analyzers, intact molecular ions of metabolites can be
produced, and highly resolved MS/MS spectra can be
acquired. Thus, MS exhibits high sensitivity and selectivity as
well as the potential for metabolite identification.22

Currently, some progress has been made in the field of
thyroid diseases using lipidomics; however, in practical clinical
research, there have been few studies involving lipidomics
related to hyperthyroidism and hypothyroidism using human
serum as biological samples. Herein, we analyzed serum
samples from patients with hyperthyroidism and hypothyroid-
ism and healthy control (HC) via lipidomics using ultra-high-
performance liquid chromatography−quadrupole time-of-flight
mass spectrometry (UPLC−Q-TOF/MS) to investigate
changes in serum metabolites in patients with hyperthyroidism
and hypothyroidism and to identify potential biomarkers and
metabolic pathways to provide a theoretical basis for the
clinical prevention and control of hyperthyroidism and
hypothyroidism.

2. RESULTS
2.1. Demographics of the Study Population. The

workflow of this study is shown in Figure 1. The demographic
information of the participants is presented as mean ±
standard deviation, and differences were considered statistically
significant at p < 0.05. The gender and age distribution
between the groups were matched as closely as possible, and
the details are listed in Table 1. The serum levels of the thyroid
dysfunction indicators, including TSH, free triiodothyronine
(FT3), and FT4, in the thyroid dysfunction groups
significantly differed from those in the HC group (p < 0.05).

2.2. Metabolic Profiles of the Serum Samples of the
HC and Patients with Hyperthyroidism and Hypo-
thyroidism. The serum samples of the participants were

subjected to lipidomic analysis using UPLC−Q-TOF/MS in
the positive electrospray ionization (ESI) detection mode for
20 min. Base peak chromatograms of the quality control (QC)
samples are shown in Figure S1A. The results of methodology
validation (instrument precision, method repeatability, and

Figure 1. Design of the study. HC, healthy control group; hyper,
hyperthyroidism group; and hypo, hypothyroidism group.

Table 1. Each Participant’s Demographic and Clinical
Informationa

characteristics HC hypo hyper

Discovery Set
number 35 70 70
gender (male/

female)
8/27 12/58 15/55

age (years) 47.86 ± 7.94 50.59 ± 10.71 48.19 ± 7.04
age range

(minimum--
to-maximum)

25−68 24−68 35−63

TSH (uIU/mL) 2.14 ± 0.97 23.71 ± 25.90* 0.05 ± 0.10#

FT3 (pmol/L) 4.79 ± 0.48 3.72 ± 0.91* 9.48 ± 5.40#

FT4 (pmol/L) 15.15 ± 3.09 12.98 ± 4.48* 27.44 ± 12.86#

Validation Set
number 60 120 120
gender (male/

female)
13/47 16/104 22/98

age (years) 50.90 ± 7.86 51.01 ± 14.08 49.84 ± 12.10
age range

(minimum--
to-maximum)

32−76 22−84 27−79

TSH (uIU/mL) 2.21 ± 0.99 27.03 ± 29.54* 0.07 ± 0.12#

FT3 (pmol/L) 4.81 ± 0.43 3.69 ± 0.95* 8.53 ± 5.67#

FT4 (pmol/L) 16.16 ± 2.20 12.38 ± 4.32* 23.84 ± 12.58#

aNote: *p < 0.05, **p < 0.01, hypothyroidism group compared to the
healthy control group; #p < 0.05, ##p < 0.01, hyperthyroidism group
compared to the healthy control group; abbreviations: HC, healthy
control group; hypo, hypothyroidism group; hyper, hyperthyroidism
group; TSH, thyroid stimulating hormone; FT3, free triiodothyr-
onine; and FT4, free thyroxine.
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sample stability) of the discovery set are shown in Table S1.
After an 80% reduction in the raw data and filling of missing
values, 1555 features were selected for the subsequent
statistical analysis. To provide a more detailed picture of the
overall metabolic profile of the participants and better
characterize the significantly difference metabolite changes,
we performed volcano plot global analysis (Figure 2A,B).
Compared with the HC group, the vast majority of the
metabolic characteristics of the hyperthyroidism and hypo-
thyroidism groups exhibited an increasing trend, with a portion
of the metabolic characteristics showing a decreasing trend.

Principal component analysis (PCA) was performed to
characterize the metabolic profile of the lipidomic data of the
serum samples of each group. The QC samples shown as gray
scatter are centrally clustered, indicating good instrument
reproducibility and stability throughout the lipidomics study
(Figure 2C). However, the metabolic characteristics were not
distinctly separated between the HC and the individual thyroid
dysfunction groups. Thus, we further performed supervised
orthogonal partial least squares discriminant analysis (OPLS-
DA) to determine variations in the metabolic characteristics
among the different groups and evaluate the predictive ability

of the model. Furthermore, 200 random permutation tests
were performed to evaluate the reliability of the model.

The OPLS-DA models were constructed for the HC versus
hyperthyroidism, HC versus hypothyroidism, and hyper-
thyroidism versus hypothyroidism groups (Table S2). The
metabolic characteristics between the thyroid dysfunction and
HC groups and the two thyroid dysfunction groups were
distinct and all the models demonstrated desirable classi-
fication and prediction ability (Figure 2D−F). In addition, the
results of the permutation test revealed no over-fitting of the
models between the groups, and the goodness of fit obtained
relatively reliable prediction results (Figure 2G−I and Table
S2).

The metabolite profiles with variable importance in
projection (VIP) values of >1.0 and false discovery rate
(FDR) values of <0.05 were of variable importance and
considered potential between-group differential metabolites. A
screening based on the results derived from the OPLS-DA
model in the discovery set revealed that compared with the
HC group, 17 and 14 candidate biomarkers were identified in
the hyperthyroidism and hypothyroidism groups, respectively
(Figure S2). The specific change trends of biomarkers in the
hyperthyroidism and hypothyroidism groups are shown in

Figure 2. Univariate and multivariate statistical analysis of participants. (A) Volcano plot of the features of the serum metabolic ions in patients
with hyper compared with HC. (B) Volcano plot of the features of serum metabolic ions in patients with hypo compared with HC. C, QC, HC,
hyper, and hypo group PCA plot. (D) OPLS-DA plot of the hyper and HC groups. (E) OPLS-DA plot of the hypo and HC groups. (F) OPLS-DA
plot of the hyper and hypo groups. (G) Permutation test between the hyper and HC groups. (H) Permutation test between the hypo and HC
groups. (I) Permutation test of the hyper and hypo groups. QC, quality control; HC, healthy control group; hyper, hyperthyroidism group; and
hypo, hypothyroidism group.
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Figure 3A,B. Among them, the biomarker levels in the
hyperthyroidism group primarily exhibited a decreasing
trend, and only phosphatidic acid (PA) metabolites, DG
(14:1/0:0/20:4), DG (20:3/0:0/18:3), and PE (22:4/18:0)
depicted an increasing trend. The biomarker levels in the
hypothyroidism group primarily exhibited an increasing trend,
and only phosphatidylglycerophosphate, phosphatidylcholine,
monomethylphosphatidylethanolamine, glycosphingolipid me-
tabolites, and PE (14:0/P-18:1) depicted a decreasing trend.
Notably, the hyperthyroidism and hypothyroidism groups had
eight identical biomarkers, all showing the same trend of
change.

2.3. Validation of Candidate Differential Biomarkers.
To verify the reliability of the findings in the discovery set, we
used power analysis based on the results of the discovery set to
evaluate the minimum sample size required to identify
statistically significantly different metabolites between the
thyroid dysfunction (hyperthyroidism or hypothyroidism)
and HC groups. The results revealed that when the sample
size reached 30 participants in each group, the power of
detecting the difference between the hyperthyroidism group
and HC group was more than 80% (Figure S3A). When the
sample size reached 60 participants in each group, the power of
the difference between hypothyroidism group and HC group
can be detected >80% (Figure S3B). Therefore, in the
validation set, the serum samples of 300 participants, including

60 HC, 120 patients with hyperthyroidism, and 120 patients
with hypothyroidism, were included in the UPLC−Q-TOF/
MS lipidomic analysis to obtain accurate results with true
statistical differences to validate the metabolites identified in
the discovery set.

The base peak chromatograms of the QC samples from the
validation set are shown in Figure S1B. The results of the
methodology validation (instrument precision, method repeat-
ability, and sample stability) of the QC samples from the
validation set are shown in Table S1. Eight and six specific
biomarkers could distinguish HC from hyperthyroidism and
hypothyroidism, respectively (Tables S3 and S4). The mass
spectrum data of the hyperthyroidism and hypothyroidism
biomarkers were identified, verified, and compared with the
MS/MS spectra of these biomarkers obtained from the Human
Metabolome Database (HMDB) (Figure S4 and Table S5).
The heatmaps revealed that compared with the HC group,
both the thyroid dysfunction groups exhibited significantly
different metabolic profiles in the discovery and validation sets
(Figure 4A,B).

2.4. Correlation Analysis of the Thyroid Biomarkers.
Spearman correlation analysis was performed to determine the
correlation between the biomarker levels and thyroid serum
indicators of the patients with hyperthyroidism and hypo-
thyroidism (Figure S5). Except PE (24:1/18:1) among the
eight biomarkers in the hyperthyroidism group, the levels of

Figure 3. Change trend chart of the candidate biomarkers. (A) Change trend chart of the hyperthyroidism biomarkers. (B) Change trend chart of
the hypothyroidism biomarkers.

Figure 4. Hierarchical clustering analysis of the thyroid dysfunction and HC groups in the discovery and validation sets. (A) Heatmaps of the HC
and hyperthyroidism groups. (B) Heatmaps of the HC and hypothyroidism groups. HC, healthy control; hyper, hyperthyroidism group; and hypo,
hypothyroidism group.
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the remaining biomarkers were significantly correlated with
those of TSH, FT3, and FT4 (Table S6). Except PA (20:0/
13:0), which was not associated with FT4, among the six
biomarkers in the hypothyroidism group, the levels of the
other biomarkers were significantly correlated with those of
TSH, FT3, and FT4 (Table S7). Notably, the hyperthyroidism
biomarkers and thyroid dysfunction indicators exhibited
negative correlation and hypothyroidism biomarkers and
thyroid dysfunction indicators exhibited positive correlation.

2.5. Pathway and Network Analysis of the Thyroid
Biomarkers. The differential biomarkers were mapped to
their biochemical pathways via metabolic pathway analysis.
The results revealed that the significantly altered metabolic
pathways chiefly included glycerophospholipid (GPL) metab-
olism and glycosylphosphatidylinositol-anchored biosynthesis

(p < 0.05; Figure S6). Of these, disorders of GPL metabolism
were ranked first among the most severely affected pathways
(impact = 0.104 > 0.1). In addition, metabolite network
analysis revealed that eight hyperthyroidism biomarkers and six
hypothyroidism biomarkers were primarily associated with
GPL metabolism and sphingolipid metabolism, and the
metabolites in both the metabolic pathways were linked via
the sphingosine 1-phosphate (S1P)-mediated S1P cleavage
enzyme pathway (Figure 5).

2.6. Evaluation of the Diagnostic Accuracy of the
Hyperthyroidism and Hypothyroidism Biomarkers. To
further explore the reliability of the identified hyperthyroidism
and hypothyroidism biomarkers, we used receiver operating
characteristic (ROC) curve analysis to verify their diagnostic
accuracy. The results showed that the area under the curve

Figure 5. Biomarker interaction network diagram. Hyper, hyperthyroidism group; hypo, hypothyroidism group.

Figure 6. ROC curve analysis of biomarker panels. (A) ROC curve analysis of the combination of the hyperthyroidism biomarkers in the discovery
and validation sets. (B) ROC curve analysis of the combination of the hypothyroidism biomarkers in the discovery and validation sets.
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(AUC) values of all the hypothyroidism and hyperthyroidism
biomarkers except DG (i-24:0/i-20:0/0:0) were >0.7,
indicating good diagnostic performance (Figures S7 and S8;
Tables S8 and S9). The relative levels of these hyperthyroidism
and hypothyroidism biomarkers between the different groups
in the discovery and validation sets were compared using
scatterplots (Figures S9 and S10).

In addition, we constructed binary logistic regression
classification models for the hyperthyroidism and hypo-
thyroidism biomarkers and used the predicted probability
value to establish an ROC curve to evaluate the combined
diagnostic ability of the two biomarker panels. The results
revealed that the algorithm combining the eight hyper-
thyroidism biomarkers accurately distinguished patients with
hyperthyroidism from the healthy population with an AUC of
1.000 (95% confidence intervals [CI] = 1.000−1.000),
sensitivity of 100% (95% CI = 0.9336−1.0000), specificity of
100% (95% CI = 0.8928−1.0000), and prediction accuracy of
100%; this prediction result was also confirmed in the
validation set (Figure 6A and Table S10). Similarly, the
biomarker panel comprising the six hypothyroidism bio-
markers also exhibited good classification ability to distinguish
patients with hypothyroidism from the healthy population with
an AUC of 1.000 (95% CI = 1.000−1.000), sensitivity of 100%
(95% CI = 0.9312−1.0000), specificity of 100% (95% CI =
0.8928−1.0000), and predictive accuracy of 100%; these
results were further validated in the validation set (Figure 6B
and Table S10).

3. DISCUSSION
The main clinical feature of hyperthyroidism and hypo-
thyroidism is abnormal serum TSH levels. Therefore,
measuring serum TSH levels is the primary screening method
for abnormal thyroid function.3 However, despite the wide-
spread availability of this screening tool, a few of its drawbacks
and shortcomings have gradually emerged. TSH levels vary
diurnally, fluctuating up to 40−50% of the mean value within
the normal range.23,24 Furthermore, serum FT4 levels affect
TSH secretion, which is hypersensitive to small increases or
decreases in FT4 levels.25 In addition, abnormal serum TSH
levels have been observed in various nonthyroid disease states
that is dependent on different geographical regions and patient
age.26−28 These findings suggest that serum TSH levels are
somewhat variable, and thus, do not always reflect the true
state of the thyroid. Therefore, although assessing serum TSH
levels for thyroid dysfunction screening is simple and widely
used, establishing an objective and accurate serum diagnostic
biomarker for hyperthyroidism and hypothyroidism can
complement serum TSH testing to more accurately diagnose
thyroid dysfunction, which is also essential for the early and
effective treatment of patients.

Abnormal TSH secretion is often accompanied by
biochemical alterations in lipid metabolism. To comprehen-
sively investigate thyroid dysfunction-associated lipid metabo-
lite changes in living organisms, nontargeted UPLC−Q-TOF/
MS lipidomics techniques have been increasingly applied
owing to their high sensitivity, high specificity, and high peak
resolution.29 Herein, we performed a comprehensive untar-
geted UPLC−Q-TOF/MS lipidomic analysis of serum samples
collected from participants in the discovery and validation sets
of two centers to characterize abnormal lipid metabolism in the
serum of patients with hyperthyroidism and hypothyroidism
compared with the HC population. We employed multivariate

statistical analysis to identify and validate the eight and six
differential biomarkers of hyperthyroidism and hypothyroid-
ism, respectively, which can be used to differentiate hyper-
thyroidism and hypothyroidism individually from HC.
Correlation analysis revealed that the levels of most of the
hyperthyroidism and hypothyroidism biomarkers were sig-
nificantly correlated with those of TSH, FT3, and FT4 and that
the correlation between the biomarker levels and thyroid
dysfunction indicators of the two diseases exhibited opposite
trends. The metabolic pathway analysis of these potential
biomarkers revealed that GPL metabolism was the most
significantly altered metabolic pathway in patients with
hyperthyroidism and those with hypothyroidism. ROC curve
analysis revealed that most hyperthyroidism and hypothyroid-
ism biomarkers had AUC values of >0.7, indicating desirable
diagnostic value, and the AUC values of the biomarker panel of
hyperthyroidism and hypothyroidism constructed using binary
logistic regression analysis were all 1.000, with sensitivity,
specificity, and predictive accuracy all reaching 100%,
suggesting the potential diagnostic value of the biomarker
panel for thyroid dysfunction. In addition, the diagnostic
performance of individual biomarkers and the biomarker panel
for hyperthyroidism and hypothyroidism was validated in the
validation set.

Recently, significant changes in numerous lipid species have
been observed in patients with hyperthyroidism and hypo-
thyroidism, suggesting these altered lipid metabolites to play a
central role in hyperthyroidism and hypothyroidism pathogen-
eses.29,30 For example, triglyceride (TG) and diacylglycerol
(DG) are neutral lipids that have been implicated in various
diseases.31 Clinically significant hyperthyroidism has been
associated with low TG levels, which may reduce plasma TG
concentrations in patients with hyperthyroidism by altering
very low-density lipoprotein−TG metabolism.32,33 In addition,
some studies have reported that TSH increased DG levels in
thyroid cells, which may be associated with the development of
hypothyroidism.34 The elevated or decreased expression of DG
lipase alpha, a metabolic enzyme downstream of DG, is
accompanied by changes in circulating FT4 levels, potentially
associated with hyperthyroidism development.35 Consistent
with the results of this study, we found that the serum levels of
TG metabolites were lower in patients with hyperthyroidism
compared with the HC group, and changes in the DG
metabolite levels were also closely related to thyroid
dysfunction.

PA constitutes a key intermediate in synthesizing cell
membranes and storing lipids and plays an important role in
mediating various cellular and physiological processes in
eukaryotes.36 Reportedly, TSH can increase PA accumulation,
thereby affecting thyroid metabolism.37 Phosphatidylethanol-
amine (PE), the most abundant phospholipid class in
mammalian cells, exhibits significant changes during the
progression of numerous diseases.32,38 The plasma of pregnant
women with subclinical hypothyroidism demonstrates several
downregulated PE-like metabolites.39 Consistent with the
findings of previous studies, patients with thyroid dysfunction
exhibited a decreasing trend of DG and PE metabolites and an
increasing trend of PA metabolites in the serum; however, the
exact action mechanism remains to be explored in depth. In
addition, our findings reveal that the abovementioned lipid
metabolites are closely associated with the GPL metabolism.
Some studies have reported a close association of the GPL
metabolism with other thyroid disorders, such as thyroid
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cancer, in addition to severely affecting hyperthyroidism and
hypothyroidism.40

This study has some limitations. First, a detailed
classification of the thyroid dysfunction could not be
performed as diagnosing hyperthyroidism and hypothyroidism
using their clinical indicators is not precise. Second, our clinical
sample size was limited. A larger sample cohort needs to be
investigated in the future to validate the results of the
biomarkers using targeted lipidomics.

4. CONCLUSIONS
This study used the serum samples of two independent cohorts
of participants from two centers and performed UPLC−Q-
TOF/MS lipidomic analyses to identify the potential
biomarkers of hyperthyroidism and hypothyroidism, explore
metabolic changes in the patients with thyroid dysfunction,
and assess the diagnostic accuracy of the identified biomarkers.
In addition, the important influence of the GPL metabolism in
the development of hyperthyroidism and hypothyroidism was
identified via pathway analysis. Thus, our findings provide
insights into hyperthyroidism and hypothyroidism pathogen-
eses.

5. MATERIALS AND METHODS
5.1. Instruments and Reagents. This study used the

following equipment and reagents: a desktop high-speed
refrigerated centrifuge TGL-20M (Hunan Hexi Instrument
Equipment Co., Ltd.), a visible nitrogen air purge concentrator
(Beijing Spot Technology Co., Ltd.), an IKA MS3 vortexer
(Guangheng Technology Co., Ltd.), distilled water (Guangz-
hou Watsons Food & Beverage Co., Ltd.), chromatographically
pure isopropanol (EMD Millipore, USA), methanol (Tedia,
USA), dichloromethane (DIKMA, USA), acetonitrile (EMD
Millipore, USA), a Waters ACQUITY UPLC liquid chromato-
graph (Waters, USA), a Waters Xevo G2-XS QTOF time-of-
flight mass spectrometer (Waters, USA), and an ACQUITY
UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) (Waters,
America).

5.2. Serum Sample Collection and Participants.
Overall, 475 human participants (175 and 300 participants in
the discovery and validation sets, respectively) were recruited
from the Second Hospital of Tianjin Medical University and
Tianjin Peking University Medical Offshore Oil Hospital
(Tianjin, China). All the participants were recruited on the
basis of symptoms and indicators for diagnosis and
classification. After collecting the serum samples, they were
immediately frozen and stored at −80 °C for subsequent
analysis. Detailed information regarding the diagnosis,
inclusion, and exclusion criteria of the participants is presented
in the Supporting Information (Method S1). The Institutional
Review Committee of the Second Hospital of Tianjin Medical
University and Peking University Medical Offshore Oil
Hospital approved this study. This study followed the
Declaration of Helsinki and has been registered with the
China Clinical Trials Registry with the registration number
ChiCTR1900026717 and the ethics batch number
KL2019K007.

5.3. Sample Preparation for Lipidomics. The serum
samples were thawed at 4 °C. Serum (80 μL) was taken in a
1.5 mL centrifuge tube, to which 320 μL solvent mixture
(CH2CL2/methanol 3:1, v/v) was added and mixed via
vortexing for 60 s. Then, the mixture was centrifuged at 13,000

rpm for 10 min, and 90 μL of organic phase layer (lower
CH2CL2 layer) was collected and dried using nitrogen at room
temperature. Subsequently, 180 μL of solvent mixture
(acetonitrile/isopropanol 1:1, v/v) was added to the centrifuge
tube and dissolved, vortexed for 60 s, centrifuged at 13,000
rpm for 5 min, and 150 μL supernatant was used for lipidomic
analysis. To ensure data quality in the lipidomic analysis, we
analyzed the samples randomly and prepared mixed QC
samples by mixing 10 μL of supernatant from each sample.
The QC samples were inserted uniformly into each set of
analytical run sequences for the methodology validation of the
large-scale metabolomics analysis method.41 We investigated
the precision of the instrument by performing six consecutive
injections of the same QC sample. To determine the method
repeatability, seven QC samples were parallelly prepared and
analyzed consecutively. Sample stability was examined by
running the same QC sample every 15 samples.

5.4. UPLC−Q-TOF/MS Analysis. This study was per-
formed using a Waters ACQUITY UPLC liquid chromato-
graph (Waters, USA) and a Waters Xevo G2-XS QTOF time-
of-flight mass spectrometer (Waters, USA). An ACQUITY
UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) (Waters,
USA) was used in the positive ESI mode. The detailed
experimental conditions for UPLC separation and MS
detection are as follows.

5.4.1. Chromatographic Analysis Conditions. Column
temperature, 50 °C; flow rate, 0.25 mL/min; and injection
volume, 2 μL. Mobile phase composition: phase A, water/
methanol/acetonitrile (3:1:1 with 5 mM ammonium formate)
and phase B, isopropanol (with 10 mM ammonium formate).
The elution gradient was 0−0.5 min, 20% B; 0.5−5 min, 20%−
40% B; 5−15 min, 40%−98% B; 15−17 min, 98% B; and 17−
17.1 min, 20% B.

5.4.2. MS Analysis Conditions. Auxiliary spray ionization
and desolvation gas, high-purity N2; desolvation gas flow rate,
800 L/h; cone hole voltage, 40 V; cone hole blowback nitrogen
flow rate, 50 L/h; desolvation gas temperature, 400 °C;
ionization source temperature, 120 °C; capillary ionization
voltage, 3 kV; and quadrupole scan range, m/z 50−1000.

5.5. Data Processing. The demographic information of
this study was statistically analyzed using SPSS 26.0 software to
compare whether there was a significant difference in each
indicator between the HC and thyroid dysfunction groups. If
the continuous variables conformed to a normal distribution,
independent sample t-test was used to assess the differences
between the groups. If the data conformed to a non-normal
distribution, Kruskal−Wallis test (nonparametric test) was
used to assess the differences between groups. The data
preprocessing procedure was as follows: MassLynx software
(Version 4.1, Waters, USA) was used to collect the original
data of UPLC−Q-TOF/MS nontargeted lipidomics, including
retention time, m/z value, and peak intensity. The data were
exported after chromatographic peak matching, peak align-
ment, and normalization. Subsequently, 80% reduction was
performed, and the missing values were filled using the K-
nearest neighbor method (the number of neighbors was five).
Multivariate statistical analysis was performed using SIMCA
14.1 (Umetrics AB, Umea, Sweden). PCA was performed to
view clustering trends in multidimensional data and to monitor
the stability of the study. Next, OPLS-DA was performed to
further investigate the metabolic changes, screen potential
metabolites, and identify significant contributors to the
classification using their VIP variable.
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In addition to multivariate statistical methods, the p value of
each variable was obtained using t-test, and multiple hypothesis
testing using Benjamini−Hochberg (BH) correction was
performed to calculate multiple testing adjusted p value
(FDR value) to evaluate the statistical significance of the
results. We set FDR < 0.05 as the significant difference level.
Features with a VIP value of >1 and p value of <0.05 (after BH
FDR correction) were selected for metabolite identification as
potential disease biomarkers. Ion chromatograms were used for
metabolite annotation. The m/z values of the metabolites were
used to search the HMDB (http://www.hmdb.ca/) for
potential metabolites, and the MS/MS spectra obtained from
the HMDB were compared with the MS/MS spectra of the
metabolites found in this study to identify them. Spearman
correlation analysis was used to determine the correlation
between biomarker levels and thyroid serum indicators. The
potential biomarkers were subsequently subjected to hier-
archical cluster analysis using MetaboAnalyst 5.0 and mapped
to their biochemical pathways. The AUC, sensitivity, and
specificity of individual hyperthyroidism and hypothyroidism
biomarkers at 95% CIs were calculated using ROC curves, and
binary logistic regression models were developed to assess the
combined diagnostic value of the biomarker panel.
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