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Abstract

Introduction: The function of the repolarization reserve in the prevention of ventricular arrhythmias during cardiac
ischemia/reperfusion and the impact of ischemia on slowly activated delayed rectifier potassium current (IKs) channel
subunit expression are not well understood.

Methods and Results: The responses of monophasic action potential duration (MAPD) prolongation and triangulation were
investigated following an L-768,673-induced blockade of IKs with or without ischemia/reperfusion in a rabbit model of left
circumflex coronary artery occlusion/reperfusion. Ischemia/reperfusion and IKs blockade were found to significantly induce
MAPD90 prolongation and increase triangulation at the epicardial zone at 45 min, 60 min, and 75 min after reperfusion,
accompanied with an increase in premature ventricular beats (PVBs) during the same period. Additionally, IKs channel
subunit expression was examined following transient ischemia or permanent infarction and changes in monophasic action
potential (MAP) waveforms challenged by b-adrenergic stimulation were evaluated using a rabbit model of transient or
chronic cardiac ischemia. The epicardial MAP in the peri-infarct zone of hearts subjected to infarction for 2 days exhibited
increased triangulation under adrenergic stimulation. KCNQ1 protein, the a subunit of the IKs channel, was downregulated
in the same group. Both findings were consistent with an increased incidence of PVBs.

Conclusion: Blockade of IKs caused MAP triangulation, which precipitated ventricular arrhythmias. Chronic ischemia
increased the incidence of ventricular arrhythmias under adrenergic stimulation and was associated with increased MAP
triangulation of the peri-infarct zone. Downregulation of KCNQ1 protein may be the underlying cause of these changes.
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Introduction

Slowly activated delayed rectifier potassium (IKs) current serves

as a repolarizing current in the ventricular cardiomyocytes of

humans and various mammals. Together with the rapid (IKr) and

inwardly rectifying potassium (IK1) current, it provides multiple

mechanisms for normal repolarization, which was termed

‘‘repolarization reserves’’ by Roden et al. [1]. Loss of function in

one of these currents may not necessarily result in clinical

consequences.

Functionally, IKs constitutes one of the critical repolarization

reserves that compensate for reductions in other repolarizing

currents, particularly IKr, that are caused by mutations in

hereditary long QT syndrome (LQT2) or drugs in acquired

LQT syndrome. This is supported by the observation that

pharmacological IKs inhibition played a minor role in the in vitro

lengthening of action potential duration (APD) in the absence of b-

adrenergic stimulation [2,3]. In contrast, certain drugs, for

example sotalol, erythromycin, chlorpromazine, and methadone,

or diseases, for example heart failure, diabetes, and cardiac

hypertrophy, can trigger a life-threatening arrhythmia in the

absence of the repolarization reserve provided by IKs [4].

Cardiac ischemia and reperfusion are known to change the

outward currents responsible for repolarization. For example, when

cardiac ischemia was induced, the contribution of adenosine

triphosphate sensitive potassium current (IKATP) to repolarization

was increased, while those of IKr and IK1 were lessened in

comparison, which led in turn to a shortening of the APD [5]. The

shortening of the APD induced by ischemia is gradually restored by

reperfusion, however a temporary prolongation of APD during

early reperfusion was observed by Ducroq et al. and Bes et al. in an

in vitro model of simulated ischemia and reperfusion in isolated

cardiomyocytes [6,7]. This phenomenon, which directly involved

repolarization ion current function, has not yet been well explained.

In addition, little is currently known about the role played by the

repolarization reserve in acute ischemia/reperfusion-induced ven-

tricular arrhythmias. In canine hearts infarcted for 5 days, chronic

ischemia decreased IKs current density and downregulated the
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expression of KCNQ1 and KCNE1 mRNA [8,9]. However, the

effect of transient and chronic ischemia on the expression of

KCNQ1 and KCNE1 proteins has not been determined.

Therefore, the first objective of this study was to evaluate the

pattern of IKs changes during cardiac ischemia and reperfusion,

and to determine the function of the repolarization reserve in the

Figure 2. MAPDs, triangulations and MAP waveforms comparison between the IR+L-768,673 and IR+vehicle groups. (A) Epicardial
MAPDs and triangulation recorded from the ischemia/reperfusion zone (apical) in the IR+L-768,673 group and the IR+vehicle group. Triangulations of
the IR+L-768,673 group were increased compared with those of the IR+vehicle group by 31.1%, 26.5%, and 19.3% at R45, R60, and R75 respectively.
Results are mean 6 standard deviation (STD). * P,0.05 vs. IR+vehicle. (B) Comparison of monophasic action potential (MAP) waveforms between the
IR+L-768,673 and IR+vehicle groups at R45, R60, and R75.
doi:10.1371/journal.pone.0031545.g002

Figure 1. Comparison of epicardial monophasic action potential changes between groups. (A) Epicardial monophasic action potential
durations (MAPDs) and triangulation (MAPD90–MAPD30) recorded from the ischemia/reperfusion zone (apical) in the Sham+vehicle group and the
ischemia/reperfusion (IR)+vehicle group. *P,0.05 vs. Sham+vehicle. (B) Epicardial MAPDs and triangulation recorded from the ischemia/reperfusion
zone in the Sham+L-768,673 group and the IR+L-768,673 group. *P,0.05 vs. Sham+L-768,673.
doi:10.1371/journal.pone.0031545.g001
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prevention of ventricular arrhythmias. In addition, the influence

of transient and chronic ischemia on IKs channel subunit

expression and the related electrophysiological outcomes were

evaluated.

Results

Effect of L-768,673 on ischemia/reperfusion-induced
MAP changes

In comparison with the Sham+vehicle group, occlusion of the

coronary artery greatly shortened the MAP durations at 90%,

60%, and 30% repolarization (MAPD90, MAPD60, and

MAPD30) of the ischemic epicardium in the IR+vehicle group;

it also caused a decrease in triangulation due to an abrupt

shortening of the MAPDs (Figure 1A). When the coronary

perfusion was restored, the MAPDs all rebounded and exceeded

the baseline value, before they gradually returned to baseline levels

with continued reperfusion (Figure 1A). The same phenomena

were observed in the IR+L-768,673 group when compared with

the Sham+L-768,673 group (Figure 1B).

In the interval between reperfusion for 25 min (R25) and R90,

the MAPD90 and MAPD60, but not the MAPD30, of the

ischemia/reperfusion zone were significantly prolonged in the

IR+L-768,673 group, when compared with the IR+vehicle group

(Figure 2A). This denoted that in the presence of L-768,673, the

reperfusion-induced prolongation of both the MAPD90 and

MAPD60 was more evident and the return of the MAPD90 and

MAPD60 to baseline was delayed; however, the MAPD30 did not

show the same trend. This deviation led to an increase of

triangulation (MAPD90–MAPD30) in the interval between R45

and R75, compared with the IR+vehicle group (Figure 2A). The

MAP waveform of the IR+L-768,673 group was characteristic of a

slowing of the fast repolarization (Figure 2B). Whereas, remote

zone MAPDs recorded in all of the four groups exhibited mild,

insignificant fluctuations (Figure 3).

The main effects of L-768,673 on MAPD90, MAPD30 and

triangulation were further examined (Table 1). It was found that

with the exclusion of the influence of ischemia/reperfusion, L-

768,673 exerted independent impact on MAPD90 only at the

time points R30, R45, R60, and R75, on triangulation only for

the time points R45, R60, and R75; whereas, it exerted no

independent impact on MAPD30. This finding perfectly

demonstrated that IKs currents activated slowly and peaked

during the late phase 3 and that blockade of IKs influenced only

MAPD90, a surrogate of MAPD, with no effect on MAPD30,

which represented the early phase of repolarization (phase 2 to

the beginning of phase 3). The reperfusion after transient

ischemia and IKs blockade by L-768,673 had a synergistic effect

on prolongation of the MAPD90 and on the increase of

triangulation in the interval between R45 and R75.

Figure 3. Epicardial MAPD90/60/30 and triangulation (MAPD90 - MAPD30) recorded from the remote zone (basal). Results were
means 6 STD. There were no significant differences between groups.
doi:10.1371/journal.pone.0031545.g003
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Influence of ischemia/reperfusion and L-768,673 on
ventricular arrhythmias

A comparison of the occurrence of ventricular tachycardia,

ventricular fibrillation, and total premature ventricular beats (PVB)

did not show any significant differences between the groups (Table 2).

The whole reperfusion period was then stratified by the presence or

absence of a significant difference in triangulation between the IR+L-

768,673 and the IR+vehicle groups into three consecutive intervals.

Intervals 1, 2 and 3 corresponded to the interval from the initiation of

reperfusion to R30, the interval from R30 to R75, and the interval

from R75 to R120 respectively. PVBs in the IR+L-768,673 group

were found to be significantly increased (4.6-fold) in Interval 2,

compared with those in the IR+vehicle group, as shown in Table 2.

This finding was in agreement with the significant triangulation

synergistically induced by reperfusion and IKs blockade.

Effect of transient and chronic ischemia on MAPD
shortening induced by epinephrine

The adrenergic stimulation triggered by bolus injection of

epinephrine consisted of an increase heart rate (HR), acceleration

and shortening of the MAPD90, MAPD60, and MAPD30

(Table 3). Concomitantly, the increase in MAP triangulation

made the ventricles more vulnerable to ventricular arrhythmias,

which partially explained why adrenergic stimulation induced

ventricular arrhythmias in a normal heart. Moreover, the

shortening of the peri-infarct epicardial MAP30 in the Infarct

(2-d) group was as prominent as in other groups, whereas the

peri-infarct epicardial MAPD90 of this group was only minimally

changed. As a result, triangulation of the peri-infarct epicardium

increased to the greatest extent in the Infarct (2-d) group

(Figure 4).

Table 1. The P value of main effects and interaction effects of I/R or sham operation and L-768,673 or vehicle on MAPD and
triangulation.

MAPD90 MAPD30 Triangulation

Time
point I/R L-768,673 Interaction I/R L-768,673 Interaction I/R L-768,673 Interaction

Baseline 0.714 0.353 0.929 0.210 0.900 0.980 0.094 0.178 0.887

Initial dose 0.272 0.109 0.838 0.101 0.123 0.432 0.262 0.301 0.402

I5 0.000* 0.572 0.857 0.700 0.843 0.500 0.005* 0.622 0.534

I10 0.055 0.861 0.826 0.001* 0.946 0.960 0.126 0.852 0.794

I15 0.000* 0.477 0.355 0.000* 0.917 0.869 0.000* 0.414 0.147

I20 0.000* 0.435 0.206 0.000* 0.720 0.858 0.000* 0.299 0.051

R5 0.000* 0.848 0.126 0.097 0.313 0.158 0.000* 0.348 0.980

R10 0.000* 0.187 0.901 0.000* 0.590 0.372 0.205 0.279 0.665

R15 0.000* 0.633 0.870 0.000* 0.449 0.449 0.540 0.848 0.575

R20 0.000* 0.058 0.368 0.000* 0.431 0.747 0.021* 0.177 0.561

R25 0.000* 0.111 0.053 0.000* 0.241 0.757 0.004* 0.344 0.088

R30 0.000* 0.021* 0.164 0.000* 0.262 0.100 0.001* 0.078 0.528

R45 0.000* 0.002* 0.021* 0.000* 0.065 0.478 0.038* 0.011* 0.044*

R60 0.001* 0.001* 0.009* 0.000* 0.096 0.564 0.246 0.003* 0.009*

R75 0.012* 0.007* 0.052 0.008* 0.248 0.831 0.422 0.010* 0.021*

R90 0.411 0.087 0.411 0.004* 0.150 0.689 0.145 0.195 0.523

R105 0.343 0.663 0.242 0.000* 0.257 0.988 0.000* 0.798 0.431

R120 0.349 0.108 0.916 0.000* 0.661 0.291 0.000* 0.026 0.993

I/R = Ischemia/reperfusion, interaction = interaction effect of ischemia/reperfusion and L-768,673, Triangulation = MAPD90–MAPD30.
P,0.05 highlighted by *.
doi:10.1371/journal.pone.0031545.t001

Table 2. Ventricular tachycardia (VT), ventricular fibrillation (VF), and total premature ventricular beats (PVB) of the ischemia/
reperfusion (IR)+L-768,673 and IR+vehicle groups.

Group VT* VF*, { Total PVB PVB in Interval 11 PVB in Interval 21 PVB in Interval 31

IR+L-768,673 4/8 9/15 67 (14, 714.5) 10.5 (5.75, 30.0) 14.0 (9.5, 74.0)** 2.0 (0.0, 20.0)

IR+vehicle 1/8 9/15 60.5 (30.5, 131.5) 57.5 (16.8, 520.3) 2.5 (0.5, 10.0) 0 .0 (0.0, 2.0)

*All of the VTs and VFs occurred within 30 min of reperfusion.
{Animals that developed sustained VF were included in the analysis of VF, but were excluded from the analysis of other electrophysiological data.
1Intervals 1, 2 and 3 were the interval from the initiation of reperfusion to R30, the interval from R30 to R75, and the interval from R75 to R120 respectively.
PVB data is expressed as median (25th percentile, 75th percentile). **P,0.05 vs. IR+vehicle. The median was increased by 4.6-fold in Group IR+L-768,673. No significant
differences between VT, VF, total PVB, PVB in Interval 1 and PVB in Interval 3 were detected between the groups.
doi:10.1371/journal.pone.0031545.t002
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Influence of transient and chronic ischemia on
adrenergic stimulation-induced ventricular arrhythmias

Ventricular fibrillation was not induced in any of the animals

subjected to transient or chronic ischemia, or in any of the

corresponding control animals, when they were challenged with

adrenalin. There were five episodes of ventricular tachycardia, which

lasted for a total duration of 49 s, all of which occurred in 2/8 animals

in the Infarct (2-d) group, although nonparametric statistical analysis

showed no significance (Table 4). However, the Infarct (2-d) group

was shown to be more vulnerable to ventricular arrhythmias than any

of the other groups after pooling together total ventricular ectopy,

with the exception of runs of ventricular tachycardia (Figure 5A).

Effect of transient and chronic ischemia on expression of
IKs subunits

KCNQ1 mRNA expression remained unchanged in both the

peri-infarct zone and the remote zone in our RT-PCR experiments

(Figure 5B). However, KCNQ1 protein expression showed a

different pattern in the peri-infarct zone under different ischemic

protocols. KCNQ1 protein expression was greatly downregulated

in the peri-infarct zone following ischemia for 2 d, and its expression

in the peri-infarct zone increased again by approximately 2-fold by

day 5. Transient ischemia was associated with a milder, but

significant, impact on KCNQ1 protein expression, although no

differences were identified between the Healing (2-d) and Healing

(5-d) groups (Figure 5C). The steep downregulation of KCNQ1

protein expression (approximately 80%) might have severely

compromised the repolarization reserve of the peri-infarct zone

cardiomyocytes, which would in turn have led to an increased

incidence of ventricular arrhythmias and greater triangulation of

MAP in the Infarct (2-d) group under adrenergic stimulation. If the

loss of the KCNQ1 protein subunit failed to exceed a certain

threshold (for example, approximately one-third of the normal

range shown in this study), the repolarization reserve was still able to

function well and could at least compensate for a single factor that

compromised other outward currents (that is, in this study,

adrenergic stimulation inhibiting IKr). Not surprisingly, the effect

on KCNQ1 protein expression following transient or chronic

ischemia in the remote zone was negligible, which was consistent

with the unaffected MAPs in this zone.

KCNE1 mRNA levels were analyzed by RT-PCR; no

significant differences were identified between groups (data not

shown). Unfortunately, KCNE1 protein bands were very weak,

which was consistent with the known low level expression of this

protein in the rabbit [10]; therefore, conclusions regarding the

protein expression levels of this subunit were not definitive.

Discussion

Repolarization reserve and ischemia/reperfusion-related
ventricular arrhythmias

Even though it is widely acknowledged that the complications of

cardiac ischemia, such as ATP deficiency, elevation of [K+]o, local

acidosis, and lysophosphatidylcholine accumulation [11], amongst

others lead to ischemia-induced arrhythmias and cardiac injury,

Table 3. Comparison of MAP data recorded at the peri-infarct zone and heart rate (HR) in animals subjected to ischemia and
healing, infarction, or sham operation.

Peri-infarct zone Healing (2-d) (n = 6) Infarct (2-d) (n = 8) Sham (2-d) (n = 7) Healing (5-d) (n = 7) Infarct (5-d) (n = 7) Sham (5-d) (n = 8)

First operation

HR pre-op (bpm) 29468 306613 29266 29367 29769 287613

MAPD30 pre-op (ms) 70.264.0 70.863.7 70.864.1 70.162.8 69.963.1 70.563.0

MAPD60 pre-op (ms) 98.863.5 101.163.5 100.664.4 99.763.9 99.364.1 100.763.5

MAPD90 pre-op (ms) 120.764.1 122.064.3 123.065.1 121.764.6 121.365.3 123.364.8

Triangulation pre-op (ms) 50.562.2 51.263.9 52.264.0 51.664.5 51.464.7 52.764.3

Second operation

HR post-op (bpm) 300611 29264 309613 29867 294610 295610

MAPD30 post-op (ms) 66.166.9 66.664.0 67.863.4 68.963.4 70.665.0 69.663.8

MAPD60 post-op (ms) 92.968.2 95.263.7 96.565.6 97.863.0 100.363.5 99.363.5

MAPD90 post-op (ms) 118.764.3 123.663.2 118.764.1 120.462.1 125.963.6 120.662.3

Triangulation post-op (ms) 52.664.5 57.066.1 51.963.9 51.664.3 55.268.5 51.164.2

Epinephrine injection

HR epi i.v. (bpm) 382614* 382611* 378611* 36368* 36666* 37069*

HR acceleration (%) 27.3 30.8 22.3 21.8 24.5 25.4

MAPD30 epi i.v. (ms) 52.363.9* 36.266.6* 45.465.9* 54.163.8* 52.565.4* 50.464.9*

MAPD60 epi i.v. (ms) 73.866.9* 73.2613.4* 64.366.2* 77.167.3* 74.466.1* 71.965.8*

MAPD90 epi i.v. (ms) 90.764.8* 114.369.4*# 90.967.4* 92.366.4* 94.062.6* 90.565.8*

Triangulation epi i.v. (ms) 38.364.0* 78.1611.3*# 45.566.9* 38.265.3* 41.567.6* 40.165.1*

MAPD90 shortening (ms) 28.067.7 10.667.2# 28.968.3 28.165.0 31.962.2 30.165.6

Pre-op corresponds to data recorded at the first operation; post-op to data at the second operation; epi i.v. to data at the peak stimulation of epinephrine.
Triangulation = MAPD90–MAPD30; MAPD90 shortening = MAPD90post-op2MAPD90 epi i.v.; HR, heart rate; adr, epinephrine; bpm, beats per minute; i.v., intravenous
injection.
*P,0.05 vs. post-op;
#P,0.05 vs. infarct (2-d).
doi:10.1371/journal.pone.0031545.t003
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the effect of ischemia and subsequent reperfusion on cardiac

repolarization ion current has not been extensively explored. It has

been shown that activation of IKATP by low levels of ATP played

an important role in the decrease in APD during ischemia [12].

On the other hand, the outward currents responsible for

repolarization under normal conditions (for example IK1) were

inhibited by low intracellular ATP levels [13]. With the restoration

of blood flow, ischemic components were gradually cleared from

the local milieu, which also brought about a subsequent

transmembrane ion current variation that remains to be further

elucidated.

The prolongation of MAPD in the early phase of reperfusion,

which was reported previously by Bes et al. and Ducroq et al. in

vitro [6,7], was confirmed in our study in vivo. The careful use of

controls in this study also demonstrated that blockade of IKs by L-

768,673 prolonged both the MAPD90 and MAPD60 in the

interval between R30and R90, which provided evidence of the

increased contribution of the IKs current in repolarization

currents. As previously demonstrated [2], blockade of IKs failed

to lengthen normal ventricular muscle APD. In contrast, under

conditions of ischemia and reperfusion, the independent effect of

L-768,673 on MAPD90 prolongation at R30, R45, R60, and R75

revealed that the contribution of IKs to repolarization was

markedly increased in this period. A similar increase in the

contribution of IKs during this period was also shown by the

synergistic effect of both ischemia/reperfusion and L-768,673 on

MAPD90 prolongation at R45 and R60. Therefore, it may be

inferred that IKs serves as an important repolarization reserve

current and becomes the main repolarization current rather than

IKr in early reperfusion. The administration of L-768,673 in this

situation led to an increase in ventricular arrhythmias, which was a

consequence of impairment of the repolarization reserve.

Triangulation and predisposition to ventricular
arrhythmias

The association between proarrhythmic effects and action

potential prolongation may not be causal. MAPD90 is primarily

the sum of the plateau and the fast repolarization phase of the

action potential; therefore, MAPD90 can be lengthened by

prolonging the plateau or by prolonging the fast repolarization

phase, referred to as delaying or slowing of the fast repolarization

respectively. The latter, described as triangulation of the action

potential, is a reliable biomarker for proarrhythmia that was first

described in 2001 by Hondeghem et al. in an automated

Langendorff-perfused isolated rabbit heart preparation [14]. It is

important to stress that lengthening of the MAPD90 without

triangulation is not proarrhythmic, but rather antiarrhythmic [15].

Triangulation resulted from a reduction in outward repolarizing

currents and/or an increase in depolarizing inward currents

during fast repolarization; in MAP recordings, dispersion of

repolarization may also contribute to triangulation. These

conclusions have been previously confirmed with numerous

experimental protocols performed on isolated tissues, perfused

hearts, and experimental animals by other researchers

[15,16,17,18,19,20].

Triangulation was found to be increased in the interval between

R45 and R75 in the IR+L-768,673 group; within this period, there

was also a statistically significant synergistic effect of ischemia/

reperfusion and L-768,673 on the increase in triangulation. Both

these observations were consistent with the increased incidence of

ventricular arrhythmias. In the transient and chronic ischemia

protocol, increased triangulation of the peri-infarct epicardium under

adrenergic stimulation in the Infarct (2-d) group was also observed,

which increased the propensity for ventricular arrhythmias.

It has recently been reported that sarcoplasmic reticulum calcium

(Ca2+) handling alteration resulted in a decrease in phase 2 of the

action potential and was the key determinant of action potential

triangulation in mice [21]. This may be largely due to the absence of

IKs in species such as the rat and mouse [22], in which the APD is

much shorter than in bigger animals such as the guinea pig, rabbit,

Figure 4. Comparison of waveforms between the Sham (2-d)
and Infarct (2-d) groups after bolus injection of epinephrine.
The only morphological differences in peri-infarct MAP were identified
in the Infarct (2-d) group. (A) ECG Lead II waveforms showing that both
groups had a comparable degree of heart rate increase. (B) MAP
recorded at the peri-infarct epicardial zone showing that after the
adrenergic challenge, the MAP of the Infarct (2-d) group had a dramatic
shortening of MAPD30, whereas the MAPD90 was only minimally
changed. (C) Direct overlapping of MAP showing that the MAP of the
Infarct (2-d) group demonstrates more prominent triangulation.
doi:10.1371/journal.pone.0031545.g004

Table 4. Comparison of episodes of ventricular tachycardia within 10 min of bolus injection of epinephrine.

Ventricular Tachycardia Healing (2-d) Infarct (2-d) Sham (2-d) Healing (5-d) Infarct (5-d) Sham (5-d)

Incidence 0/6 2/8 0/7 0/7 0/7 0/8

Episodes 0 5 0 0 0 0

Sum of duration(s) 0 49 0 0 0 0

No significant differences were identified between the groups; however, the runs of ventricular tachycardia occurred exclusively in the 2-d infarct group.
doi:10.1371/journal.pone.0031545.t004
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dog, and humans. Transient outward potassium current (Ito) and

Ca2+ handling were found to be the main current that determined

action potential in these species. However, the importance of

sarcoplasmic reticulum Ca2+ handling in action potential triangu-

lation of large animals still needs to be carefully evaluated.

KCNQ1 expression and cardiac ischemia
There have been a limited number of reports regarding the effect

of ischemia on IKs amplitude and KCNQ1 expression. Selected

examples of other animal models of heart disease, for which

remodeling of IKs has been described and for which information on

the underlying changes in channel subunit expression was available,

are listed in Table 5. This comparison illustrates that an apparently

similar phenotypic change can have divergent molecular mecha-

nisms. To date, neither KCNQ1 nor KCNE1 protein expression

levels under conditions of ischemia have been reported.

In this study, membrane KCNQ1 protein expression was

severely depressed by chronic ischemia and moderately downreg-

Figure 5. Comparison of ventricular premature beats and KCNQ1 expression between groups. (A) Comparison of the total premature
ventricular beats (PVBs) between the groups within 10 min after bolus injection of epinephrine. Results are presented in a box plot format (n = 6–8)
where boxes indicate the 25–75% interval along with the median of the data. * P,0.05 vs. the other groups. (B) Reverse transcription-polymerase
chain reaction (RT-PCR) of KCNQ1 mRNA levels. Top: Examples of KCNQ1 mRNA with samples harvested from the peri-infarct zone and remote zone
of the Healing (2-d; n = 6), Infarct (2-d; n = 8), Sham (2-d; n = 7), Healing (5-d; n = 7), Infarct (5-d; n = 7), and Sham (5-d; n = 8) groups of rabbit hearts.
Bottom: mean KCNQ1 mRNA band intensities. (C) Western blot analysis of membrane-associated KCNQ1 protein levels. Top: Representative
immunoblot results showing membrane KCNQ1 protein (,75 kDa) with samples harvested from the peri-infarct zone and remote zone of the six
groups of rabbit hearts. Bottom: mean membrane KCNQ1 protein band intensities. * P,0.05 vs. Sham (2-d) and Sham (5-d) respectively; # P,0.05 vs.
Healing (2-d) and Healing (5-d) respectively; $ P,0.05 vs. Infarct (5-d).
doi:10.1371/journal.pone.0031545.g005
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ulated by transient ischemia (20 min ischemia in our protocol).

However, KCNQ1 protein expression did recover to some extent

by d5 after chronic ischemia, and no significant difference was

observed between cardiac KCNQ1 protein expression at d2 and

d5 after transient ischemia. As a pore-forming subunit of the IKs

channel, decreased KCNQ1 protein levels could lead to a rapid

decrease in IKs current, which has been well documented in

human Romano-Ward Syndrome (LQT1 subtype) gene research

[23] and in ion channel subunit remodeling research in animals

exposed to long term arrhythmias [24]. Consistent with previous

studies, our results confirmed the strong relationship between low

KCNQ1 protein levels and diminished repolarization reserve,

which resulted in triangulation of the action potential and an

increased incidence of ventricular arrhythmias after adrenergic

stimulation. The fact that only a dramatic decrease in KCNQ1

protein levels was associated with increased arrhythmic incidence

provided evidence that downregulation of the IKs channel subunit

may be complicated by multiple compensative mechanisms in the

cardiomyocyte, such as potent repolarization reserve comprised

of various potassium channels, diminished Ca2+ current mini-

mizing Ca2+ overload, which were not addressed in our

experiments [25].

No significant changes in KCNQ1 or KCNE1 mRNA

expression levels were identified. The reasons for the discrepancy

between observed changes in KCNQ1 protein levels and

unchanged mRNA expression levels in this study are unclear,

but several explanations can be offered. Firstly, changes in protein

expression levels may fall behind changes in mRNA expression

levels for a period of time that ranges from minutes to days. In this

and previous studies, limited time points were chosen, which may

prevent the detection and interpretation of dynamic changes in

chemical biomarker levels. Secondly, changes in mRNA expres-

sion levels may not reflect changes in the functional protein

subunit levels, because infarction may affect many processes,

which include protein translation, subunit modification, assembly,

processing, and trafficking. Known KCNQ1 subunit modifications

to date include classical phosphorylation and dephosphorylation

[26,27], glycosylation and deglycosylation [28,29], and most

recently, ubiquitylation [30]. This discrepancy provides a clue

that post-translational mechanisms may play a more important

role in IKs subunit suppression.

Limitation of study
In addition to APD and triangulation, other variables had been

identified in the MAP waveform that predict the pro-arrhythmic

effect of drugs or pathophysiological conditions in a comprehen-

sive manner under different experimental protocols. Among them,

triangulation, reverse use dependence, instability and dispersion of

ventricular repolarization, together with the cardiac wavelength

are powerful proarrhythmic predictors [31]. APD and triangula-

tion were applied in this study to identify the association between

ventricular arrhythmias and repolarization reserve compromise;

other as yet unidentified predictors may also play an important

role. Subunit interactions, whose importance in ion channel

function regulation is well-established [32], were not addressed in

the current study due to low KCNE1 protein expression level. The

roles of other ion channels in cardiac ischemia-reperfusion

induced ventricular arrhythmias were not exhaustively covered

Table 5. Divergent molecular mechanisms for potassium channel remodeling in animal models of heart disease.

Species/Region Etiology
Functional
changes

Molecular changes at
the protein level

Molecular changes at
the mRNA level Reference No.

KCNQ1 KCNE1 KCNQ1 KCNE1

Rabbit/ventricle AV block with ventricular pacing

Tachycardia Q Q Q* Q Q [24]

Bradycardia Q Q Q* Q Q [24]

Rabbit/ventricle Pacing-induced heart failure Q - ND - - [39]

Dog/ventricle AV block-induced hypertrophy Q Q Q Q Q [40]

Dog/ventricle Chonic ICM by microembolizations Q -{ Q ND ND [41]

Dog/ventricle Myocardial infarction Q ND ND Q Q [8]

AV, atrioventricular; ICM, ischemic cardiomyopathy; ND, not determined; -, no change.
*Weak bands limited the reliability of the measurement.
{KCNQ1.2, a truncated isoform of canine KCNQ1, was increased and may suppress IKs in a dominant-negative fashion.
doi:10.1371/journal.pone.0031545.t005

Table 6. Details of PCR.

Gene Primer sequences (59–39) PCR product length (bp) Annealing temperature (6C) Cycles

KCNQ1 Forward GCCGCAGCAAGTATGTCG 317 58.6 33

Reverse CCTTCTCAGCAGGTACACGA

KCNE1 Forward CCGTGATGCCCTTTCTGACC 263 62 34

Reverse GTACGCCCTGTCTTTCTCCTG

GAPDH Forward GATCCATTCATTGACCTCCACTA 683 58.6 30

Reverse CACCACCTTCTTGATGTCGTC

doi:10.1371/journal.pone.0031545.t006
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in this study, even if control groups had been well set up in the

protocols.

Conclusions
The results of this study highlight the importance of

maintaining an intact repolarization reserve for the prevention

of ventricular arrhythmias both in cardiac ischemia/reperfusion

and in the infarcted heart under adrenergic challenge. IKs served

as a protective current in securing action potential repolarization,

and the reduction of IKs that resulted from downregulation of the

IKs channel subunit protein contributed to ventricular arrhyth-

mias.

Materials and Methods

Animal preparation
All animal experiments were approved by the Animal Care

Committee of Sun Yat-sen University, Guangzhou, China, and all

investigations conformed to the Guide for the care and Use of

Laboratory Animals published by the United States National

Institutes of Health. New Zealand white rabbits (1.5–2.0 kg) of

either sex were purchased from the Provincial Medical Laboratory

Animal Center (Guangzhou, China).

In vivo model of rabbit coronary artery occlusion/
reperfusion

In a modification of a previously published procedure [33],

Rabbits were anesthetized by subcutaneous administration of

ketamine (40 mg/kg body weight) and Xylazine (8 mg/kg body

weight). An endotracheal tube was inserted and used for

ventilation with room air at 38 strokes per min and a stroke

volume of 7 ml/kg with a positive end-expiratory pressure of

2 KPa applied. Body temperature was maintained by an

appropriate heating lamp. Arterial blood pressure was recorded

by left jugular artery intubation. The heart was exposed by

performing a midline thoracotomy. A ligature was placed around

the left circumflex coronary artery at a distance of 10 mm from its

origin at the coronary groove. The ends were exteriorized and

passed through a tapered polyethylene tube. After the animal had

been allowed to stabilize for 15 min, coronary artery occlusion was

achieved by pressing the tube against the heart muscle while

pulling on the ligature, followed by clamping the tube with a

hemostat; this was accompanied by immediate pallor of the left

ventricular free wall, a marked drop in blood pressure, and

immediate ST segment elevation in the ECG waveform. Reflow

was initiated by releasing the ligature, which was accompanied by

immediate hyperemia of the left ventricular free wall as well as a

marked increase of blood pressure.

Electrophysiological parameters
ECG Lead II was recorded continuously with subcutaneous

needle electrodes. A spring-loaded epicardial Ag-AgCl electrode

was made as described previously [34]. Epicardial monophasic

action potentials (MAPs) were recorded at various locations in

the ventricular epicardium using the electrode at specific time

points intermittently throughout the experiment. All data were

recorded using a TME BL420 multichannel recorder (TME

Technology, Chengdu, China). The diagnoses of ventricular

arrhythmias were made in accordance with the Lambeth

convention [35]. The MAP parameters measured included:

monophasic action potential duration (MAPD) at 30%, 60%,

and 90% of repolarization (MAPD30, MAPD60, and MAPD90,

respectively). Each parameter was average of at least 5

measurements. The slowing of repolarization in MAP was

assessed quantitatively by triangulation, which was calculated as

the difference between MAPD90 and MAPD30 in milliseconds

(MAPD90 - MAPD30).

Drugs
An appropriate portion of L-768,673, a highly selective IKs

blocker that has been extensively studied in in vitro and in vivo

models [36,37,38], was first dissolved in 100% ethanol at a

concentration of 1 mg/ml, followed by suspension in 0.9% saline

to yield a final concentration of 5 mg/l. Then the formulation was

dosed via the left marginal vein with an initial dose of 1 mg/kg for

30 min (to ensure complete drug equilibration) while a maintain-

Figure 6. Study protocol 1 of experiments. Monophasic action potentials were recorded after the equilibration at both the middle of the infarct
zone and the unaffected zone of the epicardium. For L-768,673, The infusion rate of the initial dose was 0.5 mg/kg/h for 30 min, and the maintenance
rate was 0.25 mg/kg/h for two hours. MAP duration data were expressed as MAPD90/60/30Baseline, Initial Dose, I5, I10, I15, I20, R5, R10, R15, R20, R25, R30, R45, R60,

R75, R90, R105, R120, which stood for MAPD90/60/30 recorded at baseline, after initial dose, at ischemia for 5 min, 10 min, 15 min, 20 min and at
reperfusion for 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, 45 min, 60 min, 75 min, 90 min, 105 min, 120 min, respectively.
doi:10.1371/journal.pone.0031545.g006

Figure 7. Study protocol 2 of experiments. Monophasic action potentials were recorded after the equilibration at both the peri-infarct zone and
the unaffected zone of the epicardium during each open chest operation and at the time point of peak adrenergic excitation. MAP duration data
were expressed as MAPD90/60/30pre-op, post-op, epi i.v., which stood for MAPD90/60/30 recorded at first operation, at second operation, and after the
bolus intravenous injection of epinephrine, respectively.
doi:10.1371/journal.pone.0031545.g007
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ing dose of 0.5 mg/kg for 2 h [37,38]. Control group animals were

dosed with an equal volume of vehicle solution, i.e. 100% ethanol

dissolved in 0.9% saline at a concentration of 0.5% (v/v).

Reverse transcription-polymerase chain reaction
Total RNA was isolated from samples with TRIzol reagent

(Invitrogen Corporation, Carlsbad, CA, USA), followed by

chloroform extraction and isopropanol precipitation. cDNA was

synthesized by reverse transcription. PCR was performed using

the cDNA templates in a reaction buffer containing a correspond-

ing primer (Table 6) and Taq DNA polymerase (Invitrogen

Corporation). The PCR products were then separated using

agarose gel electrophoresis. The bands were visualized under

ultraviolet light following ethidium bromide staining. PCR

product integrity was quantitated using the UVItec gel system

(UVItec Limited, Cambridge, United Kingdom) and were

normalized using the corresponding GAPDH data.

Immunoblot analysis
Membrane fractions were prepared using the BioVision Plasma

Membrane Protein Extraction Kit. Protein samples were separat-

ed with 8% SDS-PAGE using a minigel system (Bio-Rad

Laboratories, Hercules, CA, USA). Proteins were transferred onto

an Immobilon-P polyvinylidene fluoride membrane (0.45 mm pore

size; Millipore Corporate, Billerica, MA, USA) in 25 mM Tris

base, 200 mM glycine, and 20% methanol using the Mini Trans-

Blot transfer apparatus (Bio-Rad Laboratories, Hercules, CA,

USA). Following the transfer, the membranes were incubated for

2 h at 4uC in blocking buffer (PBS containing 5% nonfat milk

powder and 0.1% Tween 20). The membrane was incubated for

18 h at 4uC in blocking buffer containing primary antibody.

Antibodies against KCNQ1 (sc-10646; goat) and KCNE1 (sc-

16796; goat) were purchased from Santa Cruz Biotechnology,

Santa Cruz, CA, USA. After membranes were washed, the bound

antibody was detected using horseradish peroxidase-conjugated

donkey anti-goat IgG secondary antibody (Santa Cruz Biotech-

nology, Santa Cruz, CA, USA) in blocking buffer for 1 h, followed

by detection with the BeyoECL Plus detection system (Catalog #
P0018). The immunoblots were exposed on Fuji film. Band signals

were detected and quantified with laser scanning and Image J

software. The immunoblot band intensity values reported herein

correspond to background-subtracted optical density units (ODUs)

normalized to b actin signal intensity for the same sample.

Study protocol 1
In protocol 1, which was based on a 262 factorial design, 42

animals were randomized to receive either 20 min of left

circumflex coronary artery occlusion followed by 120 min of

reperfusion (IR) or a sham operation for the same duration

(Sham), with either intravenous administration of L-768,673 or a

similar volume of the vehicle. The initial sample sizes of the four

groups were as follows: IR+L-768,673, n = 15; IR+vehicle, n = 15;

Sham+L-768,673, n = 6; Sham+vehicle, n = 6 (Figure 6). In

accordance with the Lambeth conventions [35], seven animals

in both the IR+vehicle group and the IR+L-768,673 group that

developed sustained ventricular fibrillation were censored in the

analysis of electrophysiological data because of the potentially

unpredictable manifestations thereafter.

Study protocol 2
In protocol 2, 56 animals were randomly divided into the

following six groups: Healing (2-d) group (n = 10); Infarct (2-d)

group (n = 10); Sham (2-d) group (n = 8); Healing (5-d) group

(n = 10); Infarct (5-d) group (n = 10); and Sham (5-d) group (n = 8).

The induction of ischemia and reperfusion were performed in a

manner identical to the first protocol. Infarction was induced by

direct tightening of the ligature. Several animals were excluded

from the analysis because of the development of sustained

ventricular fibrillation: in the Healing (2-d) group, 4/10; in the

Infarct (2-d) group, 2/10; in the Healing (5-d) group, 3/10; and in

the Infarct (5-d) group, 3/10.

The number of surgical survivors were 6/10 animals in the

Healing (2-d) group; 8/10 from the Infarct (2-d) group; 7/8 from

the Sham (2-d) group; 7/10 from the Healing (5-d) group; 7/10

from the Infarct (5-d) group; and 8/8 from the Sham (5-d) group.

Following surgery, the surviving animals were housed in cages for

2 d or 5 d. At the end of the protocol, the chests of the

anesthetized animals were reopened, and the animals received a

40 mg/kg intravenous bolus of 0.01% (w/v) epinephrine [16].

Monophasic action potentials (MAPs) in both the peri-infarct

epicardial zone and the intact epicardial zone were recorded

during each operation and after the administration of epinephrine

stimulation (Figure 7). Cardiac tissues were harvested and

distinguished as peri-infarct zone and intact zone or the

counterpart in control groups.

Data analysis and statistics
All quantitative data with normal distributions were expressed

as means 6 STD. Other data without normal distributions were

expressed as medians with 25th and 75th percentile. Means were

compared between groups with two-way ANOVA, followed by the

SNK-t post hoc test. The main and interaction effects of operation

(ischemia/reperfusion or sham operation) and drug treatment (L-

768,673 or vehicle) were analyzed by two-way ANOVA using a

General Linear Model.

The presence of any life-threatening ventricular arrhythmias

(e.g., ventricular fibrillation, ventricular tachycardia) between

groups were assessed with the Fisher’s exact test. The number of

premature ventricular beats between groups were expressed as

median with 25th and 75th percentile and were compared by using

the K independent nonparametric test, followed by two indepen-

dent Kruskal-Wallis nonparametric tests.

Values of P,0.05 indicated statistical significance. All statistical

tests were performed using SPSS statistics 17.0 (GraphPad

Software Inc., San Diego, CA, USA).
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