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PURPOSE AND APPROPRIATE SAMPLE TYPES

THIS flow cytometry antibody panel was developed and optimized for the character-

ization of CD41 and CD81 T-cell memory and functional responses in adult and

infant cryopreserved peripheral blood mononuclear cells (PBMC) stimulated with

peptide pools to various antigens of interest (Table 1). The panel has been used to

evaluate Mycobacterium tuberculosis (TB) antigen-specific responses in clinical trial

specimens, and is currently undergoing assay qualification.

BACKGROUND

The lack of a correlate of immunity is a source of frustration in TB research (1).

As such, it is crucial for TB vaccine researchers to “cast a wide net” when assessing

immune responses to clinical trial candidates while minimizing the amount of speci-

men required to generate these data. This panel (Table 2) began as an incremental

enhancement to OMIP-014 (2), and included markers for dump (fixable viability

dye, CD14, and CD19), T-cell phenotype (CD3, CD4, and CD8), Th1 cytokines

(IFN-c and TNF), a Th2 cytokine (IL-4), T-cell proliferation cytokine (IL-2), degra-

nulation (CD107a), and activation (CD154). We have also expanded the panel to

include memory markers (CCR7 and CD45RO), a Th17 cytokine (IL-17A), and an

IL-10 superfamily cytokine (IL-22, used in place of IL-4).

We chose to combine viability dye and dump markers on the same channel

using AViD and V500 (for CD14 and CD19), thus freeing additional channels on the

violet laser. For phenotyping, CD3 remains on ECD and CD4 on APC-eFluor 780.

Th1 cytokines have been shown to be critical for controlling TB (3–9). To assess

Th1 responses, we utilize antibodies against tumor necrosis factor (TNF) and IFN-c.

In designing this panel, we moved TNF to PE-Cy7 to improve detection of this cyto-

kine, as fluorescein isothiocyanate (FITC) is comparatively dimmer and more prone

to photobleaching. The recently introduced Brilliant Violet series of fluorochromes

represents a bright and economical set of tools for detecting markers via the violet

laser. Brilliant Violet 421 (BV421) was previously shown to be of similar brightness

to PE (10), and was initially chosen as a replacement fluorochrome for IFN-c. How-

ever, further investigation showed that any increase in antigen-specific response

detected using the BV421 conjugate was matched with a significant increase in IFN-c
background. This increased background was observed using both the B27 (BD Bio-
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sciences, San Jose, CA) and the 4S.B3 (Biolegend, San Diego,

CA) clones. When this background population was excluded

from the IFN-c gate of the BV421 conjugates, the responses

detected using either the BV421 conjugates or the V450 conju-

gate were similar. This issue, combined with the increased cost

of the reagent, led us to choose to continue to use the V450

conjugate for IFN-c detection in this panel.

Interleukin-2 (IL-2) is a cytokine responsible for T-cell

proliferation and differentiation (11,12) that also may play a

role in TB immunity (13). In our panel, we use PE for bright

and efficient detection of this cytokine.

As M. tuberculosis is a facultative intracellular bacteria,

cytolytic activity may be necessary to help control the disease.

CD107a (LAMP-1) is a marker for degranulation and an indi-

rect marker for cytolytic function (14,15). Ideally, lytic pro-

teins such as Perforin would be costained with the CD107a to

confirm the cytotoxic potential of the CD107a1 cells. To this

point, we are examining future iterations of this panel that

may include a lytic marker. However, the current constraints

of this panel limit our ability to add an additional marker

without harming sensitivity in detecting the other markers of

interest. To accommodate the change in fluorochrome for the

detection of TNF, we moved CD107a to FITC initially, and

then replaced FITC with the enhanced stability of Alexa Fluor

488 (Ax488).

The Brilliant Violet series of fluorochromes has also

allowed us to include the memory markers CCR7 and

CD45RO. CCR7 is responsible for homing T-cells to lymph

nodes (16) and is expressed on na€ıve and central memory T-

cells (TCM) (17). CD45RO is the smallest isoform of CD45,

and has been shown to be expressed on effector memory

(TEM) and TCM (18). The inclusion of both markers allows for

T-cells to be categorized as na€ıve, TCM, TEM, or effector T-

cells. We chose Brilliant Violet 605 for CCR7 as it was the next

brightest available Brilliant Violet dye and CCR7 is expressed

as a continuum (not distinct populations) (19). The binding

kinetics of the CCR7 antibody has shown optimal staining

when incubated at 37�C (see staining protocol in Supporting

Information). Brilliant Violet 785 was chosen for CD45RO

based on antibody availability and minimal spectral overlap to

other markers.

IL-17A is secreted by Th17 T helper cells and acts to

recruit innate immune effector cells to the site of inflamma-

tion (20). Recent works (21,22) have suggested a strong role

for IL-17A in tuberculosis immunity. As such, we initially

replaced the MIP-1b from OMIP-014 with and anti-IL-17A

antibody. In our hands, the PerCP-Cy5.5 on CD8 causes high

spectral overlap into the Ax700 channel used for IL-17A. As

IL-17A is lowly expressed compared to CD8 (and as PerCP-

Cy5.5 is fluorescently brighter), we exchanged the fluoro-

chromes for these two markers to minimize the impact of the

high compensation.

As an effect of changing CD8 to Ax700, a reduction in

CD81 events [perhaps an escapee phenomenon (23)] was

noted using Ax700 to detect CD8, but was mitigated by stain-

ing for CD8 intracellularly.

IL-4, previously included with OMIP-014, is a represen-

tative Th2 cytokine. This interleukin is extremely difficult to

detect and, in our hands, is inconsistent. We continue to

include this marker as an option when assessing clinical trial

specimens in which Th2 is considered a desired response.

Recently, however, we have substituted IL-22 on APC instead

Table 1. Summary table for application of OMIP-022

PURPOSE

T-CELL PHENOTYPING, MEMORY CATEGORIZATION,

CYTOKINE PRODUCTION, AND FUNCTION

FOLLOWING IN VITRO STIMULATION

Species Human

Cell types Cryopreserved PBMC

(adult and infant)

Cross references OMIP-001, OMIP-008,

OMIP-009, and OMIP-014

Table 2. Reagents used for OMIP-022

SPECIFICITY CLONE FLUOROCHROME PURPOSE

Viability Dye – AViD Dump

CD14 M5E2 V500

CD19 HIB19 V500

CD3 UCHT1 ECD Phenotype

CD4 RPA-T4 APC-eFluor 780

CD8 HIT8a Ax700

CCR7 G043H7 BV605 Memory

CD45RO UCHL1 BV785

IFN-c B27 V450 Th1

IL-2 MQ1–17H12 PE

TNF MAb11 PE-Cy7

IL-17A BL168 PerCP-Cy5.5 Th17

IL-22 IL22JOP APC Th22

CD107a H4A3 Ax488 Degranulation

CD154 TRAP1 PE-Cy5 Activation/B-Cell Help
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of IL-4. IL-22 is part of the IL-10 superfamily (24), and when

coexpressed with IL-17 enhances production antimicrobial

peptides in the mucosa (25). Although poorly characterized to

this point, recent research indicates that IL-22 plays a role in

TB infection (21,26).

CD154 was maintained on this panel as emerging evi-

dence indicates its role as a specific and sensitive marker in

detecting CD4 response (27), as well as its roles in upregu-

lating antimicrobial peptides (28) and its necessity for T-

cell activation of B cells (29). As indicated in OMIP-014,

Figure 1. Example staining of adult human PBMC following stimulation. (A) The first two rows demonstrate the gating hierarchy from

total sample to CD4/CD8 identification. A time gate is used to exclude pressure aberrations from the cytometer that may have occurred

during sample acquisition. Aggregate gates are used to exclude brightly positive events that may result from antibody or cell aggregation.

The bottom row demonstrates gating for cytokines and functions from CD41 (top half) and CD81 (bottom half) events resulting from

stimulation with Staphylococcal enterotoxin B. Note that IL-17A and CD154 were gated on the same plot to avoid mischaracterization

resulting from the increased spectral overlap observed from their fluorochromes. (B) Example plots showing memory profile of CCR7 ver-

sus CD45RO in CD41 and CD81 populations. Using CMV pp65 peptide pool-stimulated PBMC from a CMV-reactive donor, IFN-c1 events

(blue) were overlaid onto these plots (gray), confirming localization of these events to the effector memory and effector compartments.
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the inclusion of Brefeldin A in our stimulation protocol

requires intracellular staining of CD154. Figure 1 shows an

example staining and analysis for adult PBMC stimulated

with Staphylococcal enterotoxin B (Fig. 1A) or CMV pp65

(Fig. 1B).

SIMILARITY TO PUBLISHED OMIPS

As this panel assesses antigen-specific T-cell responses, it

is similar to OMIP-001 (30), OMIP-008 (31), OMIP-009 (32),

and OMIP-014 (2). Furthermore, this panel evolved from an

initial desire to implement OMIP-014. Unlike these panels,

however, our panel includes T-cell memory markers as well as

an extensive combination of cytokines and functions associ-

ated with tuberculosis vaccine research. Our panel was devel-

oped for use in multicenter studies under good clinical

laboratory practices conditions, and is currently undergoing

assay qualification.
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