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Abstract

Many diverse biological systems are described by randomly moving particles that can be

captured by traps in their environment. Examples include neurotransmitters diffusing in the

synaptic cleft before binding to receptors and prey roaming an environment before capture

by predators. In most cases, the traps cannot capture particles continuously. Rather, each

trap must wait a transitory “recharge” time after capturing a particle before additional cap-

tures. This recharge time is often overlooked. In the case of instant recharge, the average

number of particles captured before they escape grows linearly in the total number of parti-

cles. In stark contrast, we prove that for any nonzero recharge time, the average number of

captured particles grows at most logarithmically in the total particle number. This is a funda-

mental effect of recharge, as it holds under very general assumptions on particle motion

and spatial domain. Furthermore, we characterize the parameter regime in which a given

recharge time will dramatically affect a system, allowing researchers to easily verify if they

need to account for recharge in their specific system. Finally, we consider a few examples,

including a neural system in which recharge reduces neurotransmitter bindings by several

orders of magnitude.

Author summary

Consider particles that are released into an environment (think diffusing molecules or

plankton), and suppose that there are traps in the environment. How many particles will

be captured by the traps before they escape? In a standard model, the number of captured

particles is proportional to the initial number released. In this paper, we show that for a

more realistic model of a trap (one in which traps must recharge after every capture), the

number of captures is proportional to the logarithm of the initial number released. That

means that if 106 particles are released, only about 6 will be captured. We prove this result

mathematically, and then consider a number of applications, including neuronal synapses

and ambush predators.
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Introduction

Particles moving and interacting with traps is a broad description of many biological pro-

cesses. In individual applications, “particles” might represent, for example, molecules or prey,

while “traps” could represent receptors or predators. Nevertheless, the mathematical descrip-

tion can be very similar.

In this work we consider a finite number of particles randomly moving in a bounded

domain. Eventually, each particle will leave the domain through either an escape region in the

boundary or a capture region in the boundary (Fig 1). After a capture region captures a parti-

cle, that region cannot capture additional particles until after a transitory recharge time. We

find that this recharge time can dramatically reduce the number of particles that are captured

before they escape.

One motivation for this study is the interaction of neurotransmitter with receptors in the

synaptic cleft. The synaptic cleft is a small region in extracellular space between neuronal pro-

cesses [1]. Once a neuron activates, it releases a packet of neurotransmitter molecules (“parti-

cles”) into the cleft, where they diffuse until they either leave the cleft (escape) or bind to the

synaptic receptors on the membrane of the other neuron (are captured). The receptor that cap-

tures a molecule changes conformation, and during this time it cannot capture additional mol-

ecules. After a transitory recharge time, the receptor returns to its original state in which it can

capture molecules. A similar scenario occurs, for example, in experiments where the molecules

are released into extracellular space and bind to receptors on astrocytes, another type of brain

cell [2].

In an application to ecology, the capture regions could represent ambush predators [3].

These are organisms that stay stationary, while the prey (“particles”) wander about. Once prey

is within a striking range, the predator attacks and captures the prey. The recharge in this case

represents the so-called handling time [4, 5], which is the time spent processing food by the

predator, until it is ready to hunt again. Examples of such predators can be found in different

taxa, including carnivorous plants, chameleons, some fish, and spiders.

Here we consider n non-interacting particles randomly moving in a bounded domain

O � Rd in any spatial dimension, d� 1. For simplicity, we assume the particles are purely dif-

fusing, but our results hold under much more general assumptions (see the Discussion). The

boundary @O is partitioned into reflecting regions @OR which reflect particles, escape regions

@OE which absorb particles, andm-many capture regions @OC ¼ [
m
k¼1
@O

j
C, see Fig 1A. Each

capture region @O
j
C absorbs particles, except during a transitory time after it absorbs a particle

Fig 1. Schematics of domain and recharging capture regions. A: Particles diffusing in domain O with boundary

@O = @OR [ @OC [ @OE. B: After capturing a particle, capture regions are reflecting for a transitory recharge time,

which we take to be exponentially distributed with mean τr> 0.

https://doi.org/10.1371/journal.pcbi.1006015.g001
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in which the region is reflecting, see Fig 1B. We take this transitory time to be exponentially

distributed with mean τr> 0 and envision it as the time required for a capture region to

“recharge” before it can capture another particle.

Eventually, each particle will either be absorbed at an escape region (in which case we say

the particle has escaped), or absorbed at a capture region (in which case we say the particle was

captured). Let N� 0 be the number of particles that are eventually captured. In the case of

instant recharge (τr = 0) and independently moving particles, the expected value of N is simply

E½N� ¼ hn; ð1Þ

where h 2 [0, 1] is the probability that a given particle reaches a capture region before an

escape region (the so-called hitting probability).

In this paper, we investigate the effect of a nonzero recharge time τr> 0 on the expected

number of captured particles, E½N�. Notice that particles still move independently, but they

now interact through their effect on the state of the boundary. In contrast to the linear growth

of E½N� as a function of n in Eq 1 in the case τr = 0, we prove that if τr> 0, then E½N� cannot

grow faster than logarithmically for large n. We then demonstrate through numerical simula-

tions that E½N� does indeed grow logarithmically (rather than sublogarithmically). Further-

more, we characterize this growth in terms of only three biological parameters. Namely, if n is

the number of particles released into the domain,m is the number of capture regions, and T =

τr/τe is the ratio of the expected recharge time τr to the expected escape time τe if all the capture

regions are always reflecting, then the upper bound for E½N� is approximately equal to

mþ
m
T

log n
T
m

� �

þ 1

� �

: ð2Þ

We make Eq 2 precise in Theorems 1 and 2 below. In addition, we provide in Eq 16 a simple

condition to check if a particular parameter regime is such that E½N� is dramatically reduced

by the recharge time.

Materials and methods

We compare the upper bound presented in Theorem 2 to simulations conducted in the three

domains illustrated in Fig 2. In these domains, the PDE in Eq 11 can be solved using separation

Fig 2. Three example domains. A: O1D, B: O2D, C: O3D, with escape regions denoted by black, dashed lines, capture regions by red, solid

lines, and reflecting regions by black, solid lines. Unless otherwise specified, all particles are initially located at the gray triangles in each

domain.

https://doi.org/10.1371/journal.pcbi.1006015.g002
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of variables. With this solution, it is straightforward to estimate the constant C using Eq 12.

The results of this calculation, assuming the initial distribution of particles is given by a delta-

distribution, can be found in Table 1. Unless specified otherwise, all simulations used these val-

ues for λ1 and C. Parameter values for n, τ,D, L1D
x , L2D

x , L2D
y , L3D

z , and R3D can be found in the

figure captions, along with the locations of the capture regions for O2D and O3D.

The PDE for the probability of hitting a capture region for O2D and O3D was solved numeri-

cally using the NDSolveValue function in Mathematica [6].

For the three-dimensional synaptic cleft, the parameter values L3D
z , R3D, D as well as the

number of capture regions (m) for NMDA and AMPA clefts were found in [7], n was found in

[8], and the size of the individual capture regions were estimated from [9]. The recharge times

(τr) for AMPA and NMDA receptors were estimated from kinetic schemes from [10] and [11].

Specifically, the recharge times were taken to be the inverse of the unbinding rate of glutamate

in the open state of these kinetic schemes. For the predator-prey example, L3D
z , R3D, n,m, and

the handling time (τr) were estimated from [12]. The ambush predator Chaoborus Americanus
are typically 1.1 � 104 μm in length [13], and we considered a reasonable capture region with a

radius twice that length. While the prey Daphnia are capable of swimming, their motion has

been modeled with brownian motion, and we used the effective diffusion coefficient reported

in [14]. All of these values are in Table 2.

All simulations were completed in C, with a time step of 0.001μs. The simulations ended

when no particles remained in the domain. 100 trials were completed for each parameter set.

Results

Mathematical results

We now make Eq 2 precise. The following upper bound follows immediately from Eq 1,

E½N� � hn; if tr � 0: ð3Þ

Table 1. Eigenvalues (for k = 1, 2, . . .), and coefficients for Eq 12 for the domains found in Fig 2, where the initial

distributions of particles are: O1D: pðxÞ ¼ δðx � 0:5L1D
x Þ, O2D: δðx; yÞ ¼ δðx � 0:5L2D

x Þδðy � ðL
2D
y ÞÞ, and O3D:

δðx; y; zÞ ¼ δðxÞδðyÞδðz � ðL3D
z ÞÞ. J0(r) and J1(r) denote the zeroth and first order Bessel function of the first kind,

respectively, and αk denotes the kth zero J0(r).

λk Ak C

O1D
pþ2pðk� 1Þ

2L1D
x

� �2 4

pþ2pk sin pþ2pðk� 1Þ

4

� �
1.0377

O2D
pk
L2D
x

� �2 2ð1� ð� 1ÞkÞ

pðkþ1Þ
sin pk

2

� �
1.2732

O3D ak
R3D

� �2 2

J1ðakÞak
1.6020

https://doi.org/10.1371/journal.pcbi.1006015.t001

Table 2. Parameter values used in applications (Fig 2C). The domain is cylindrical (Fig 2). The initial distribution of

particles/prey is dðx; y; zÞ ¼ dðxÞdðyÞdðz � ðL3D
z ÞÞ. Columns 2, 3: Neuronal synapse. The receptors are taken to be uni-

formly distributed in {(x, y, 0)|x2 + y2 < (R3D)2}, and each corresponding capture region has a radius of 0.00625 μm.

Columns 4: Ambush predator. The predator is at (0, 0, 0) and has a capture radius of 2.2 � 104 μm.

Parameter NMDA AMPA Predator

R3D 0.15 μm 0.15 μm 3.5 � 104 μm

L3D
z 0.02 μm 0.02 μm 5.2 � 104 μm

D 0.3(μm)2/ms 0.3(μm)2/ms 3.255 � 106(μm)2/s

m 20 200 1

n 3000 3000 30

τr 10.917 ms 0.25 ms 8.64 � 103 s

https://doi.org/10.1371/journal.pcbi.1006015.t002
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To get a tighter upper bound, let S(t) 2 [0, 1] be the probability that a given particle has not

escaped by time t� 0 in the case that all the capture regions are always reflecting. The follow-

ing lemma bounds E½N� in terms of this survival probability, S(t).
Lemma 1. For each t� 0, we have that

E½N� � mð1þ t=trÞ þ nSðtÞ:

Proof. Let Ns,t be the number of particles captured between time s� 0 and time t� s. With

probability one we have that

N ¼ N0;t þ Nt;1; if t � 0: ð4Þ

We can bound N0,t by noting that all captures, except the first one, are preceded by a recharge

time. Since the recharge time is exponentially distributed with mean τr> 0, and since there are

m capture regions, the expected number of recharges before time t ismt/τr. Since them capture

regions are initially absorbing, we have

E½N0;t� � mð1þ t=trÞ; if t � 0: ð5Þ

In words, the righthand side of Eq 5 is achieved if each of them capture regions captures a par-

ticle at time zero and then immediately after each recharge time (1 particle each per average

recharge time τr) up to time t.
Next, observe that Nt,1 cannot be greater than the number of particles still in the domain at

time t� 0. Furthermore, assuming all the capture regions are always reflecting can only

increase the number of particles still in the domain at time t� 0. If the capture regions are

always reflecting, then the expected number of particles remaining in the domain at time t� 0

is nS(t). Therefore,

E½Nt;1� � nSðtÞ; if t � 0: ð6Þ

In words, the right side of Eq 6 is achieved if all the particles that are still in the domain at time

t are eventually captured (rather than escape). Taking the expectation of Eq 4 and using Eqs 5

and 6 completes the proof.

If S(t) decays exponentially, then the following theorem follows quickly from Lemma 1 and

Eq 3.

Theorem 1. If λ> 0 and C> 0 are such that

SðtÞ � Ce� lt; for all t � 0; ð7Þ

then

E½N� � min mþ
m
ltr

logþðCn
ltr
m
Þ þ minfnC;

m
trl
g; hn

� �

; ð8Þ

where log+(y) ≔max{log(y), 0}.

Proof. Combining Lemma 1 with Eq 7, we have that

E½N� � mð1þ t=trÞ þ nCe� lt; t � 0: ð9Þ

A simple calculus exercise shows that the value of t� 0 that minimizes the upper bound in

Receptor recharge time drastically reduces the number of captured particles
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Eq 9 is

t ¼
1

l
logþ Cn

ltr
m

� �

� 0:

Plugging this value of t into Eq 9 and using Eq 3 completes the proof.

In order to apply Theorem 1 to the situation described in the Introduction, we need to find

λ> 0 and C> 0 that satisfy Eq 7. The first step is to use separation of variables to find the sur-

vival probability S(t).
Lemma 2 Assume @O is the union of a finite number of disjoint closed Lipschitz surfaces, each

surface having finite surface area (a smooth boundary with finite surface area satisfies this
assumption). Suppose the initial distribution of each particle is p(x) and define the shorthand
notation,

ðf ; gÞ≔
Z

O

f ðxÞgðxÞ dx:

If each particle has diffusivity D> 0, then the survival probability is given by

SðtÞ ¼
X1

k¼1

Ake
� Dlkt; t > 0; ð10Þ

where Ak≔ (ϕk, 1)(ϕk, p) and

0 < l1 < l2 � . . . ;

is the increasing sequence of eigenvalues satisfying λk!1 as k!1 and

� lk�k ¼ D�k;

�k ¼ 0;

@

@s
�k ¼ 0;

x 2 O;

x 2 @OE;

x 2 @On@OE;

ð11Þ

for corresponding eigenfunctions f�kðxÞg
1

k¼1
which form an orthonormal basis for L2(O).

We relegate the proof of Lemma 2 to S1 Text. Using Lemma 2, we can find λ> 0 and C> 0

that satisfy Eq 7 and apply Theorem 1 to the situation described in the Introduction. In the fol-

lowing, let τe≔ (Dλ1)−1, which we refer to as the escape time because it is the average time for a

particle to reach an escape region if the capture regions are always reflecting and the particle is

initially distributed according to its so-called quasi-stationary distribution, ϕ1(x)/(ϕ1, 1)� 0

(see S1 Text). Further, let T≔ τr/τe be the relative recharge time.

Theorem 2. Under the assumptions of Lemma 2, we have

E½N� � min mþ
m
T

logþ C
nT
m

� �

þ min nC;
m
T

n o
; hn

� �

;

where C is given by

C ¼ min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jOjðp; pÞ

p
; sup

t>0

X1

k¼1
Ake

� Dðlk � l1Þt

� �

� maxfA1; 1g:

ð12Þ

Before giving the proof of Theorem 2, we make a few comments about the constant C. First,

C depends only on the initial distribution p, the domain O, and the escape region @OE. Note

Receptor recharge time drastically reduces the number of captured particles
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that as a result, C does not directly depend on the size of capture regions. Second, while Cmay

be difficult to compute in general, it simplifies in certain cases. Specifically, if the initial distri-

bution is uniform, p(x) = 1/|O|, then C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jOjðp; pÞ

p
¼ 1 by Eq 12. As another example, if the

initial distribution is the quasi-stationary distribution, p(x) = ϕ1(x)/(ϕ1, 1), then the coefficients

in Lemma 2 are A1 = 1 and Ai = 0 for i> 1, and it follows immediately from Eq 12 that C = 1.

Finally, if

n=m� 1 and nT=m� 1; ð13Þ

then

E½N� � mþ
m
T

log
n
m
T

� �
þ 1þ log ðCÞ

� �

� mþ
m
T

log
n
m
T

� �
þ 1

� �
:

ð14Þ

Hence, in the parameter regime in Eq 13, computing C is somewhat superfluous since it is a

subdominant term in Eq 14. Further, note that the parameter regime in Eq 13 is precisely the

regime in which we expect the nonzero recharge time τr> 0 to have a nontrivial effect on

E½N�. Namely, the number of particles must be much larger than the number of capture

regions (n/m� 1) and the recharge time must not be much smaller than the escape time (nT/

m� 1). This parameter regime is characterized precisely in the next section (Eq 16).

Proof of Theorem 2. Using Lemma 2 and the Schwarz inequality, we have

SðtÞ � e� Dl1t
X1

k¼1

jAkj � e� Dl1t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1

k¼1

ð�k; 1Þ
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1

k¼1

ð�k; pÞ
2

s

:

Since f�kðxÞg
1

k¼1
are an orthonormal basis for L2(O), this becomes

SðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jOjðp; pÞ

p
e� Dl1t:

Further, Lemma 2 gives that

SðtÞ ¼ e� Dl1t
X1

k¼1
Ake� Dðlk � l1Þt

� e� Dl1tsupt>0

X1

k¼1
Ake� Dðlk � l1Þt:

Applying Theorem 1 completes the proof.

Transition between linear and logarithmic bounds. We have proven the

E½N� ¼ Oð lognÞ as n!1 for any T = τr/τe> 0. However, if T� 1, then E½N� still grows lin-

earlty in n for small n. It therefore remains to identify when E½N� transitions from linear to

logarithmic growth in n for a given T> 0. In other words, when does recharge time dramati-

cally affect E½N�?
We answer this question by determining when the logarithmic bound in Theorem 2 is bet-

ter than the linear bound. Specifically, we determine the critical nc such that

mþ
m
T

logþ C
ncT
m

� �

þ min Cnc;
m
T

n o
¼ hnc:

Observe that if Cnc�m/T, then the linear bound is tighter than the log bound. Hence, we seek

Receptor recharge time drastically reduces the number of captured particles
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the unique nc>m/(TC) such that

mþ
m
T

log C
ncT
m

� �

þ
m
T
¼ hnc: ð15Þ

The solutions to this transcendental equation can be expressed in terms of the so-called

Lambert W function [15]. Specifically, it is straightforward to check that the solution to Eq 15

satisfying nc>m/(TC) is

nc ¼ �
m
Th
W� 1 �

h
C
e� T� 1

� �

; ð16Þ

whereW−1(z) is the lower branch of the Lambert W function defined by z =W−1(z)eW−1(z) and

W−1(z)� −1 for z 2 [−e−1, 0).W−1(z) is a fairly standard function that is included in most

modern computational software (additional details on this function can be found in S1 Text).

Given some number n of initial particles, it is therefore straightforward to use Eq 16 to check if

n> nc. If so, then the logarithmic bound in Theorem 2 is tighter than the linear bound and the

recharge time significantly affects E½N�.

Analysis and applications of the upper bound

We now examine the upper bound and compare it to simulations in three domains: O1D, O2D,

and O3D (see Fig 2). The one-dimensional domain is the interval,

O
1D
¼ ½0; L1D

x �;

with an escape region at x = 0 and a capture region at x ¼ L1D
x . The two-dimensional domain

is the rectangle,

O
2D
¼ ½0; L2D

x � � ½0; L
2D
y �;

with escape regions along x = 0 and x ¼ L2D
x , capture regions along y = 0, and reflecting bound-

aries for the remainder of the boundary. Lastly, the three-dimensional domain is the cylinder,

O
3D
¼ fðx; y; zÞ j x2 þ y2 < ðR3DÞ

2
; 0 < z < L3D

z g;

with escape regions at x2 + y2 = (R3D)2, capture regions located on z = 0, and reflecting bound-

aries for the remainder of the boundary. Unless otherwise specified, all particles are initially

located at the gray triangles in each domain in Fig 2.

Linear vs. logarithmic growth. Recalling Eq 1, if the capture regions recharge instantly

(T = τr/τe = 0), then the expected number of captured particles grows linearly in the number

of initial particles. However, we found that for all T> 0, the linear growth can only hold for

n< nc, where nc is determined by Eq 16. This point is illustrated in Fig 3A, where the upper

bound of Theorem 2 for O1D is plotted for different values of T. This figure shows that as T
increases, the upper bound branches off of the linear instant recharge case (red line) at smaller

values of n.

In Fig 3B, we plot Monte Carlo estimates of E½N� and find that E½N� does indeed grow loga-

rithmically in n. That is, while the theorems in the previous section provide logarithmic upper

bounds for E½N�, the actual expected number of captured particles does not grow sub-logarith-

mically. Furthermore, this figure indicates that our upper bound gets sharper as T gets larger.

This is confirmed by calculating the percent error (figure not shown).

In Fig 3C, we plot the critical ratio, nc/m from Eq 16 as a function of T for different values

of h. If parameters lie above their corresponding nc/m curve, then E½N� grows logarithmically

Receptor recharge time drastically reduces the number of captured particles
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in n, and therefore recharge dramatically reduces E½N�. This result allows experimentalists and

modelers to determine if they need to account for recharge in their specific system.

To illustrate, we now consider two specific examples. First, we model the diffusion of neu-

rotransmitters in a neuronal synapse containing only N-methyl-D-aspartate (NMDA) recep-

tors with the cylindrical domain O3D in Fig 2C. Specifically, the reflecting boundaries make up

the pre- and post-synaptic terminals, the capture regions are NMDA receptors, and the escape

regions represent that neurotransmitters can diffuse out of the synaptic cleft. Second, using the

same cylindrical domain, we model the predator/prey experiment in [12]. This experiment

placed a single ambush predator (Chaoborus Americanus) in a water-filled beaker, and then

released prey (Daphnia) in order to estimate the feeding time of the predator. Here, we con-

sider a slightly modified setup where the prey have the opportunity to escape by reaching the

sides of the domain. In both examples, all particles/prey begin in the middle of the top reflect-

ing boundary. The parameter values for these examples are in Table 2, with additional infor-

mation in Materials and Methods.

Using Eq 16, we see that recharge dramatically affects both systems. In the inset of Fig 3C,

we plot the corresponding nc/m curves for these examples, as well as the specific points

(denoted by dots) where these examples lie, which indeed illustrates that both of these applica-

tions are well within the logarithmic growth regime. More specifically, in the case of the syn-

apse, the expected number of captures without recharge is 2550, while our upper bound and

simulation with recharge gave values of 20.3 and 20.1 respectively. We emphasize that the spa-

tial and temporal scales of these two applications differ by several orders of magnitude, but our

theory is readily applicable to both. We therefore expect that our theory will find application in

many other systems.

Varying the number of capture regions and initial distribution of particles. The previ-

ous section examined the effects parameters n and T have on the upper bound, and we now

turn to how the number of capture regions (m) and the initial distribution of particles come

into play. For this investigation, we consider the two dimensional domain O2D, with L2D
x ¼ 1

and L2D
y ¼ 0:1. The capture regions will be contained in @OC = {(x, 0)|0.25� x� 0.75}, and we

will examine the cases where this space is evenly distributed between 1, 2 or 4 capture regions.

Fig 3. The number of captured particles depends logarithmically on the number of particles released. A: Upper bound comparisons for T = 0 and T> 0, where T =

τr/τe is the relative recharge time (non-dimensional). B: Comparison of the upper bound (solid) to simulations (dots connected with dashed lines) in O1D with for

different values of T. This figure suggests that the logarithmic growth found in the upper bound is observed in simulations. C: Plot of critical ratio nc/m in Eq 16 for

various values of h. These curves split the (T, nc)-plane into two parts: parameter values that lie above the line fall into the logarithmic growth, while those that lie below

it will fall into the linear growth (shaded regions). Inset: Plot of nc/m for O3D (C = 1.602) with h = 0.85 (neuronal synapse; blue) and h = 0.08 (predator-prey; red); see

text for more detail. The dots represent the points estimated from parameter values found in Table 2. All graphs use the parameters: D = 1(μm)2/ms and L1D
x ¼ 1 mm.

https://doi.org/10.1371/journal.pcbi.1006015.g003
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By construction, the probability of hitting the union of the capture regions is fixed at h = 0.992

regardless of the value ofm. As a result, with an instantaneous recharge time (T = 0), all of the

domains would capture the same average number of molecules, namely nh = 1984.

However, even when the relative recharge time T is small, we observe many fewer captures

than this value, in the simulations and in the upper bound (Fig 4A). We also observe signifi-

cant differences between the three different domains, with them = 1 domain capturing fewer

particles than the domains with two and four regions. This result is observed even though a

single capture region is smaller in them = 2 andm = 4 cases. Since |@OC| is kept constant in

each domain, this intuitively makes sense. However, this result is missed with an instant

recharge time. Further, we note that this figure illustrates that the upper bound continues to

serve as a good approximation for this two-dimensional domain, though accuracy does drop

asm increases and T decreases.

We now examine how the initial distribution of particles affects the upper bound. Instead

of placing all particles at a specific point in space, we assume they are uniformly distributed in

O2D at the start of the simulation. As noted previously, with this initial distribution of particles,

the upper bound is much simpler to calculate, requiring only the leading eigenvalue l
2D
1

, since

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jOjðp; pÞ

p
¼ 1 by Eq 12. Fig 4B shows that this has a minor, but noticeable effect on the

upper bound of E½N� and on simulation-based estimates of E½N� for smaller values of T. Fig

4B further shows that it has almost no effect as T gets larger. This can be understood by reason-

ing that if T is large, then by the time a capture region captures its first particle and recharges,

the initial distribution of particles has been entirely “forgotten” by the system. On the other

hand, as T approaches 0, we expect that the initial distribution of particles to play a bigger role

in determining E½N�.
Comparison of space dimensions. We now ask the question of how the number of cap-

tured particles changes with spatial dimension. To perform this analysis, we consider the

Fig 4. Varying number of receptors and initial conditions. Upper bound (solid) and simulations (dots connected with dashed lines). A: Comparison of expected

number of captures for different numbers of capture regions, while keeping |@OC|, and thus the hitting probability (h), constant. Even for small values of T, we

observe large variations between the differentm cases. B: Comparison of expected number of captures with different initial distribution of particles. For the uniform

distribution, p(x, y) = 10 for 0� x� 1 and 0� y� 0.1, the constant C = 1 was used for the upper bound. The differences in E½N� are reduced as T increases. All

graphs use the following parameters: domain is O2D, n = 2000,D = 1(μm)2/ms, L2D
x ¼ 1 mm, L2D

y ¼ 0:1 mm, @O
2D
C ¼ fðx; 0Þj0:25 < x < 0:75g.

https://doi.org/10.1371/journal.pcbi.1006015.g004
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dimensional parameter τr (inms) as opposed to the dimensionless parameter T, and domains

O1D, O2D, and O3D with parameters chosen so that h = 0.5 in each domain. We first note that

with instant recharge (τr = 0), all of the domains capture the same number of molecules

(nh = 500). However, if τr> 0, then the three domains capture vastly different numbers of par-

ticles (Fig 5). Indeed, O1D captures significantly more particles than the other domains when

τr is small. This result follows from the fact that even though the probability of hitting the cap-

ture region (h) is the same in each domain, a particle may hit a capture region while it is

recharging if τr> 0. Such a particle may then diffuse away from this capture region and escape.

With this set of parameters, O1D has the largest escape time, and the result illustrated in Fig 5

follows. This result may be altered depending on the shapes and sizes of the domains, as illus-

trated in the next example.

To further examine the effects of escape time on E½N�, we now compare the number of cap-

tured particles in O2D and O3D, where the sizes of O2D and O3D are chosen so that O2D has a

smaller escape time τe and larger probability h of hitting the capture region than O3D. With

these constraints, it follows from Eq 1 that on average O2D will capture more particles than

O3D if τr = 0. Interestingly, the upper bound in Theorem 2 suggests that O3D may actually cap-

ture more particles than O2D if τr is sufficiently large (see orange and green curves in Fig 6).

This prediction is verified in simulations (see dashed curves in Fig 6). As in Fig 5, this counter-

intuitive result can be understood in terms of the smaller escape time of O2D compared to O3D.

Fig 5. Dimension comparison. Upper bound (solid) and simulations (dots connected with dashed lines) for O1D, O2D,

and O3D with parameters chosen such that the probability of hitting a receptor in each domain is h = 0.5. For τr = 0, we

would expect all of the lines to coincide, while the figure clearly illustrates differences in E½N� between the three

domains, a characteristic predicted by our upper bound. The figure uses the following parameters: n = 2000,D = 1

(μm)2/ms, L1D
x ¼ 1 mm, L2D

x ¼ 1 mm, L2D
y ¼ 0:5 mm, @O

2D
E ¼ fðx; 0Þj0 < x < 1g, L3D

z ¼ 0:375 mm, R3D = 0.5 μm,

@O3D = {(x, y, 0)|x2 + y2 < 0.52}.

https://doi.org/10.1371/journal.pcbi.1006015.g005
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Three- and two-dimensional synapses. The previous section illustrates the difficulty in

approximating a three-dimensional domain with a two-dimensional domain when the capture

regions have non-instant recharge times. This type of approximation is common in computa-

tional neuroscience [16, 17]. Fig 5 suggests that it is insufficient to simply account for the prob-

ability of hitting a capture region. Further, Figs 5 and 6 suggest that the escape time τe is largely

responsible for the differences in E½N� between the domains. Using this insight from our

upper bound, we conclude that an accurate two-dimensional approximation must at least have

the same τe and h as the three-dimensional domain.

To test this hypothesis, we consider a three-dimensional cylinder representative of a neuro-

nal synapse, and seek to approximate this by a two-dimensional rectangle. The goal is to

choose the parameters of the two-dimensional rectangle so that the expected number of cap-

tured molecules is the same in both domains. To choose the dimensions of our rectangle, we

follow the steps outlined in Algorithm 1.

Fig 6. The number of capture particles in neuronal synapse (2D vs. 3D). The upper bound (solid) and simulations

(dots connected with dashed lines) for O2D, O3D, and Ô2D. Parameters were chosen such that O2D has a smaller escape

time τe and larger probability of hitting the capture region h than O3D. The figure illustrates that for certain values of τr
it is possible for more particles to be captures in O3D. This figure used the following parameters: n = 1000,D = 1(μm)2/

ms, L2D
x ¼ 1 mm, L2D

y ¼ 0:25 mm, @O2D = {(x, 0)|0< x< 1}, L3D
z ¼ 0:25 mm, R3D = 1 μm, @O3D = {(x, y, 0)|x2 + y2 <

0.252}. The following parameters were then adjusted for Ô2D so that it would capture approximately the same number

of particles as O3D: L2D
x ¼ 1:3064 mm, L2D

y ¼ 0:18 mm, and @O2D = {(x, 0)|0.612< x< 0.694}. Inset: Estimates of the

expected value (bar) and standard deviation (line) of the number of molecules captures from simulations in the

approximate synaptic cleft in two- and three-dimensions. The parameters of O3D can be found in Table 2. Using these

values, the parameters for O2D were calculated using Algorithm 1, and were found to be L2D
x ¼ 0:196 mm and

L2D
y ¼ 0:0405. The receptors in O2D were uniformly distributed along {(x, 0)|0< x< 0.196} and had radius 0.00034

μm.

https://doi.org/10.1371/journal.pcbi.1006015.g006
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Algorithm 1

(1) Choose Lx such that l
2D
1
¼ l

3D
1
.

(2) Choose the size of the receptors in the 2D such that they make up

the same proportion of boundary i:e: j@O2D
c j

j@O2Dj
¼
j@O3D

c j

j@O3D j

� �
.

(3) Choose Ly such that h2D � h3D.

We first apply this algorithm to adjust parameters for O2D used in Fig 6 to match the results

from O3D. As Fig 6 (gray line) illustrates, the algorithm produces parameter values that result

in very similar upper bounds for both domains. Likewise, the simulations from the two

domains are almost indistinguishable.

We now extend this concept to approximating a three-dimensional neuronal synapse, with

the parameters found in Table 2. Specifically, we consider two synapses, one containing only

the slow recharging NMDA receptors (m = 20), and another with the fast recharging AMPA

receptors (m = 200). Using Algorithm 1, we chose parameters for O2D so that O2D and O3D

yielded similar values for E½N� (Fig 6 (Inset); compare bars in the left and right sides). This fig-

ure also illustrates, similar to our earlier results, that the logarithmic growth predicted by our

upper bound is relevant for realistic scenarios. Specifically, while a vesicle releases approxi-

mately 103 glutamate particles [8], the receptors see and bind significantly fewer, with a very

pronounced difference between AMPA and NMDA receptors (red and blue bars).

Discussion

In this paper, we considered a setup in which particles move randomly in an environment con-

taining so-called escape regions and capture regions (traps). We have shown that if the capture

regions cannot capture particles continuously but rather must recharge between captures, then

the expected number of captured particles is drastically lowered compared to the case of

instant recharge.

We showed this result for the case of diffusing particles, but it holds under more general

assumptions on particle motion. For example, suppose each particle moves in O according to a

Markov process with generator given by a differential operator L (this includes, for instance,

the case that each particle diffuses with some deterministic drift). Then, if we can solve the

PDE,

@

@t
g ¼ Lg; x 2 O; t > 0;

by separation of variables (as we did in Lemma 2 for the case of pure diffusion, L ¼ DD), then

we can proceed exactly as in Theorem 2. More generally, we see from Theorem 1 that the loga-

rithmic bound on E½N� holds as long as the survival probability of each particle decays expo-

nentially at large time.

As another generalization, we could suppose that each particles is removed from the system

at a constant, spatially homogeneous rate λdec > 0. That is, suppose that in addition to (or

instead of) escaping the domain, each particle has an exponentially distributed lifetime (so-

called mortal walkers [18]). For instance, this would apply to second messenger proteins such

as IP3 [19]. In this case, our results are unchanged once we replace our non-dimensional rela-

tive recharge time T = τr/τe by T = τr/τe + τr λdec.

In closing, we comment on how our results relate to previous work. The so-called narrow

escape problem is to calculate the mean first passage time of a diffusing particle to a small tar-

get on the reflecting boundary of a bounded domain. Though this problem dates back to

Helmholtz [20] and Lord Rayleigh [21], its relevance to biological cell function has recently

sparked a resurgence of interest (for example, see [22–25] and the review [26]).
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Mathematically, the problem amounts to a singular perturbation in a partial differential equa-

tion, and one seeks to characterize how the mean first passage time diverges as the size of the

small target vanishes, and how this depends on the geometry and dimension of the spatial

domain. In contrast to this previous work, our results do not require the capture or escape

regions to be small. In addition, the logarithmic scaling we found for the expected number of

captures is independent of the spatial dimension and geometry, and is therefore a fundamental

effect of recharging boundaries.

Our study bears some resemblance to other studies of diffusion with stochastically switch-

ing boundary conditions. Such processes arose in the chemistry literature over thirty years ago

[27–30] and have been studied more recently by mathematicians [31–36]. In some of these

previous studies, each diffusing particle switches conformational state independently and can

only be captured at the boundary in a certain conformational state. In other studies, the

boundary changes state, and particles can only be captured when the boundary is in a certain

state. These two scenarios are equivalent for a single particle. For multiple particles, the scenar-

ios differ because the particles are independent in the former case, whereas statistical correla-

tions arise in the latter case since all the particles diffuse in the same random environment.

However, in either case the state of the boundary is unaffected by the particles. In contrast, the

boundary conditions in the present work depend on the paths of particles. Mathematically,

this significantly complicates the analysis because the particles can affect each other through

the boundary conditions.

We also note that the effect of recharge time has been studied recently in the context of

phosphorylation reactions [37–43]. Similar in spirit to our work, the kinase and phosphatase

enzymes in these studies are inactive for a transitory time following each substrate modifica-

tion. However, these previous works study the dynamics of a biochemical reaction network,

which is very different from the escape problem considered here.

Supporting information

S1 Text. Additional mathematical details. This file contains the proof to Lemma 2, justifica-

tion for calling τe≔ (Dλ1)−1 the escape time, and additional details about the Lambert W

Function.
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