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The volume of published biomedical literature on disease related knowledge is expanding rapidly. Traditional information retrieval
(IR) techniques, when applied to large databases such as PubMed, often return large, unmanageable lists of citations that do not
fulfill the searcher’s information needs. In this paper, we present an approach to automatically construct disease related knowledge
summarization frombiomedical literature. In this approach, firstlyKullback-LeiblerDivergence combinedwithmutual information
metric is used to extract disease salient information. Then deep search based on depth first search (DFS) is applied to find hidden
(indirect) relations between biomedical entities. Finally random walk algorithm is exploited to filter out the weak relations. The
experimental results show that our approach achieves a precision of 60% and a recall of 61% on salient information extraction for
Carcinoma of bladder and outperforms the method of Combo.

1. Introduction

Biomedical literature is growing rapidly in recent decades. Up
till now, the number of papers indexed in PubMed is over 23
million.The continued growth of biomedical literature brings
about great challenges to traditional information retrieval
(IR) techniques. Standard search techniques, when applied to
large databases such as PubMed, often return large, unman-
ageable lists of citations, which makes it difficult for clinical
experts to find the salient information they need. Therefore,
effective biomedical literature retrieval, especially finding
salient information related to disease from the biomedical
literature, is greatly helpful in terms of clinical trials and
patient treatment.

Abstraction summarization offers an attractive alter-
native for managing citations resulting from MEDLINE
searches. Many biomedical text summarization methods
using information retrieval (IR) techniques together with
domain-specific resources have been proposed to extract
relevant sentences from documents [1, 2]. Luhn developed a
text summarization system which selects relevant sentences
and generates text abstracts from biomedical literature based
on term frequencies [1]. Reeve et al. used the frequency of
domain concepts to identify important parts of a paper and

then use the resulting concept chains to extract candidate
sentences [2]. However, these methods for similarity cal-
culation are only at a word or concept level rather than a
semantic level, since theymeasure the similaritymerely based
on the commonwords or concepts in the query and sentence,
which is the major difficulty that limits the performance
improvement for text summarization system.

Recently, more IE-based methods based on the Semantic
MEDLINE have been proposed [3–10]. Compared with
the classical IR-based methods, these methods can extract
semantic knowledge from biomedical texts in a higher level.
Fiszman et al. applied the technique of information extraction
(IE) to extract the entities and relations that are most relevant
to a given biological concept from MEDLINE records and
generate a “semantic level” summary for each concept [3].
More biomedical researches of IE became popular based on
the Semantic MEDLINE. Compared to the classical IR-based
methods, these methods can extract semantic knowledge
from biomedical texts in a higher level. Shang et al. presented
amethod for generating text summary for a given biomedical
concept frommultiple documents based on semantic relation
extraction using IR and IE [4]. Kilicoglu et al. developed
a web application, called Semantic MEDLINE, which inte-
grates PubMed with natural language processing, automatic
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Figure 1: The framework of our method.

summarization, visualization, and interconnections among
multiple sources of relevant biomedical information [5].
Several years later, they presented SemMedDB, a repository
of semantic predications (subject-predicate-object triples)
extracted from the entire set of PubMed citations [6]. Lately,
many researches have beenmade on this biomedical semantic
database. Workman and Hurdle presented the Combo algo-
rithm to extract the genetic predicates for a particular disease,
which outperformed a conventional summarization schema
based on Semantic MEDLINE summarization in a genetic
database curation [7]. Later, they proposed a novel dynamic
summarization method in identifying decision support data
[8]. Hristovski et al. proposed an innovative methodology
for biomedical QA, implemented as a search in the semantic
database [9].

However, these methods can only extract the direct
relation between biomedical entities and, therefore, cannot
obtain deep comprehensive information related to the seed
topic. To solve the problem, we present a depth first search
(DFS) based knowledge summarization approach, which can
find not only direct relations between biomedical entities
but also their hidden (indirect) relations. In this approach,
a novel algorithm of salient information summarization,
KM, is used to obtain the direct relations between disease
and genes. Then DFS is applied to extract indirect relations
between disease and other related entities. At last, the weak
relations are filtered out with the randomwalk algorithm.The
approach is applied to automatically construct the knowledge
summarization of the disease Carcinoma of bladder from
biomedical literature and the experimental results verify its
effectiveness.

2. Method

Ourmethod consists of fourmajor steps as shown in Figure 1.
(1) Semantic relations are extracted from the sentence by

semantic knowledge representation tool SemRep [11, 12]. (2)
The relations most relevant to the seed topic are selected
with the summarization algorithmbased onKullback-Leibler
Divergence (KLD) [13] and Mutual Information [14, 15]
(KM). (3) The hidden relations are extracted using deep
search based on DFS from the directed unweighted graph
of biomedical entities. (4)The weak relations are filtered out
with the random walk algorithm and the final results are
visualized.

2.1. Dataset. In our experiments, the disease name Carci-
noma of bladder was chosen as the seed topic to present our
work in salient information extraction.Thedataset of the seed
topic was downloaded from PubMed by the following query:

(“2003/01/01” [Publication Date]: “2013/07/31” [Pub-
lication Date]) AND (Urinary Bladder Neoplasms/
genetics [majr] AND Urinary Bladder Neoplasms/
etiology [majr]) AND English [la] AND humans
[mh].

The search query focuses on the genetic etiology (the
point-of-view) of human bladder cancer (the seed topic) with
a more than ten years span.

2.2. Corpus Preprocessing. The downloaded corpus is pro-
cessed to the semantic predications provided by SemRep, a
natural language processing tool based on the rule to identify
relationship in theMEDLINE documents. SemRep integrates
MetaMap standardized conceptual entity and connects the
concept of different entities through predicate relations. In
addition, semantic type of SemRep term is defined for each
entity, making it convenient for feature selection. The output
of SemRep extraction is based on UMLS rules. The original
output contains many terms, but we mainly use the name of
the entity, semantic type, and predicate relations.
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For sentence “miRNA expression arrays and individual
qPCR were used to identify and confirm miRNAs that were
downregulated in malignant urothelial cells (RT4, 5637 and
J82) when compared to primary, non-malignant urothelial
cells (HUEPC)”, the relation extracted by SemRep is as
follows:

SE|23867826||ab|4|relation|3|1|C1101610|MicroRNAs|
bacs,nnon|bacs|||miRNAs||||1000|972|978|VERB|
DISRUPTS||995|1008|5|1|C0227599|Transitional epi-
thelial cell of urinary bladder|cell|cell|||urothelial
cells||||890|1022|1038.

Our study focuses on the triple terms as follows:

MicroRNAs|bacs|DISRUPTS|Transitional epithelial
cell of urinary bladder|cell.

The relation structure is (concept 1 | semantic type, pred-
icate, concept 2 | semantic type). Concept 1 and concept 2 are
the two biological entities that can be found in UMLS (Uni-
fiedMedical Language System)Metathesaurus. Each concept
consists of the standardization of the concept representation,
concept unique identifier, and semantic type. Predicate is an
indicator of the relation type inUMLS SemanticNetwork and
54 predicates are defined in the semantic network of UMLS
(e.g., DISRUPTS is one of them).

2.3. Salient Information Summarization. In this task, a sema-
ntic predication such as “TP53 gene | ASSOCIATED WITH
| Carcinoma of bladder” is desirable, because it conveys the
salient information to the work of annotating gene and dis-
ease process information in a database like OMIM or GHR.
The semantic predicate “DELETION | COEXISTS WITH
| Carcinoma of bladder” is not desirable, because it offers
no information addressing pathologic changes in disease
development for biomedical researchers [7].

In this study, we present a new summarization algorithm
that identifies the salient SemRep output. The algorithm
is evaluated by comparing its performance with that of
Combo [7], which is used in a genetic database curation
task. Combo uses three metrics, namely, KLD [13], 𝑅 log𝐹
[16], and PredScal [7]. KLD scores express a proportional
relationship among predicates across the entire dataset, while
𝑅 log𝐹 values express a binding between a single predicate
and its associated semantic types. Then a scaling function
PredScal is used to scale𝑅 log𝐹 values according to the spatial
proportions of predicates in a given dataset. In our method,
two metrics, KLD and MI, are combined to extract informa-
tion. KLD calculates the significance only for one entity in
two different datasets, and MI measures the reciprocity for
a pair of entities. Our method highlights the importance of
the predication by combining KLD and MI. Since these two
metrics are both entropy related, the combination of them
canhopefully improve the performance of the salient SemRep
extraction, which is also verified by our experimental results.

2.3.1. Kullback-Leibler Divergence. Kullback-Leibler Diver-
gence (KLD) is known as the relative entropy in informa-
tion theory to measure the relative distance between two

probability distributions. It is typically used in measuring the
similarity of the two models. If two models are completely
the same, the KLD score is 0. In the field of IR, a special
feature distributing in the two data sets can be seen as two
different distribution models. We select part of data set 𝑃
from a large data set 𝑄. In the two datasets, 𝑃 and 𝑄, the
importance of a feature in the small data set can be measured
by the value of KLD. A large value of KLD indicates that there
is a large difference in the characteristics of small data set and
the distribution of large data sets.Therefore, we can conclude
that this feature is a salient role to the data set 𝑃. Consider

𝐷 (𝑃 ‖ 𝑄) = ∑𝑃 (𝑥) log2 (
𝑃 (𝑥)

𝑄 (𝑥)
) , (1)

where 𝑥 represents the relative frequency of each unique
predicate in each distribution. In our study, we choose the
distribution of SemRep predicates resulting from a PubMed
query that expresses the seed topic, as distribution 𝑃, with a
large dataset of predicates of all SemRep predicates between
January 1, 1999, and July 31, 2013, as distribution 𝑄. The
individual KLD calculation (before summing) indicates the
prevalence of each predicate in distribution𝑃. Semantic pred-
ications in both distributions are limited to those containing
a certain UMLS Metathesaurus seed topic.

2.3.2. Mutual Information. Mutual information (MI) is a
common analysis method of calculating linguistic model,
measuring reciprocity between the two objects [16]. In
processing discrimination issues, MI is used to measure the
object characteristics for one specific subject. Since MI does
not need to make any assumptions on the feature of the
words and the relationship between words categories, it is
very suitable for text classification with prospective job of
characteristics and categories.

In the dataset, certain semantic types and relation pred-
icates are associated with each other in the statistic char-
acteristic. In a particular search process for a seed topic
entity, we can obtain many relation predicates related to
the seed topic and semantic types related to a relation
predicate. For example, since our study aims to obtain the
genes related to the selected disease topic, gngm is the most
related semantic type. If an algorithm assigns a high score
to semantic type gngm, it is deemed to be effective in this
step of the information extraction. Since MI can measure the
reciprocity between semantic types and relation predicates,
it is applied in our study to filter out the semantic types and
relation predicates. MI is defined as follows:

𝐼 (𝑥; 𝑦) = ∑
𝑥,𝑦

𝑝 (𝑥, 𝑦) log
𝑝 (𝑥, 𝑦)

𝑝 (𝑥) 𝑝 (𝑦)
, (2)

where 𝑥 represents the semantic type of the entity and 𝑦
represents the relation predicate. For every 𝑥 and 𝑦, we use
MI to calculate potential relationships between them. We
figure out the semantic type probability 𝑝(𝑥) and the relation
predicate probability 𝑝(𝑦) from the data set, using them in
the mutual information process.
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2.3.3. Semantic Association Generation. KLD is effective in
the relation predicate extraction, and MI can extract the
reciprocity between semantic type and predicate. Therefore,
a novel algorithm combining KLD and MI, called KM, is
brought up to extract salient relations among kinds of entities:

KM (𝑒1, 𝑒2) = KLD ∗MI, (3)

where 𝑒
1
represents the seed disease topic and 𝑒

2
represents

the entity related to 𝑒
1
. KLD represents the score of relation

predicate between 𝑒
1
and 𝑒

2
. MI represents the score of

relation predicate and the semantic type of 𝑒
2
.

2.4. Hidden Relation Extraction

2.4.1. Deep Graph Search. As discussed in previous section,
we use the KM algorithm to rank the pairs of semantic
types and relation predicates and retain the most important
ordered pairs for the seed topic. Then the direct relations
between diseases and genes can be obtained from the selected
relation predicates and semantic types. However, there could
be many hidden relations among the biomedical entities
(such as drugs, proteins, genes, etc.) in the biomedical texts.
These hidden relations are constructed by searching the
direct relation between medical entities extracted by the
KM method. The extraction of these hidden relations can
significantly promote the development of new drugs and
provide new ideas in medical diagnosis.

Then how can one discover the hidden relations between
two entities? Wilkowski et al. presented a methodology
to decompose ABC model to AnC model using semantic
representations and graph algorithms [17]. Inspired by their
AnCmodel, we split AnC toA𝑟

1
B𝑟
2
C⋅ ⋅ ⋅AnCwith deep graph

search accomplished by the DFS algorithm of graph theory
[18], where 𝑟 is relation predicate. The details are introduced
as follows.

Firstly, a direct unweighted graph consisting of nodes
and arcs is constructed. A node in the graph represents a
biomedical entity and an arc is a directed edge from one
entity to another. Since many kinds of relation predicates
(such as ASSOCIATED WITH, PART OF, and ISA) exist
between the entities, they are also regarded as nodes. As
a consequence, there would be many paths between two
biomedical entities. However, some high frequency general
entities such as “GENE” and “PATIENTS” with large degree
usually have high transition probability and similarity with
other nodes and appear among the top 𝑁 ranking nodes.
Therefore, we introduce the inverse document frequency,
IDF
𝑖
, to filter out these general entities in our original corpus

before DFS is executed [19]. Consider

IDF
𝑖
= log( 𝐷

𝐷
𝑖

) , (4)

where𝐷 is the number of different documents in the corpus.
𝐷
𝑖
is the document frequency of entity 𝑖. The nodes are

ranked by the weight of inverse document frequency.
Secondly, all the paths between any ordered pairs are

found with the method of DFS. However, since there are
nearly 3,000 nodes and 26,000 arcs in the graph, the time

complexity for deep search is too high to afford. There-
fore, we restrict the path lengths to depth 4 and depth
6 since the relation predicates are also nodes; the lengths
of path from one entity to another can only be 2, 4, 6,
8, . . .. That is to say, the pair of predicate and entity is
two different nodes in the graph, and the graph depth
increases by 2 for each step forward. For example, in the
predicate Carcinoma of bladder→AFFECTS→ Smoker→
PREDISPOSES→Chromosomal Instability, there are four
nodes followed by the starting node Carcinoma of bladder for
depth 4.

2.4.2. Weak Relation Filtering. Numerous paths from one
entity to others are extracted with the DFSmethod. However,
not all the paths are salient for each entity.Therefore, we need
to filter out the entities which areweakly related to the current
entity. Bordino et al. performed a lazy random walk with
restart to retrieve entity recommendations from the networks
[20]. Compared to standardweb search engines, theirmethod
provides novel results from the datasets. Inspired by their
work, we apply the random walk algorithm [21, 22] to select
the salient relations among all kinds of entities.

In our method, the random walk algorithm shown in
Algorithm 1 is used to rank the relations according to the
random access probability. This process retains the paths
whose destination node is one of the top 𝑁 entities which
have higher transition probability from the current entity.

Algorithm 1 (random walk algorithm).

Input

Directed weighted graph 𝐺 = (𝑉, 𝐸);
Starting node 𝑛;
Restart probability 𝛼.

Output

Stationary vector for a RandomWalk starting at 𝑛.

Procedures

(1) Let 𝑠 be the restart vector with all its entries initialized
to 0 except a 1 for the entry denoted by 𝑛;

(2) Let𝑀 be the row normalized adjacency (transition)
matrix defined by 𝐺;

(3) Initialize 𝑥 := 𝑠;
(4) While (𝑥 has not converged)

𝑥 := 𝛼𝑠 + (1−𝛼)𝑀𝑇𝑥; (5)

(5) Output 𝑥.

First of all, we define the weights of arcs as the frequency
of directed cooccurrence of two entities. For two entities, 𝑗
and 𝑠, 𝐶

𝑗𝑠
denotes the directed cooccurrence frequency of 𝑗

to 𝑠 in the corpus of all directed relations. Considering that
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the random walk is an iterative algorithm which has many
steps before convergence (from step 0 to step 𝑡), the weight
of arc between 𝑗 and 𝑠 from step 𝑡 to step 𝑡 + 1 is defined as
𝑃
𝑡+1|𝑡

(𝑠 | 𝑗). Consider

𝑃
𝑡+1|𝑡 (𝑠 | 𝑗) =

{{

{{

{

(1 − 𝛼)
𝜆
𝑗𝑠
𝐶
𝑗𝑠

∑
𝑖
𝜆
𝑗𝑖
𝐶
𝑗𝑖

∀𝑠 ̸= 𝑗

𝛼 𝑠 = 𝑗,

(6)

where 𝐶
𝑗𝑖
is the cooccurrence degree from node 𝑗 to 𝑖. Let

the self-transition probability be 𝛼 (also called the restart
probability). It allows random walk to stay in place and
reinforces the importance of the starting point by slowing
diffusion to other nodes. 𝜆

𝑗𝑖
is the KM coefficient of the

relation category corresponding to the arc from 𝑗 to 𝑖.
Then, we calculate the one-step transition probabilities

as a matrix 𝑀 whose 𝑗th row and 𝑠th column element is
𝑃
𝑡+1|𝑡(𝑠 | 𝑗). The random walk algorithm could be described

as a process like this: we compute the transition probability
from node 𝑗 to 𝑠 in 𝑡 steps denoted by 𝑃

𝑡|0
(𝑠 | 𝑗) and equal to

[𝑀𝑇]
𝑗𝑠
. Then the probabilities of all paths between the two

nodes should be accumulated. So, if there are many paths
between two nodes, the transition probability will be high.
The parameter 𝛼 in our experiment is set to 0.7, which is
an empirical value [22]. As convergence criterion, we check
whether the weight difference between two iterative steps
is less than the threshold (10−6), or we can just stop the
algorithm after a specific number of iterations (e.g., 50). The
optimal parameters are determined through experiments.

Finally, we obtain two matrixes: the transition matrix
𝑅
𝑛×𝑛

which records the transition probability between each
node pair and the similarity matrix 𝑆

𝑛×𝑛
which records the

similarity between each node pair.

3. Experimental Results and Discussion

3.1. KM Performance Analysis

3.1.1. Entity Predication Extraction. In our experiments, 1,293
Medline citations focused on genetic etiology of bladder
cancer are used. SemRep processes these citations and returns
8,241 semantic predications. Then KM algorithm is applied
in disease-gene predication. More relations (among genes,
proteins, diseases, symptoms, etc.) are extracted by deep
graph search.

Similar to the Combomethod, our salient summarization
method is applied in the disease-gene predication. With
Carcinoma of bladder as the seed topic, KLDmethod extracts
the relation predicates in the data set. Relation predicates
with KLD scores larger than 0.01 (which is determined
through experiments) are displayed in Table 1. It can be seen
that ASSOCIATED WITH is the most salient relation about
Carcinoma of bladder. MI here is used as a measure of the
cooccurrence information between the relation predicates
and the entity semantic types. MI scores semantic types
related to the relation predicates. The entity semantic types
and the relation predicate salient in the data set are chosen
from the MI results.

Table 1: Kullback-Leibler Divergence scores of relations between
Carcinoma of bladder and genes.

Relation KLD
ASSOCIATED WITH 0.264763
PART OF 0.196826
PREDISPOSES 0.056031
COEXISTS WITH 0.047783
AFFECTS 0.017736

Table 2: Full name for semantic types in disease-gene predication.

Semantic type Full name
aapp Amino acid, peptide, or protein
bacs Biologically active substance
celc Cell component
cell Cell
comd Cell or molecular dysfunction
gngm Gene or genome
neop Neoplastic process
tisu Tissue

Table 3: KM scores of predicates and semantic types between
Carcinoma of bladder and genes.

Semantic type Relation KM
gngm ASSOCIATED WITH 0.036137
tisu PART OF 0.007876
aapp ASSOCIATED WITH 0.007778
bacs ASSOCIATED WITH 0.004029
comd COEXISTS WITH 0.001836

All novel semantic predications including KLD top rela-
tions and the MI ranking results are extracted as salient out-
put. We identify the salient output using the most prominent
predicates and semantic types in KLD and MI computation
and then extract all genetic entities serving as subject or
object arguments in the salient output.

The results of KM are shown in Table 3. The highest-
ranking semantic type gngm (the abbreviation of Gene or
Genome; the full names for the semantic types are shown in
Table 2) is the semantic type for gene which we need. That
is to say, ASSOCIATED WITH is the most relevant relation
predicate between the diseases and genes. To compare the
performance of KM algorithm with that of Combo, we
reproduce the Combo algorithm as the control test in our ten
years’ corpus. The result of Combo is shown in Table 4. The
ranking of gngm (first) in the KM results is superior to that
(second) in Combo results. In addition, though the scores of
the two algorithms are with different standards, it can be seen
that gngm ASSOCIATED WITH ranks first and has a KM
score of 0.036137which ismuch higher than the others.While
in Table 4, gngm ASSOCIATED WITH ranks the second
and its score is almost the same with the third ranking
celc PART OF. That shows KM has a better performance in
extracting the entity semantic types and relation predicates
than Combo.
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Table 4: Combo scores of predicates and semantic types between
Carcinoma of bladder and genes.

Semantic type Relation Combo
tisu PART OF 0.355117
gngm ASSOCIATED WITH 0.212097
celc PART OF 0.208429
aapp ASSOCIATED WITH 0.119630
cell PART OF 0.098452

3.1.2. Performance Evaluation. To evaluate the performance
of KM method, the performance of the topic-related genetic
entity extraction is explored. Similar to the method used in
[7], the extracted genetic entity names are normalized to
the associated gene names in Entrez Gene and compared to
a reference standard of genes implicated in bladder cancer
development in the OMIM and GHR records.

To compare with Combo, the same metrics, namely,
recall, precision, and 𝐹-score (defined as 𝐹 = (2𝑃𝑅)/(𝑃 +

𝑅) where 𝑃 denotes precision and 𝑅 recall) used in [7],
are employed to evaluate KM’s performance. Recalls are
calculated by comparing outputs to the reference standard
of genes noted in relevant GHR and OMIM records. The
reference standard provides a list of genes whose values have
already been confirmed within the task of secondary genetic
database curation, because GHR and OMIM curators have
annotated their potential roles in bladder cancer develop-
ment. In addition,𝑅@𝑁, the recall in the top𝑁 results, is used
to evaluate the recall performance in only the topmost results
returned by different methods. The results of the reference
standard analysis are listed in Table 5. KM and Combo
methods achieve the same recall (61%) since they are both
based on semantic predications generated by the SemRep,
while these predications only include the eight genes of the
total thirteen genes (61%). However, the genes summarized
by KMhave better rankings than those of Combo as shown in
Figure 2.Themean average precision (MAP) of KM (39.46%)
is higher than that of Combo (37.52%).

The metric precision indicates the ratio of the truly
relevant genes about Carcinoma of bladder which are found
by the method. To assess validity (true positive or false
positive status) for the additional genes, Genes into Reference
(GeneRIF) notations in relevant NCBI Entrez Gene records
are reviewed for disease process implication [7]. If the
relevant Entrez Gene record does not contain applicable
GeneRIFs but otherwise notes bladder cancer association in
NCBI PubMed, the gene is assigned true positive status.
Precision is evaluated by taking the previously established
true positive findings into account with the additional genes.
Similar to 𝑅@𝑁, the precision in the top 𝑁 results, 𝑃@𝑁
is used to evaluate the precision performance in only the
topmost results returned by different methods.

KM returned 84 results, amongwhich 50 genes are related
to Carcinoma of bladder in PubMed and regarded as true
positive (TP). The precision of KM is 60%. In 95 results
returned by Combo, 49 genes are true positive (TP), and the
precision of Combo is 53%.TheKMmethod achieves a better
precision than the Combo method. In addition, as shown in

Table 5: Ranking and recall for genes confirmed with reference
standard for IDF results.

Gene KM
ranking

KM
analysis

Combo
ranking

Combo
analysis

TP53 1 TP 1 TP
FGFR3 2 TP 2 TP
HRAS 6 TP 7 TP
TSC1 23 TP 26 TP
MDM2 29 TP 32 TP
RB1 58 TP 70 TP
ERCC2 70 TP 82 TP
NAT2 75 TP 87 TP
RAG1 NULL FN NULL FN
MTCYB NULL FN NULL FN
ATM NULL FN NULL FN
TGFB1 NULL FN NULL FN
ERBB3 NULL FN NULL FN
MAP 39.46% 37.52%

0

0.2

0.4

0.6

0.8

1

1 9 17 25 33 41 49 57 65 73 81

KM
Combo

R
@
N

N

R@N of KM and Combo

Figure 2: 𝑅@𝑁 of KM and Combo. 𝑅@𝑁 is the recall of top 𝑁
samples in the ranking;𝑁 is the number of samples.

Figure 3, the 𝑃@𝑁 scores of KM are much higher than those
of Combo. All these show that the precision performance of
KM is better than that of Combo.

In addition, we calculate the𝐹-scores, the harmonicmean
of precision and recall, to assess the overall performance.The
KMmethod achieves an 𝐹-score of 61%, which is better than
that of the Combo method (57%).

To further assess the performance of the KM algorithm,
we applied KM and Combo in summarizing Parkinson
Disease SemRep data. The PubMed query is as follows:

(“2003/01/01” [Publication Date]: “2013/07/31” [Pub-
lication Date]) AND (Parkinson Disease/genetics
[majr] AND Parkinson Disease/etiology [majr])
AND English [la] AND humans [mh].

The query returned 2,159 abstracts focusing on genetic
etiology of Parkinson Disease.Then SemRep processed these
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Table 6: Ranking and MAP for genes related to Parkinson Disease
confirmed with reference standard.

Gene KM
ranking

KM
analysis

Combo
ranking

Combo
analysis

LRRK2 1 TP 3 TP
PARK7 2 TP 7 TP
PINK1 5 TP 11 TP
SNCA 8 TP 14 TP
GIGYF2 9 TP 16 TP
NR4A2 11 TP 28 TP
VPS35 12 TP 24 TP
PARK2 13 TP 25 TP
ATP13A2 20 TP 40 TP
GBA 24 TP 39 TP
UCHL1 NULL FN NULL FN
PRKAG2 NULL FN NULL FN
SNCB NULL FN NULL FN
PLA2G6 NULL FN NULL FN
PDE8B NULL FN NULL FN
NDUFAF3 NULL FN NULL FN
FOXRED1 NULL FN NULL FN
NDUFA11 NULL FN NULL FN
NDUFA1 NULL FN NULL FN
NDUFAF2 NULL FN NULL FN
NDUFAF4 NULL FN NULL FN
NDUFAF5 NULL FN NULL FN
NDUFAF6 NULL FN NULL FN
NDUFS1 NULL FN NULL FN
NDUFS2 NULL FN NULL FN
NDUFS4 NULL FN NULL FN
NUBPL NULL FN NULL FN
SLC6A3 NULL FN NULL FN
DRD4 NULL FN NULL FN
FGF20 NULL FN NULL FN
SNCAIP NULL FN NULL FN
NDUFV2 NULL FN NULL FN
STX1B NULL FN NULL FN
NDUFV1 NULL FN NULL FN
HP NULL FN NULL FN
PARK NULL FN NULL FN
MAP 62.66% 27.86%

abstracts, resulting in 9,171 semantic predications. Recalls are
calculated by reference to the standard of genes noted in
relevantGHRandOMIMrecords.The results of the reference
standard analysis are listed in Table 6. As with the results of
bladder cancer, although the recalls of KM and Combo are
both 27%, the genes summarized by KMhave better rankings
than those of Combo. In addition, the MAP of KM (62.66%)
is also higher than that of Combo (27.86%).

0
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0.6

0.8

1

1.2

1 9 17 25 33 41 49 57 65 73 81

KM
Combo

N

P
@
N

P@N of KM and Combo

Figure 3: 𝑃@𝑁 of KM and Combo. 𝑃@𝑁 is the precision of top𝑁
samples in the ranking.𝑁 is the number of samples.

The precision is the metric of the truly relevant genes
about Parkinson Disease. To assess validity for the additional
genes, wemarked the top 100 results returned by twomethods
referring to PubMed. There are 80 genes related to Parkinson
Disease returned by KM, while only 53 genes are returned by
Combo. That is to say, KM achieves a higher precision (80%)
than Combo does (53%) in the top 100 Parkinson Disease
results.

We also calculate the𝐹-scores to assess the overall perfor-
mance on Parkinson Disease. The 𝐹-score of KM (40.37%) is
better than that of the Combo method (35.77%).

3.2. Hidden Relation Extraction

3.2.1. Deep Graph Search Analysis. The KM method com-
pletes the extraction of entity semantic types and rela-
tion predicates. Then a deep search method is applied to
automatically decompose the KM results using semantic
representations and graph algorithms. Deep extraction helps
to understand interactions between entities. Our method
executes deep search for the new discovery based on entity
relationship diagram.

In our experiments, depth 4 and 6 are selected as the
stopping conditions for the DFS algorithm, respectively. At
depth 4, 1,896 semantic predications are retained after being
filtered by IDF scores, and it costs a maximum running time
of three minutes to generate the reachable relation. At depth
6, 92,849 semantic predications are retained, while the maxi-
mum running time increases to 113 minutes. Empirically, our
experiments suggest that many associations are returned by
the algorithm, while few associations will be returned beyond
the maximum depth of 6. Hence, we also report here on
associations generated to the depth 6.

3.2.2. Weak Relation Filtering. In our study, the randomwalk
algorithm is used to calculate the similarity of biomedical
entities in the direct unweighted graph. Then the weak
relations are filtered out by the similarity threshold of random
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Figure 4: Disease information extracted by random walk with depth 4.

walk, which ensures that the hidden relations or paths are
more available. Transfer probability (set to 0.7 as discussed
in Section 2.4) is a restart probability in the random walk
process. According to the transfer probability scores, the
important relations are selected by the ranking. We analyze
the results and obtain a lot of important entities that did not
appear in the KM extraction results, including genes, drugs,
proteins, chemical elements, and symptoms.

Our scoring method ranks the entities based on the
stationary distribution of the random walk described above.
We obtain 240 semantic predications for depth 4 and 4,679
semantic predications for depth 6 by the random walk
filtering. Top 10 predications of depth 4 are shown in Box 1.
For example, we analyze the returned relations Carcinoma of
bladder→AFFECTS→ Smoker→ PREDISPOSES→Chrom-
osomal Instability and Carcinoma of bladder→AFFECTS→
Dysplasia→COEXISTS WITH→HRAS gene in Box 1 using
PubMed as the reference. There are 29 records returned
about Carcinoma of bladder and Smoker and 415 records
returned for Dysplasia and Carcinoma of bladder.

Box 1 is a part of the relations returned by random
walk with depth 4. The whole relations network is shown
in Figure 4, which illustrates the information of the seed
topic Carcinoma of bladder, which displays genes, drugs,

proteins, chemical elements, or symptoms in different colors.
The degree of the relation strength is shown by thick or thin
edges.

Similarly, top 10 predications of depth 6 are listed
in Box 2. Among others, the returned relation Carcinoma
of bladder→COEXISTS WITH→CDKN2A gene→ ISA→
Retinoids→ STIMULATES→TP53 gene shows that retinoids
are related to Carcinoma of bladder by stimulating TP53 gene.
The relation can also be verified with reference to PubMed.
The whole relations returned by random walk with depth 6
are shown in Figure 5. It illustrates more sufficient disease
information among all kinds of entities.

To highlight the performance of the AnC model based
on KM, the DFS process generated by the cooccurrence
pairs from SemRep was carried out. Without the KM sum-
marization, we take Parkinson Disease as the start node
and the entities most related to Parkinson Disease by the
cooccurrence as the end nodes of the DFS. The DFS outputs
are scored by random walk. The top 10 results of depth 4
and 6 are shown in Boxes 3 and 4, respectively. We can
see that some general terms, for example, Patients, Neo-
plasms, Malignant Neoplasms, Carcinoma, and Transitional
Cell, appear frequently in the results because thesewords have
high frequency in the cooccurrence with Parkinson Disease;



BioMed Research International 9

Carcinoma of bladder→AFFECTS→ Smoker→PREDISPOSES→Chromosomal Instability
Carcinoma of bladder→COEXISTS WITH→ Smoker→PREDISPOSES→Chromosomal Instability
Carcinoma of bladder→COEXISTS WITH→TP53 gene→ INHIBITS→PROTEIN KINASE
Carcinoma of bladder→COEXISTS WITH→TP53 gene→ compared with→CA9 gene
Carcinoma of bladder→AFFECTS→Dysplasia→COEXISTS WITH→HRAS gene
Carcinoma of bladder→PROCESS OF→Primary Neoplasm→COEXISTS WITH→AKT1 gene
Carcinoma of bladder→PART OF→Primary Neoplasm→COEXISTS WITH→AKT1 gene
Carcinoma of bladder→COEXISTS WITH→RB1 gene→ASSOCIATED WITH→Epidermal Growth Factor
Receptor
Carcinoma of bladder→COEXISTS WITH→RB1 gene→ASSOCIATED WITH→Chromosomal Instability
Carcinoma of bladder→PART OF→Chromosomes, Human, Pair 9→ LOCATION OF→BRCA1 gene

Box 1: Top 10 predications scored by random walk with depth 4.
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Figure 5: Disease information extracted by random walk with depth 6.

but these relations cannot provide useful information in
disease analysis and, therefore, are of little value. To sum up,
comparing the results of KM based and cooccurrence based
AnC models, the performance of former is much better than
that of the latter.

4. Conclusions and Future Work

In this paper, we present an approach to automatically
construct disease related knowledge summarization from
biomedical literature, which can find not only direct relations
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Carcinoma of bladder→COEXISTS WITH→BAX gene→ASSOCIATED WITH→Epidermal Growth Factor Receptor→
INTERACTS WITH→TP53 gene
Carcinoma of bladder→COEXISTS WITH→BAX gene →ASSOCIATED WITH→PTEN gene→ INHIBITS→TP53 gene
Carcinoma of bladder→COEXISTS WITH→CDKN2A gene → ISA→Plants→ LOCATION OF→TP53 gene
Carcinoma of bladder→COEXISTS WITH→CDKN2A gene→ ISA→Epidermal Growth Factor Receptor→
INTERACTS WITH→TP53 gene
Carcinoma of bladder→COEXISTS WITH→CDKN2A gene→ ISA→Antineoplastic Agents→ INHIBITS→TP53 gene
Carcinoma of bladder→COEXISTS WITH→CDKN2A gene→ ISA→ cyclooxygenase 2→ INTERACTS WITH→TP53
gene
Carcinoma of bladder→COEXISTS WITH→CDKN2A gene → ISA→Enzymes→ INTERACTS WITH→TP53 gene
Carcinoma of bladder→COEXISTS WITH→CDKN2A gene→ ISA→Pharmaceutical Preparations→ INHIBITS→TP53
gene
Carcinoma of bladder→COEXISTS WITH→CDKN2A gene→ ISA→Pharmaceutical Preparations→ INTERACTS WITH
→TP53 gene
Carcinoma of bladder→COEXISTS WITH→CDKN2A gene→ ISA→Retinoids→ STIMULATES→TP53 gene

Box 2: Top 10 predications scored by random walk with depth 6.

Carcinoma of bladder→OCCURS IN→Patients→ LOCATION OF→Neoplasms
Carcinoma of bladder→NEG PROCESS OF→Patients→ LOCATION OF→Neoplasms
Carcinoma of bladder→PROCESS OF→Patients→ LOCATION OF→Neoplasms
Carcinoma of bladder→AFFECTS→Patients→ LOCATION OF→Neoplasms
Carcinoma of bladder→PART OF→Patients→ LOCATION OF→Neoplasms
Carcinoma of bladder→PART OF→Patients→ LOCATION OF→Genes
Carcinoma of bladder→AFFECTS→Patients→ LOCATION OF→Genes
Carcinoma of bladder→NEG PROCESS OF→Patients→ LOCATION OF→Genes
Carcinoma of bladder→PROCESS OF→Patients→ LOCATION OF→Genes
Carcinoma of bladder→OCCURS IN→Patients→ LOCATION OF→Genes

Box 3: Top 10 predications of cooccurence scored by random walk with depth 4.

Carcinoma of bladder→OCCURS IN→Patients→ LOCATION OF→Carcinoma, Transitional Cell→ ISA→Malignant
Neoplasms
Carcinoma of bladder→NEG PROCESS OF→Patients→ LOCATION OF→Carcinoma, Transitional Cell→ ISA→
Malignant Neoplasms
Carcinoma of bladder→PART OF→Patients→ LOCATION OF→Carcinoma, Transitional Cell→CAUSES→Malignant
Neoplasms
Carcinoma of bladder→PROCESS OF→Patients→ LOCATION OF→Carcinoma, Transitional Cell→PART OF→
Malignant Neoplasms
Carcinoma of bladder→NEG PROCESS OF→Patients→ LOCATION OF→Carcinoma, Transitional Cell→AFFECTS→
Malignant Neoplasms
Carcinoma of bladder→NEG PROCESS OF→Patients→ LOCATION OF→Carcinoma, Transitional Cell→
COEXISTS WITH→Malignant Neoplasms
Carcinoma of bladder→PROCESS OF→Patients→ LOCATION OF→Carcinoma, Transitional Cell→AFFECTS→
Malignant Neoplasms
Carcinoma of bladder→OCCURS IN→Patients→ LOCATION OF→Carcinoma, Transitional Cell→COEXISTS WITH→
Malignant Neoplasms
Carcinoma of bladder→NEG PROCESS OF→Patients→ LOCATION OF→Carcinoma, Transitional Cell→CAUSES→
Malignant Neoplasms
Carcinoma of bladder→PART OF→Patients→ LOCATION OF→Carcinoma, Transitional Cell→ ISA→Malignant
Neoplasms

Box 4: Top 10 predications of cooccurence scored by random walk with depth 6.
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between biomedical entities but also their hidden relations.
Firstly, the approach applies the KMmethod to extract salient
genetics information from disease-gene predications. The
method is evaluated with a previously established reference
standard and achieves an 𝐹-score of 61%, which is better than
that of the Combo method (57%).

Secondly, in our approach, a graph-based methodology
based Semantic MEDLINE is presented to mine hidden
relations between biomedical entities.Then excessive outputs
of deep graph search are filtered out by the random walk
algorithm, which uses the transfer probability as a criterion
to select relations between entities. Our experimental results
show that themethod of deep graph search can obtain hidden
salient relations.

In the future, we will further improve the performance
of our method and construct a comprehensive biomedical
information summarization system which can effectively
extract hidden relations among all kinds of entities from
biomedical literature.
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