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Compositional analysis is based on the premise that a relatively small proportion of
taxa are differentially abundant, while the ratios of the relative abundances of the
remaining taxa remain unchanged. Most existing methods use log-transformed data,
but log-transformation of data with pervasive zero counts is problematic, and these
methods cannot always control the false discovery rate (FDR). Further, high-throughput
microbiome data such as 16S amplicon or metagenomic sequencing are subject to
experimental biases that are introduced in every step of the experimental workflow.
McLaren et al. [eLife 8, e46923 (2019)] have recently proposed a model for how these
biases affect relative abundance data. Motivated by this model, we show that the odds
ratios in a logistic regression comparing counts in two taxa are invariant to experimental
biases. With this motivation, we propose logistic compositional analysis (LOCOM),
a robust logistic regression approach to compositional analysis, that does not require
pseudocounts. Inference is based on permutation to account for overdispersion and
small sample sizes. Traits can be either binary or continuous, and adjustment for
confounders is supported. Our simulations indicate that LOCOM always preserved
FDR and had much improved sensitivity over existing methods. In contrast, analysis of
composition of microbiomes (ANCOM) and ANCOM with bias correction (ANCOM-
BC)/ANOVA-Like Differential Expression tool (ALDEx2) had inflated FDR when the
effect sizes were small and large, respectively. Only LOCOM was robust to experimental
biases in every situation. The flexibility of our method for a variety of microbiome
studies is illustrated by the analysis of data from two microbiome studies. Our R package
LOCOM is publicly available.
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Microbiome association studies are useful for the development of microbial biomarkers
for prognosis and diagnosis of a disease or for the development of microbial targets (e.g.,
pathogenic or probiotic bacteria) for drug discovery, by detecting the taxa that are most
strongly associated with the trait of interest (e.g., a clinical outcome or environmental
factor). Read count data from 16S amplicon or metagenomic sequencing are typically
summarized in a taxa count (or feature) table. Because the total sample read count
(library size) is an experimental artifact, only the relative abundances of taxa, not absolute
abundances, can be measured (1). Thus, microbial data are compositional (constrained to
sum to 1). Analysis of microbial associations is further encumbered by data sparsity (having
50 to 90% zero counts in the taxa count table), high-dimensionality (having hundreds to
thousands of taxa), and overdispersion. In addition, most microbiome association studies
have relatively small sample sizes; further complications arise as the traits of interest may
be either binary or continuous, and the detected associations may need to be adjusted for
confounding covariates. Finally, any method for detecting taxon–trait associations should
control the false discovery rate (FDR) (2). The capability to handle all these features is
essential for any statistical method to be practically useful.

There are (at least) two biological models for how microbial communities may change
when comparing groups with different phenotypes or along a phenotypic gradient. In
one model, a substantial proportion of the taxa in the community change; the concept
community state types exemplifies this approach (see, e.g., refs. 3, 4). The null hypothesis
of no differential abundance that is tested at a taxon is that the taxon relative abundance
remains the same; i.e., any change in taxon relative abundance across conditions is of
interest. Methods for testing this hypothesis include the linear decomposition model
(LDM) (5) and direct application of nonparametric tests (e.g., the Wilcoxon rank-sum
test) to relative abundance data or rarefied count data. In the other model, only a few key
taxa are considered to change, while the other taxa show changes in relative abundance
because of the compositional constraint (6, 7). Thus, the null hypothesis that is tested

Significance

High-throughput sequencing of
16S gene or metagenomes
provides an unprecedented
opportunity to discover microbes
associated with traits such as
clinical outcomes or
environmental factors. However,
the microbial data are highly
complex because they are
compositional, sparse (50 to 90%
zeros), high-dimensional, and in
particular subject to ubiquitous
experimental biases. Existing
methods developed specifically
for compositional analysis of the
microbiome data cannot always
control the false discovery rate
and often require replacing zeros
with a pseudocount. Our
proposed method, logistic
compositional analysis (LOCOM),
always preserves the false
discovery rate, has much
improved sensitivity over existing
methods, does not require
pseudocounts, and thus can
accelerate the search for
microbial biomarkers for
prognosis and diagnosis of
diseases or microbial targets for
drug discovery.

Author contributions: G.A.S. and Y.-J.H. designed rese-
arch; Y.H., G.A.S., and Y.-J.H. performed research; Y.H.
analyzed data; and G.A.S. and Y.-J.H. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
yijuan.hu@emory.edu.

This article contains supporting information online at
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2122788119/-/DCSupplemental.

Published July 22, 2022.

PNAS 2022 Vol. 119 No. 30 e2122788119 https://doi.org/10.1073/pnas.2122788119 1 of 11

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2122788119&domain=pdf&date_stamp=2022-07-22
http://orcid.org/0000-0001-7275-5371
http://orcid.org/0000-0003-2171-9041
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:yijuan.hu@emory.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122788119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122788119/-/DCSupplemental
https://doi.org/10.1073/pnas.2122788119


at a taxon is that the ratio of the relative abundances at the
taxon against some null taxon is unchanged. Methods for testing
this hypothesis include analysis of composition of microbiomes
(ANCOM) (8), ANCOM with bias correction (ANCOM-BC)
(9), ANOVA-Like Differential Expression tool (ALDEx2) (10),
WRENCH (6), and Testing for Differential Abundance in Com-
positional Counts Data (DACOMP) (7). Because the hypothesis
in the second model accounts for the compositional constraint
that a change in relative abundance for one taxon necessarily
implies a counterbalancing change in other taxa, it is generally
referred to as compositional analysis (11).

Methods for compositional analysis are typically based on some
form of log-ratio transformation of the read count data. The ratio
can be formed against a reference taxon or the geometric mean of
relative abundances of all taxa, referred to as additive log-ratio (alr)
or centered log-ratio (clr) transformation, respectively (12). Thus,
zero count data, which cannot be log-transformed, is the major
challenge in using compositional methods on microbiome data.
A common practice is to add a pseudocount, most frequently 1
or 0.5 or even smaller values, to the zeros or all entries of the taxa
count table (8, 9, 12–15). However, there is no consensus on how
to choose the pseudocount, and it has been shown that the choice
of pseudocount can affect the conclusions of a compositional
analysis (16, 17).

The most popular pseudocount-based method for composi-
tional analysis is perhaps ANCOM (8), which has now evolved
into ANCOM-BC (9). After adding 0.001 to all count data,
ANCOM performs the alr transformation and treats the
transformed data as the response of the linear regression model
that includes the traits of interest and confounding variables as
covariates. For each taxon, ANCOM uses all other taxa, one at a
time, as the reference in forming the alr transformation, and then
it employs a heuristic strategy to declare taxa that are significantly
differentially abundant (outputting rankings of taxa instead of
P values). ANCOM-BC first estimates sampling fractions that
are different across samples and then models the log of read count
data, in which zeros are replaced by pseudocount 1, through
a linear regression model including the estimated sampling
fraction as an offset term. This is essentially a normalization
approach that first attempts to recover the absolute abundances
of taxa and then test hypotheses about the absolute abundances.
Unlike ANCOM, ANCOM-BC provides P values for individual
taxa. Both ANCOM and ANCOM-BC are restricted to group
comparisons and cannot handle continuous traits of interest,
although adjustment for confounding covariates is supported.

Several methods have been developed that circumvent the use
of pseudocount. ALDEx2 (10) first draws Monte Carlo samples
of nonzero relative abundances from Dirichlet distributions (with
parameters constructed from read count data plus a uniform prior
0.5). Then, the sampled relative abundances are clr transformed
and tested against the traits of interest via linear regression to
yield P values and adjusted P values by the Benjamini–Hochberg
(BH) procedure (18), both of which are averaged over sampling
replicates to give the final P values and adjusted P values.
However, the sampling process adds noise to the data, which
may cause loss of power. In addition, by using the clr transfor-
mation, ALDEx2 is designed to identify differential abundant
taxa relative to the mean of all taxa, which may be sensitive to
outliers. DACOMP (7) is a normalization approach that first
selects a set of null reference taxa by a data-adaptive proce-
dure and then normalizes read count data by rarefaction so
that each taxon within the reference has similar counts across
samples. However, the selected reference set may mistakenly con-
tain causal taxa, which may compromise the performance of the

normalization. In addition, adjustment for confounding covari-
ates is not supported, although continuous traits of interest are
allowed. WRENCH (6) is also a normalization approach that
estimates group-specific compositional factors to bring the read
counts of null taxa across groups to a similar level and employs
differential expression analysis based on the negative binomial
distribution (DESeq2) to detect differentially abundant taxa. It
is limited to group comparisons without confounding covariates.
A general method that can be used for all types of microbiome
data without introduction of pseudocounts is thus an important
goal.

It is also of interest to test differential abundance at the commu-
nity (i.e., global) level, rather than taxon by taxon, using the com-
positional analysis approach. The most commonly used method
for testing community-level hypotheses about the microbiome is
permutational multivariate analysis of variance (PERMANOVA)
(19), which is a distance-based version of ANOVA. For compo-
sitional analysis, use of the Aitchison distance is recommended
(11), which is simply the Euclidean distance applied to the clr
transformed data (20). Again, the clr transformation necessitates
the use of pseudocount, so the choice of pseudocount may affect
the outcome of the test.

Finally, it is of vital interest to develop a method that can
provide valid inference even in the presence of experimental
bias. Experimental bias is ubiquitous because each step in the
sequencing experimental workflow (i.e., DNA extraction, PCR
amplification, amplicon or metagenomic sequencing, and bioin-
formatics processing) preferentially measures (i.e., extracts, am-
plifies, sequences, and bioinformatically identifies) some taxa
over others (1, 21–23). For example, bacterial species differ in
how easily they are lysed and therefore how much DNA they
yield during DNA extraction (24). As a result, the bias dis-
torts the measured taxon relative abundances from their actual
values.

We are particularly interested in the case of differential bias,
where the bias of taxa that are associated with a trait is systemati-
cally different from the bias of null taxa. A concrete example of this
is the differential bias between bacteria in the phyla Bacteroidetes
and Firmicutes. Bacteroidetes are gram-negative, while Firmicutes
are gram-positive. It is known that gram-positive bacteria have
strong cell walls and are hence harder to lyse than gram-negative
bacteria; thus, gram-positive bacteria may be underrepresented
due to bias in the extraction step. The Bacteroidetes–Firmicutes
ratio has been implicated in a number of studies of the gut
microbiome (e.g., refs. 25, 26). Thus, studies that compare Bac-
teroidetes to Firmicutes may be affected by differential extraction
bias. In some of our simulations, we consider the effect this kind
of differential bias can have on the FDR.

In this article, we develop a method for compositional analysis
of differential abundance, at both the taxon level and the global
level, based on a robust version of logistic regression that we call
logistic compositional analysis (LOCOM). Our method circum-
vents the use of pseudocount, does not require the reference taxon
to be null, and does not require normalization of the data. Further,
it is applicable to a variety of microbiome studies with binary or
continuous traits of interest and can account for potentially con-
founding covariates. In Method, we give the motivation for using
logistic regression as a way to minimize the effect of experimental
bias in analyzing microbiome data and describe the details of our
approach. In Results, we present simulation studies that compare
the performance of LOCOM to other compositional methods.
We also compare results from LOCOM and other methods
in the analysis of two microbiome datasets. We conclude with
Discussion.
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Method

Let Yij be the read count of the jth taxon (j = 1, . . . , J) in the ith sample (i =
1, . . . , n) and Ni the library size of the ith sample. Because Ni can vary widely be-
tween samples, we focus on the relative abundance data as a form of normalized
data. We denote by Pij the observed relative abundance, given by Yij/Ni. We let
Xi be a vector of q covariates including the (possibly multiple) traits of interest
and other (confounding) covariates that we wish to adjust for but excluding the
intercept.

Motivation. Our starting point is the model of McLaren et al. (1), as expanded
by Zhao and Satten (27), which relates the expected value of the observed relative
abundance, denoted by pij, to the true relative abundance we would measure in
an experiment with no experimental bias, denoted byπij . In particular, this model
assumes that

log(pij) = log(πij) + γj + αi, [1]

where γj is the taxon-specific bias factor that describes how the relative abun-
dance is distorted by the bias and αi is the sample-specific normalization factor
that ensures the composition constraint

∑J
j=1 pij = 1. Following ref. 27, we

further assume that the true relative abundanceπij can be described by a baseline
relative abundance π0

j that would characterize the true relative abundance of
taxon j for a sample having Xi = 0 and a term that describes how the baseline
relative abundance is changed in the presence of covariates Xi �= 0. Then, we can
replace Eq. 1 by

log(pij) = log(π0
j ) + XT

i βj + γj + αi, [2]

where βj describes the way the true relative abundance changes with covariates
Xi and is our parameter of interest. The presence of bias factors in Eqs. 1 and 2
implies that inference based on the observed relative abundances Pij may not
give valid inference on βj. It is clear that without knowing the bias factor γj, we
cannot estimate log(π0

j ) as log(π0
j ) and γj always appear together as a sum.

We can examine Eq. 2 to see if there are any combinations of parameters that
could potentially be estimated without knowing the bias factors. Analyzing log
probability ratios such as log(pij/pij′) removes the effect ofαi (which depends on
bias factors through normalization) but does not remove the effect ofγj . However,
if we use Eq. 2 to write log odds ratios of observed relative abundances for two
different taxa and two different samples, we find

log
(

pijpi′ j′

pij′pi′ j

)
= (Xi − Xi′)

T(βj − βj′), [3]

which is independent of bias factors. This motivates the choice of logistic regres-
sion to analyze microbiome count data.

Note that testing βj − βj′ = 0 in Eq. 3 corresponds to testing pij/pij′ =
pi′ j/pi′ j′ , which is exactly the null hypothesis in a compositional analysis, e.g., in
popular compositional models of the microbiome such as ANCOM and ALDEx2.
As a result, logistic regression based on Eq. 3 is of interest even without the bias-
removal motivation provided here.

Multivariate Logistic Regression Model. Eq. 3 implies a polychotomous
logistic regression of the full n × J taxa count table. This is numerically difficult
as the analysis of each taxon potentially requires all βj parameters. Instead, we
follow Begg and Gray (28) and analyze data using separate or individualized
logistic regressions, each using data from just two taxa at a time. Rather than
considering all possible pairs of taxa, we choose one taxon (without loss of
generality, the Jth taxon) to be a reference taxon and compare all other taxa to
the reference taxon. Then, if we define μij = pij/(pij + piJ), Eq. 2 implies

log
(

μij

1 − μij

)
= θj + XT

i (βj − βJ), 1 ≤ j ≤ J − 1, [4]

where the intercepts θj =
[

log(π0
j )− log(π0

J )
]
+ (γj − γJ) are treated as

nuisance parameters since estimation of the γj values is not possible when the
π0

j values are not known. As written, the model is overparameterized because
only the J − 1 log odds ratios βj − βJ are identifiable. To make the full set
of βj values identifiable requires a constraint; we temporarily use βJ = 0 with

the understanding that βj then refers to an odds ratio that compares taxon j
to the reference taxon J. According to ref. 28, the efficiency of individualized
logistic regression highly depends on the prevalence (relative abundance) of the
reference category, so we recommend that the reference taxon be a common
taxon that is present in a large number of samples.

To avoid distributional assumptions in a standard logistic regression, we
consider the score functions as estimating functions. When a taxon is rare and/or
the sample size is small, it may occur that all (or nearly all) counts for that taxon
are zero in one group (e.g., the case or control group), which is referred to as
separation in the literature on logistic regression. It is known that the Firth bias
correction (29), when applied to logistic regression (30), solves the problem
of separation. Hence, we estimate (θj, βj) by solving the Firth-corrected score
equation

Uj(θj,βj) =
n∑

i=1

[
Yij − Mijμij + hi

(
0.5 − μij

)](1
Xi

)
= 0,

where Mij = Yij + YiJ and hi is the ith diagonal element of the weighted hat

matrix W
1
2

j X(XTWjX)−1XTW
1
2

j with the design matrix X (including a column
of ones corresponding to the intercept) and the diagonal weight matrix Wj =
diag {M1jμ1j(1 − μ1j), . . . , Mnjμnj(1 − μnj)}. Note that the zero count data
Yij are used to build these equations in a natural and systematic way; in particular,
zero counts get low weight rather than the upweighting of zero counts that can
occur when taking the log of a small pseudocount value. We let β̂j denote the
estimator of βj obtained by solving the above equation.

Testing Hypotheses at Individual Taxa. Now we describe the formula for the
null hypotheses we test to decide which taxa are null, i.e., have no effect. Write
βj = (βj,1, βj,−1), where βj,1 is the coefficient for the trait of interest and βj,−1

for the other covariates. We assume the trait of interest has only one component,
but the approach can be generalized to test multiple traits simultaneously (Dis-
cussion). The naive formulaβj,1 = 0 only implies that the effect of the trait on the
jth taxon is the same as the effect of the trait on the reference taxon; thus, testing
βj,1 = 0 only identifies null taxa when the reference taxon used in Eq. 4 is itself
null.

As we have no a priori knowledge about whether the reference taxon is null or
causal, we seek an approach that does not require such knowledge; in addition,
we need a test for the reference taxon itself. To this end, we make the assump-
tion that more than half of the taxa are null taxa, which has been frequently
adopted in compositional methods (6, 7). With this assumption, we can expect
medianj′=1,...,J{βj′ ,1} to correspond to the value of βj∗ ,1 for some taxon j∗ that
is null. If we then consider parameters β̃j,1 = βj,1 − medianj′=1,...,J{βj′ ,1}=
βj,1 − βj∗ ,1 in place of parameters βj − βJ in Eq. 4, then using β̃j,1 = 0 as a
null hypothesis does correspond to testing whether taxon j is null. Thus, we wish
to test the null hypotheses

Hj0 : βj,1 − medianj′=1,...,J{βj′ ,1}= 0.

Note that centering by the median can also be thought of as replacing the
constraint βJ,1 = 0 to identify βj,1 for all j. To test these null hypotheses, we use
the statistic

Zj = β̂j,1 − medianj′=1,...,J{β̂j′ ,1}.

Note that we use β̂J,1 = 0 both when calculating the median and obtaining ZJ

for the reference taxon. Also note that the Zj values are reminiscent of centered
log-ratios, in which the log of the abundance is centered by the mean of the
log abundances. Use of the median in place of the mean for our centering is
advantageous as the mean is sensitive to large or outlying observations that
do not affect the median. Since the odds ratios we estimate each use data
from only two taxa, our method is subcompositionally coherent in the sense of
ref. 31.

In the simplest case testing a binary trait that takes values 0 and 1, with no
other covariates,Zj is invariant to different choices of the reference taxon. This is
because in this simple case, all estimated (pairwise) log odds ratios are of the
form

(
β̂j,1 − β̂j′ ,1

)
= log{n1jn0j′/(n0jn1j′)}, where nxj =

∑
i:Xi=x Yij and so

are completely free of the reference taxon. This holds even if the Firth-corrected
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estimator is used because in this simple case, the Firth-corrected estimator cor-
responds to adding 1/2 to each nxj (29, 30); note that nxj is an aggregated read
count in a group of samples, and thus, this result is fundamentally different from
the aforementioned pseudocount approach that adds a pseudocount to each read
count of a sample. For the general case, we evaluate the dependence of Zj on the
reference taxon via simulations.

To avoid distributional assumptions in sparse microbiome data, we assess the
significance of Zj using the permutation scheme for logistic regression proposed
by Potter (32), which is described as follows. The covariate vector Xi is partitioned
into (Ti, Ci), where Ti denotes the trait of interest and Ci the other covariates.
A linear regression of Ti on Ci and an intercept is fit to obtain the residual Tir ,
which is then permuted to obtain T(b)

ir and to construct the new covariate vector
X(b)

i =
(

T(b)
ir , Ci

)
. We follow the same procedure as for the observed dataset to

obtain the estimate of βj,1 from the bth permutation replicate, denoted by β̂(b)
j,1 ,

and the corresponding statistic Z
(b)
j = β̂

(b)
j,1 − medianj′

{
β̂
(b)
j′ ,1

}
. We adopt

Sandve’s sequential stopping rule (33) with a minor modification to stop the
permutation procedure, which is described below. For each taxon j, after the Bth
permutation we store the (cumulative) number of times thatZ(b)

j falls on the left
(i.e., is less than) and right side (i.e., is greater than) of Zj, which we denote by Lj

and Rj, respectively. We count the number of rejections to be 2 min(Lj, Rj). The P
value based on B permutations is given by pj = [2 min(Lj, Rj) + 1]/(B + 1),
and the q value is calculated according to (33). The permutation procedure is
continued until every taxon either has a q value below the nominal FDR level
or has accumulated a number of rejections exceeding a prespecified value (e.g.,
100). This stopping rule is slightly different from Sandve’s in that we obtain β̂(b)

j,1

for every taxon at every permutation, rather than stopping permutation early for
some taxa, because the median calculation requires β̂(b)

j,1 from all taxa.

Testing the Global Hypothesis. The global null hypothesis is that there are
no differentially abundant taxa; i.e., Hj0 holds for every taxon. Given the P values
at individual taxa, it is straightforward to construct a global test statistic by
combining the individual P values. Here we adopt the harmonic-mean approach
to combining P values proposed by Wilson (34), which is more robust to the
dependence structure among taxa than Fisher’s method and has more focus on
the smallest P value(s) (i.e., more power for scenarios with sparse, strong signals)
than Fisher’s method. The harmonic mean of the pj values is J/

(∑J
j=1 p−1

j

)
,

for which smaller values correspond to stronger evidence against the null
hypothesis. To have a test statistic with the “usual” directionality, we choose
Zglobal =

∑J
j=1 p−1

j . We use all permutation replicates generated for taxon-
level tests, say B replicates, to assess the significance of Zglobal. At the bth
replicate, the test statistic isZ(b)

global =
∑J

j=1

{
p(b)

j

}−1, where p(b)
j is the P value

of taxon j for this null replicate. Following ref. 35, we calculate the null P value

p(b)
j using the rank statistic to be p(b)

j = 2B−1 min
{[

rank
(
Z
(b)
j

)
− 0.5

]
,[

B − rank
(
Z
(b)
j

)
+ 0.5

]}
, where rank

(
Z
(b)
j

)
is the rank of Z(b)

j among B

such statistics. Let Rglobal be the number of times that Z(b)
global falls on the right-

hand side of Zglobal. Then, the global P value is given by
(

Rglobal + 1
)
/(B + 1).

Results

Simulation Studies. We used simulation studies to evaluate the
performance of LOCOM and compare its performance to other
compositional analysis packages. We based our simulations on
data on 856 taxa of the upper respiratory tract (URT) micro-
biome; these taxa correspond to the “OTUs” in the original report
on these data by Charlson et al. (36). We considered both binary
and continuous traits of interest and both binary and continuous
confounders, as well as the case of no confounder. We mainly
focused on two causal mechanisms. For the first mechanism
(referred to as M1), we randomly sampled 20 taxa (after excluding
the most abundant taxon) whose mean relative abundances were
greater than 0.005 as observed in the URT data (i.e., ranking

among the top 40 most abundant taxa) to be causal (i.e., associated
with the trait of interest). For the second mechanism (referred to
as M2), we selected the top five most abundant taxa (having mean
relative abundance 0.105, 0.062, 0.054, 0.050, and 0.049) to be
causal. In some cases, we also considered two variations of M1, one
randomly sampling 500 taxa (again excluding the top one) to be
causal to create a scenario that violated our assumption that more
than half of the taxa are null and one randomly sampling 20 rare
taxa (whose mean relative abundances were between 0.001 and
0.002) to be causal, which are referred to as M1-500 and M1-
rare, respectively. For simulations with a confounding covariate,
we assumed the confounder was associated with 20 taxa under
M1 (10 sampled at random from the 20 causal taxa and 10 from
the null taxa) and 5 taxa under M2 (2 from the 5 causal taxa and
3 from the null taxa). We simulated most data without adding
experimental bias but did conduct one set of simulations having
differential experimental bias. We focused on datasets having 100
observations but also simulated some datasets with 50 or 200
observations.

To be specific, we letTi denote the trait andCi the confounder
for the i th sample. To generate a binary trait, we selected an
equal number of samples with Ti = 1 and Ti = 0. When a
binary confounder was present, we drew Ci from the Bernoulli
distribution with probability 0.2 in samples withTi = 0 and from
the Bernoulli distribution with probability 0.8 in samples with
Ti = 1. When a continuous confounder was present, we drew Ci

from the uniform distribution U [−1, 1] in samples with Ti = 0
and U [0, 2] in samples with Ti = 1. To generate a continuous
trait, we sampled it fromU [−1, 1]when there was no confounder.
When there was a binary confounder, we used the aforementioned
data generated for a binary trait and a continuous confounder but
exchanged the roles of trait and confounder. When there was a
continuous confounder, we generated Ti from U [−1, 1] and a
third variable Zi from U [−1, 1] independently of Ti and then
constructed the confounder Ci = ρTi +

√
1− ρ2Zi , where ρ

was fixed at 0.5.
To simulate read count data for the 856 taxa, we first sam-

pled the baseline (when Ti = 0 and Ci = 0) relative abundances
π
(0)
i =

(
π
(0)
i1 ,π

(0)
i2 , . . . ,π

(0)
iJ

)
of all taxa for each sample from the

Dirichlet distribution Dirichlet(π, θ), where the mean param-
eter π and overdispersion parameter θ took the estimated mean
and overdispersion (0.02) from fitting the Dirichlet-multinomial
(DM) model to the URT data. We formed the relative abundances
pij for all taxa by spiking the j ′ th causal taxon with an exp(βj ′,1)
fold change and the j ′′ th confounder-associated taxon with
an exp(βj ′′,2) fold change and then renormalizing the relative
abundances, so that

pij =
exp

(
γj + βj ,1Ti + βj ,2Ci

)
π
(0)
ij∑J

j ′=1 exp
(
γj ′ + βj ′,1Ti + βj ′,2Ci

)
π
(0)
ij ′

, [5]

where γj was the bias factor for the j th taxon. Note that βj ,1 =
0 for null taxa, βj ,2 = 0 for confounder-independent taxa, and
γj = 0 for all taxa for data without experimental bias. In most
cases, for simplicity, we set βj ,1 = β for all causal taxa, and thus,
β is a single parameter that we refer to as the effect size; we refer to
exp(β) as the fold change. In some cases, we also considered the
more general scenario when different values were sampled for dif-
ferent βj ,1. We fixed βj ,2 = log(2) for all confounder-associated
taxa. When there was no confounder, we simply dropped the
term βj ,2Ci (or equivalently, set βj ,2 = 0 for all j values) in
calculating pij . In cases with differential experimental bias, we
drew γj from N (0, 0.82) for noncausal taxa and from N (1, 0.82)
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for causal taxa; thus, the bias-related fold changes varied roughly
between 0.2 and 5 for most (95%) noncausal taxa and be-
tween 0.55 and 13.5 for most causal taxa, which are within a
reasonable range according to ref. 1. Finally, we generated the
taxon count data for each sample using the multinomial model
with mean pi = (pi1, pi2, . . . , piJ ) and library size sampled from
N (10000, (10000/3)2) and left-truncated at 2,000.

In order to evaluate the robustness of our simulation results, we
changed our simulation procedure in the following ways. First,
we replaced the compositional model of Eq. 5 by a model that
generates microbiome–trait associations by assigning differential
relative abundances only at causal taxa (which corresponds to the
first biological model introduced at the beginning and consti-
tutes a misspecified model for LOCOM and other compositional
analyses). Second, we replaced the DM model by a Poisson log-
normal mixture (PLNM) model (which can impose any prespec-
ified correlation structure across taxa) for generating read count
data. Both replacement models are described in our LDM paper
(supplementary text S2 in ref. 5). We also followed the LDM
paper by basing our simulations on its association scenarios, which
were denoted by S1 and S2. Scenario S1 assumed a large number
of causal taxa (428 taxa in the LDM paper, which we modified
here to 500 to create violation of our assumption that fewer
than half the taxa are causal). Scenario S2 chose the top 10 most
abundant taxa to be causal; here we will refer to the two scenarios
as S1-500 and S2. Note that the data simulated using the PLNM
model appeared to be less overdispersed and less sparse compared
to data simulated using the DM model.

We applied two versions of LOCOM: one used the most
abundant null taxon as the reference, which is referred to as
LOCOM-null, and one used the most abundant causal taxon as
the reference, referred to as LOCOM-causal. Both versions use the
median of β̂j ′,1 values to compute the test statistic. Of course, in a
real application, we would not know whether or not the reference
taxon we had chosen was null or causal; we differentiate these
two versions of LOCOM here to show that LOCOM is robust
to whether the reference taxon is null or causal. In practice, when
the most abundant taxon is chosen as the reference, the results
from LOCOM would correspond to LOCOM-null in M1 and to
LOCOM-causal in M2.

For testing the global hypothesis, we compared LOCOM
to PERMANOVA (the adonis2 function in the vegan R pack-
age) based on the Aitchison distance, which is referred to as
PERMANOVA-half and PERMANOVA-one corresponding to
adding pseudocount 0.5 and 1, respectively, to all cells. The type
I error and power of the global tests were assessed at the nominal
level 0.05 based on 5,000 and 1,000 replicates of data, respectively.

For testing individual taxa, we compared LOCOM to
ANCOM, ANCOM-BC, ALDEx2, DACOMP, and WRENCH.
However, ANCOM, ANCOM-BC, and WRENCH cannot
handle continuous traits; DACOMP and WRENCH cannot
adjust for other covariates. Prior to analysis, we removed taxa
having fewer than 20% presence (i.e., present in fewer than
20% of samples) in each simulated dataset. For ANCOM and
ANCOM-BC, we also considered their own filtering criterion
with 10% presence as the cutoff and refer to these methods as
ANCOMo and ANCOM-BCo . In the case with a binary trait
only, we considered two additional pseudocount-based methods,
Wilcox-alr-half and Wilcox-alr-one, which add pseudocounts
0.5 and 1, respectively, to all cells, form the alr using the most
abundant null taxon as the reference, perform the Wilcoxon rank-
sum test at individual log ratios, and correct multiple comparisons
using the BH procedure. Because the reference was selected to be
a taxon known to be null, these methods are not applicable to

real studies but were included in the simulations here to assess
the properties of the pseudocount approach to testing individual
taxa. In the case with a binary trait only, we also applied the
Wilcoxon test directly to relative abundance data, i.e., data with
total-sum scaling (TSS); although not a compositional method,
this is commonly used in microbiome studies. The sensitivity
(proportion of truly causal taxa that were detected) and empirical
FDR were assessed at nominal level 20% based on 1,000 replicates
of data. We chose a relatively high nominal FDR level because the
numbers of causal taxa in both M1 and M2 were small. In some
cases, we also considered a lower nominal FDR level of 10%.

Simulation Results. The type I errors of the global tests for all
simulation scenarios are summarized in SI Appendix, Table S1. In
all scenarios, LOCOM-null and LOCOM-causal yielded type I
error rates that were close to the nominal level and generally closer
for sample size 200 than 100. Note that in cases when there was a
confounder, there was substantial inflation of type I error when
the confounder was not accounted for (SI Appendix, Table S2),
demonstrating that LOCOM is effective in adjusting for con-
founders. The PERMANOVA tests also controlled type I error.
In cases without any confounder, the zero data were similarly
distributed across trait values under the (global) null, so the
effect of adding pseudocount is nondifferential. In cases with a
confounder, the taxa associated with the confounder caused the
zeros to be differentially distributed across trait values, so that
adding pseudocount had a differential effect for different trait
values; however, this difference was adjusted by including the
confounder as a covariate in the model. Note that although the
pseudocount approach did not lead to invalid global tests, it did
lead to invalid tests at individual taxa (in the presence of causal
taxa), as indicated in the empirical FDR of Wilcox-alr-one and
Wilcox-alr-half (e.g., Fig. 1).

Figs. 1–4 present power of the global tests and sensitivity
and empirical FDR of the individual taxon tests, for a binary
or continuous trait without and with a binary confounder,
in scenarios M1 and M2 without experimental bias. The
results for cases with a continuous confounder are deferred to
SI Appendix, Figs. S1 and S2, which show similar patterns of
results to their counterparts with a binary confounder (Figs. 2
and 4). The results in Figs. 1–4 all have sample size 100 and
FDR level 20%. To explore the effects of changing sample
size and FDR level, we restricted to the two most important
scenarios, one with a binary trait with no confounder in which
all methods are applicable and one with a binary trait and a
binary confounder, which is very common in real data. We
changed the sample size to 50 (SI Appendix, Figs. S3 and S4)
or 200 (SI Appendix, Figs. S5 and S6), then changed the nominal
FDR level to 10% (SI Appendix, Figs. S7 and S8). In general,
those results show similar patterns to their counterparts with
sample size 100 and nominal FDR level 20%.

In the simplest scenario with a binary trait and no con-
founder (Fig. 1 and SI Appendix, Figs. S3 and S5), LOCOM-null
and LOCOM-causal yielded identical type I error and power; in
fact, the two methods gave identical P values for every dataset in
this case, which corroborated our claim that the test is invariant
to different reference taxa. In other scenarios, LOCOM-null and
LOCOM-causal produced similar results, although the one using
the more abundant taxon as the reference (LOCOM-null in
M1 and LOCOM-causal in M2) tended to be more powerful
and more sensitive. The aforementioned figures (Figs. 1–4 and
SI Appendix, Figs. S1–S8) show that the LOCOM tests yielded
(almost) the highest power for testing the global hypothesis;
LOCOM always controlled the FDR for testing individual taxa
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Fig. 1. Simulation results for data (n = 100) with a binary trait (and no
confounder). The power at exp(β) = 1 corresponds to the type I error. The
gray dotted line indicates the nominal type I error 0.05 in the first row and the
nominal FDR 20% in the third row.

(even with the sample size 50) and had the highest sensitivity
among methods that also controlled the FDR.

The competing methods generally have limited application to
the scenarios we considered and significantly inferior performance
to LOCOM. PERMANOVA had similar power to the LOCOM
global test in M1 but lost substantial power to LOCOM in M2
(e.g., Figs. 1–4), likely because the Aitchison distance used by
PERMANOVA may not be efficient in capturing sparse signals
(only five causal taxa in M2), whereas the harmonic mean P value
combination method that LOCOM uses focuses on the strongest
signal(s). For testing individual taxa, ALDEx2 is the only method
that is applicable to all scenarios we considered; however, it tended
to lose control of FDR when the effect size β was large (e.g., Figs.
1 and 2), and it had much lower sensitivity than LOCOM in all
cases. ANCOM and ANCOM-BC are only applicable for testing
binary traits, with or without confounders. ANCOM easily lost
control of FDR when the effect size was small, especially with
their own, less stringent filtering criterion (e.g., Figs. 1 and 2).
ANCOM-BC tended to lose control of FDR when the effect size
was large, especially when there was a confounder (e.g., Fig. 2).
Both ANCOM and ANCOM-BC had substantially lower sensi-
tivity than LOCOM when they controlled the FDR. DACOMP
is applicable for testing both binary and continuous traits but does
not allow adjustment of any confounder. In scenarios without

a confounder, DACOMP had good control of FDR, and while
the sensitivity of DACOMP tended to be the largest among
all competing methods, it was noticeably lower than that of
LOCOM (e.g., Figs. 1 and 3). WRENCH is only applicable to
one scenario (with a binary trait and no confounder) in which case
it had inflated FDR and nevertheless low sensitivity (e.g., Fig. 1).
The pseudocount methods, Wilcox-alr-half and Wilcox-alr-one,
almost always produced inflated FDR, especially when the effect
size was large so that zeros at null taxa were more differentially
distributed across trait values (e.g., Fig. 1). As expected, the
Wilcox-TSS method had inflated FDR in simulations based on
the compositional model in Eq. 5 (e.g., Fig. 1) but controlled
the FDR in simulations based on differential relative abundances
(Fig. 6).

Results for simulated data with differential experimental bias
(and a binary trait and no confounder) are shown in Fig. 5. These
simulations showed that, while LOCOM and DACOMP were
unaffected by differential bias, all other methods were sensitive
to differential bias and yielded significantly inflated FDR in the
presence of such bias.

Results for simulations based on the differential relative abun-
dance model and the PLNM model are shown in Fig. 6. In this
setting, Wilcox-TSS is the most appropriate method. Indeed, it
always controlled the FDR and yielded the highest sensitivity
(except for the pseudocount methods which had inflated FDR).
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Fig. 2. Simulation results for data (n = 100) with a binary trait and a binary
confounder.
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Fig. 3. Simulation results for data (n = 100) with a continuous trait (and no
confounder).

Interestingly, LOCOM controlled the FDR in both S1-500 and
S2, even when S1-500 assumed 500 taxa to be causal; the reason
might be that most causal taxa in this setting had very weak
signals and act almost like null taxa. Note that LOCOM generated
similar sensitivity to the gold standard (Wilcox-TSS). The PER-
MANOVA tests had higher power than the LOCOM global tests
in S1-500 likely because the signals were very dense there.

Results for simulated data generated under M1-500 and M1-
rare are shown in SI Appendix, Fig. S9. When our assumption
that more than half of the taxa are null was violated (M1-500),
LOCOM lost control of the FDR as expected. However, the FDR
inflation of LOCOM appears to be smaller than most competing
methods, and LOCOM maintained good sensitivity. When the
causal taxa were all rare (M1-rare), LOCOM still yielded the high-
est sensitivity while controlling the FDR, although the absolute
sensitivity values were low.

Results for simulated data with heterogeneous βj ,1 values
are displayed in SI Appendix, Fig. S10. The patterns we observed
with heterogeneous βj ,1 values were similar to those seen in the
analogous simulations with homogeneous βj ,1 values (Fig. 2).

URT Microbiome Data. The data for our first example were gen-
erated as part of a study to examine the effect of cigarette smoking
on the oropharyngeal and nasopharyngeal microbiome (36). We
focused on the left oropharyngeal microbiome in this analysis.
The 16S sequence data were summarized into a taxa count table

consisting of data from 60 samples and 856 taxa. The trait of
interest was a binary variable for smoking status, which divided the
participants into 28 smokers and 32 nonsmokers. Other covariates
include gender and antibiotic use within the last 3 mo. There
was an imbalance in the proportion of males by smoking status
(75% in smokers, 56% in nonsmokers), indicating a potential
confounding effect of gender. Since there were only three sam-
ples who used antibiotics within the last 3 mo, we excluded
these samples from our analysis and adjusted for gender only.
We adopted the same filter (20% presence) as in the simulation
studies, which resulted in 111 taxa for downstream analysis. We
applied LOCOM with the most abundant taxon (having mean
relative abundance 10.5% before filtering and 11.4% after filter-
ing) as the reference. Given the need to adjust for gender, we only
applied ANCOM, ANCOM-BC, and ALDEx2 as a comparison.
The nominal FDR was set at 10%.

As shown in Table 1, the global P value of LOCOM is
0.0045, which indicates a significant difference in the overall mi-
crobiome profile between smokers and nonsmokers after adjusting
for gender. At the taxon level, LOCOM, ALDEx2, ANCOM,
and ANCOM-BC detected six, zero, two, and two taxa, respec-
tively; Fig. 7 displays a Venn diagram of these sets of taxa, and
SI Appendix, Table S3 lists information on the six taxa detected
by LOCOM. Fig. 8 shows the distributions of relative abundance
across four covariate groups cross-classified by smoking status and
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Fig. 4. Simulation results for data (n = 100) with a continuous trait and a
binary confounder.
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Fig. 5. Simulation results for data (n = 100) with differential experimental
bias in the binary trait setting (no confounder).

gender, for taxa detected by LOCOM, ANCOM, and ANCOM-
BC, as well as for two null taxa. One null taxon is the taxon with
the median β̂j ,1 value. The other is the average of a group of
null taxa for improved stability. The two null taxa both had lower
relative abundance in smokers than in nonsmokers, among either
females or males. The six taxa detected by LOCOM all had the
opposite trend (i.e., higher relative abundance in smokers than in
nonsmokers), indicating that these taxa are likely to be real signals
(i.e., overgrew in smokers). The taxon detected by ANCOM only
also had the opposite trend to the null taxa, but it was not detected
by LOCOM because the adjusted P value (0.137) by LOCOM
did not meet the nominal FDR. The taxon detected by ANCOM-
BC only had a similar trend as the null taxa, suggesting that
this taxon may actually be a null taxon; indeed, the adjusted
P value by LOCOM is 0.674. Note that the difference in relative
abundance distributions between smokers and nonsmokers at null
taxa may be considered as the counterbalancing change that the
null taxa underwent in response to the changes at the causal
taxa.

The original analysis of this dataset (36) reported that Megas-
phaera and Veillonella spp. were most enriched in the left orophar-
ynx of smokers compared to nonsmokers. Later, a large study
of oral microbiome (from oral wash samples) in 1,204 Amer-
ican adults (37) reported enrichment of Atopobium, Streptococ-
cus, and Veillonella in smokers compared to nonsmokers. More
recently, a shotgun metagenomic sequencing study of salivary

microbiome in Hungary population (38) reported enrichment of
Prevotella and Megasphaera in smokers compared to nonsmokers.
Thus, all six taxa detected by LOCOM have been implicated in
the literature, even if we only consider the latter two indepen-
dent studies. These taxa were largely missed by ANCOM and
ANCOM-BC.

PPI Microbiome Data. The data for our second example were
generated in a study of the association between the mucosal
microbiome in the prepouch-ileum (PPI) and host gene expres-
sion among patients with inflammatory bowel disease (IBD) (39).
The PPI microbiome data from 196 IBD patients were summa-
rized in a taxa count table with 7,000 taxa classified at the genus
level. The gene expression data at 33,297 host transcripts, as well
as clinical metadata such as antibiotic use (yes/no), inflammation
score (0 to 9), and disease type (familial adenomatous polyposis
[FAP] and non-FAP) were also available. The data also included
nine gene principal components (gPCs) that together explained
50% of the total variance in host gene expression. Here we
included all nine gPCs as multiple traits of interest into one model
while adjusting for the three potentially confounding covariates.
We filtered out taxa based on our previous filtering criterion,
which resulted in 507 taxa to be included in the analysis. We
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Fig. 6. Simulation results for data (n = 100) generated from the differential
relative abundance model and the PLNM model in the binary trait setting (no
confounder). Here β∗ corresponds to the effect size β used in the LDM paper
(5); S1-500 and S2 correspond to scenarios S1 and S2 in the LDM paper, except
that in S1-500, there are 500 causal taxa.
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Table 1. Results from analysis of the two real datasets

Number of detected taxa

Trait Global P value: LOCOM LOCOM ALDEx2 ANCOM ANCOM-BC
URT microbiome data

Smoking 0.0045 6 0 2 2
PPI microbiome data

gPC1 0.70 0 0 NA NA
gPC2 0.020 2 0 NA NA
gPC3 0.018 2 0 NA NA
gPC4 0.16 0 0 NA NA
gPC5 0.0070 32 0 NA NA
gPC6 0.59 0 0 NA NA
gPC7 0.11 0 0 NA NA
gPC8 0.21 0 0 NA NA
gPC9 0.11 0 0 NA NA

ANCOM and ANCOM-BC are not applicable for testing continuous traits.

applied LOCOM with the most abundant (8.2%) taxon as the
reference. Given the continuous traits of interest and the three
covariates, we only considered ALDEx2 for comparison. The
nominal FDR was set at 10%.

The results of PPI data analysis are presented in Table 1.
LOCOM discovered that gPC2, gPC3, and gPC5 had significant
associations with the overall microbial profiles at the α= 0.05
level. LOCOM detected 2, 2, and 32 taxa as associated with
gPC2, gPC3, and gPC5, respectively, at the 10% FDR level and
did not detect any taxa for the gPCs that were not found to
be associated with the microbiome by the global test. Among
the 32 taxa associated with gPC5, 15 belong to the genus Es-
cherichia (SI Appendix, Table S3), which appeared frequently in
the literature of IBD according to a highly cited review article (40).
ALDEx2 failed to detect any taxa.

Discussion

We have presented LOCOM, a compositional approach for test-
ing differential abundance in the microbiome data, at both the
taxon level and the global level. The global statistic is an aggregate
of P values from tests of individual taxa, so results from the
taxon level and global tests are coherent. LOCOM allows both
binary and continuous traits of interest, can test multiple traits
simultaneously, and can adjust for confounding covariates. In our
simulations, the taxa detected by LOCOM always preserved FDR,
while those identified by the competing methods did not, even
though LOCOM had clearly superior sensitivity. In addition,
LOCOM also provided a global test that always controlled the
type I error and had good power compared to PERMANOVA.
In analysis of the URT microbiome data, we demonstrated that
the taxa detected by LOCOM were likely to be real signals,

ANCOM−BC ANCOM

LOCOM

1 1

4

0

1 1
0

Fig. 7. Taxa detected to be differentially abundant in the URT data.

while those detected by ANCOM and/or ANCOM-BC but not
LOCOM may be false positives. In analysis of the PPI microbiome
data, since global and taxon-specific tests were coherent, LOCOM
identified significant taxa only for gene principal components that
were globally significant.

Like many compositional methods (e.g., DACOMP and
WRENCH), LOCOM adopts the assumption that more than
half of the taxa in the community are null. This assumption
may not be valid in some cases, for example, in testing higher
taxonomic levels such as the class or phylum level. In theory,
when this assumption does not hold, LOCOM, which always
compares each taxon with the median taxon (with the median
effect size estimate β̂j ,1), would find differences at truly null taxa.
In our simulations, however, we found that when most causal taxa
had very weak signals, LOCOM still controlled the FDR (Fig. 6
and SI Appendix, Fig. S9).

We showed both theoretically and with simulation studies that
LOCOM is unaffected by experimental bias, even when bias
factors are differentially distributed between causal and noncausal
taxa. While some competing compositional methods (ANCOM
and DACOMP) share this robustness, others (ANCOM-BC,
ALDEx2, and WRENCH) do not. The problem in ALDEx2 may
be related to the choice of centering; in general, the centered log
ratio will not be robust when there are cells with zero counts, since
this centering will depend on the set of taxa seen in each sample
even if a pseudocount is used. Thus, the centering may not cancel
out when comparing log ratios from different samples, leaving
these comparisons affected by the particular bias factors that
characterize the data being analyzed. Note that any compositional
method should perform well when the bias is nondifferential since
the centering will be the same on average in each sample.

It is possible to generalize LOCOM to test a trait with more
than one component, such as a categorical trait with more than
two levels. While ordered categories could be handled in the
framework presented here by assigning an appropriate score to
each category and then treating this score as a continuous variable,
a categorical trait with K unordered categories would presumably
require testing K − 1 components to fully describe the variable.
Within the framework presented here, we could then compare
some summary (e.g., max or mean) of these test statistics to their
equivalent value in the null permutations. Although this better
analysis would require some software development and simulation
testing, a simpler proposal could provide results within the existing
framework, by calculating separate (marginal) P values for each
of the K − 1 components and then combining these P values
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Fig. 8. Distributions of relative abundances for taxa in the URT data. The
red dots represent the means. The six taxa in the first, second, and third rows
were detected by LOCOM; among these, URT-1 was also detected by ANCOM-
BC, and URT-5 was also detected by ANCOM. In the fifth row, a null taxon
corresponds to the taxon (Shigella) with the median β̂j,1 value. A group of
null taxa include the taxon with the median β̂j,1 value and 20 taxa with β̂j,1
values closest to (10 less than and 10 greater than) the median; their relative
abundances were averaged.

into a single test statistic, e.g., by using the harmonic mean
statistic we used to form our global test. Choosing these K − 1
components to be orthogonal may be helpful here. We hope to
modify LOCOM to incorporate multicomponent traits such as
multicategory variables in future work.

Our filtering criterion to exclude taxa with fewer than 20%
presence in the sample worked well for the extensive simulation
studies we conducted. In fact, a compositional analysis performs
best when nonnull taxa are relatively common throughout all
samples. Analyses that look for the effect of rare taxa should
probably be focused on a presence–absence analysis (41, 42) or
on a method based directly on relative abundances.

The compositional null hypothesis considered here is also
appropriate in other experimental settings, such as studies of gene
expression. This hypothesis corresponds to the scenario that a
small number of microbes have “bloomed” while the absolute
counts of the others have not changed; this is the reason we
made the assumption that more than half of the taxa are null
taxa, which is commonly made in other compositional methods.
In the gene expression experiment, we often see only a few
genes that are differentially expressed; the majority of genes have
the same expression in cases and controls. However, it is not
completely clear that the compositional hypothesis is applicable
to microbiome data because, unlike genes, microbes interact with
each other: not only do they compete for resources, but they also
change their environment in ways that favor some microbes and
suppress others. For example, Lactobacilli generally make lactic
acid, which changes the pH of the environment. This suppresses
microbes that do not thrive in an acidic environment while
encouraging growth of microbes that do. Because the microbiota
are a community, it is not unreasonable to expect that potentially
every taxon changes between cases and controls. The community
change null hypothesis may also be reasonable because when
comparing the alpha diversity with causal taxa spiked in to a case
group, the control group would have a lower alpha diversity (i.e.,
lower evenness); if this change in alpha diversity is meaningful,
then the community change null hypothesis is appropriate. Note
that unlike the compositional null, the community change null
hypothesis will consider all taxon relative abundances to be po-
tentially changed if extra counts of a small number of taxa are
“spiked in.” When the community change null hypothesis seems
more reasonable than the compositional null hypothesis, then a
method that applies directly to relative abundance data such as
the LDM is more appropriate. However, the LDM when applied
to relative abundance data are not invariant to experimental bias
the way LOCOM is; in fact, hypotheses based on differences in
relative abundances typically require tests based on unbiased data
to be valid.

Like LOCOM, ANCOM is based on comparing pairs of taxa.
However, ANCOM yielded lower sensitivity than LOCOM in
our simulations (e.g., Figs. 1 and 2). There are several possible
reasons. First, LOCOM analyzes the count data using logistic
regression, which downweighs zero counts, while ANCOM an-
alyzes alr-transformed count data using linear regression, which
makes data with zero or very small counts more influential; the
former is based on transformation of parameters (i.e., true relative
abundances), while the latter is based on transformation of data.
Second, ANCOM’s approach of adding pseudocounts further
introduces noise and possibly bias to the data. Third, LOCOM
uses the most abundant taxon as the reference, while ANCOM
looks at all possible pairs of taxa, which can lead to unstable log
ratios when both taxa are rare. Finally, ANCOM’s strategy to
declare differentially abundant taxa uses an arbitrary cutoff which
may not be well calibrated.
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We have implemented our method in the R package LOCOM,
which is available on GitHub at https://github.com/yijuanhu/
LOCOM in formats appropriate for Macintosh or Windows.
LOCOM is computationally efficient for data with small sample
sizes but can take longer for larger sample sizes. For example, using
parallel computing (by parallelizing permutation replicates) with
4 cores of a MacBook Pro laptop (1.4 GHz Quad-Core Intel Core
i5, 8GB memory), it took 11 s to analyze a simulated dataset
with 100 samples, 11 s to analyze the URT data, and 40 min to
analyze the PPI data. In considering this last timing, it should
be noted that the analysis considered nine traits simultaneously
in the presence of three confounding covariates and as such is
more complex than the typical microbiome analysis. In addition,
LOCOM could be further parallelized by splitting the data into

subsets with sets of taxa that only share the reference taxon and
then combining the values of βj ,1 from each dataset (care should
be taken to use the same seed for each analysis so that the same set
of permutations is used).

Data Availability. Previously published data were used for this work (36,
39). The R package LOCOM is publicly available at GitHub (https://github.
com/yijuanhu/LOCOM) (43).
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