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Abstract: HIV-1 reverse transcriptase (RT) plays a crucial role in the viral replication cycle, and RT
inhibitors can represent a promising pathway in treating AIDS. To explore the primer grip region
of HIV-1 RT, using -CH2O- as a linker, substituted benzene or pyridine rings were introduced into
the left wing of diarylpyrimidines (DAPYs). A total of 17 compounds with new structures were
synthesized. It showed that all compounds exhibited anti-HIV-1 (wild-type) activity values ranging
from 7.6–199.0 nM. Among them, TF2 (EC50 = 7.6 nM) showed the most potent activity, which
was better than that of NVP (EC50 = 122.6 nM). Notably, compared with RPV (CC50 = 3.98 µM),
TF2 (CC50 > 279,329.6 nM) showed low cytotoxicity. For HIV-1 mutant strains K103N and E138K,
most compounds showed effective activities. Especially for K103N, TF2 (EC50 = 28.1 nM), TF12
(EC50 = 34.7 nM) and TF13 (EC50 = 28.0 nM) exhibited outstanding activity, being superior to that of
NVP (EC50 = 7495.1 nM) and EFV (EC50 = 95.1 nM). Additionally, TF2 also showed the most potent
activity against E138K (EC50 = 44.0 nM) and Y181C mutant strains (EC50 = 139.3 nM). In addition, all
the compounds showed strong enzyme inhibition (IC50 = 0.036–0.483 µM), which demonstrated that
their target was HIV-1 RT. Moreover, molecular dynamics simulation studies were implemented to
predict the binding mode of TF2 in the binding pocket of wild-type and K103N HIV-1 RT.

Keywords: HIV-1; reverse transcriptase; NNRTIs; diarylpyrimidines

1. Introduction

Human immunodeficiency virus type 1 (HIV-1), one of the viruses that pose a serious
threat to human health worldwide, is the main pathogen of acquired immunodeficiency
syndrome (AIDS) [1–3]. UNAIDS 2022 data indicated that 38.4 million people were liv-
ing with HIV, 1.5 million people were newly infected with HIV, and 650,000 people have
died from AIDS in 2021 [4]. Currently, the clinical treatment for AIDS often uses highly
active antiretroviral therapy (HAART), which is a combination of two, three, or more
drugs, typically including reverse transcriptase inhibitors (RTIs) [5,6]. Because of the high
specificity, potent antiviral properties, and favorable pharmacokinetics, nonnucleoside
reverse transcriptase inhibitors (NNRTIs) have proven to be an important part of HAART
regimens. The NNRTIs are non-competitive inhibitors that act by allosteric inhibition of DNA
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polymerization [7–9]. There have been six NNRTIs approved by the U.S. Food and Drug Ad-
ministration (FDA) [10,11], including nevirapine (1, NVP), delavirdine (2, DLV), efavirenz
(3, EFV), etravirine (4, ETR), rilpivirine (5, RPV) and doravirine (6, DOR). In addition,
elsulfavirine (7, ESV) was approved by the Russian Ministry of Health (MoH) in 2017 [12],
and ainuovirine (8, ANV) was approved by National Medical Products Administration
(NMPA) in 2021 for AIDS treatment (Figure 1) [13].
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Figure 1. US FDA, Russian MoH and NMPA-approved NNRTI chemical structures.

Among them, ETR and RPV belong to diarylpyrimidines NNRTIs, exhibiting effective
activity against the resistant mutations caused by the first-generation NNRTIs, such as
Y181C, P236L and K103N [10,14–16]. In spite of their higher genetic barrier, several single,
double or triple mutants have emerged with resistance towards these drugs, such as K101E,
E138K, Y181V, Y181C + V179F and V179F + Y181C + F227C [17–20]. Therefore, it is still
urgent to develop novel NNRTIs with an improved anti-resistance profile.

The rapid development of HIV-1 RT structural biology provides new information
for the rational design of potential anti-HIV-1 agents. The RT is a heterodimer consisting
of two subunits, p66 (560 residues) and p51 (440 residues), The NNRTI-binding pocket
(NNIBP) is located between the β6 (residues 142–146), β9 (residues 227–229), β10 (residues
232–234) sheets (floor) and the β12 (residues 326–333), β13 (residues 336–344), β14 (residues
347–355) sheets (roof) [21–24]. Diarylpyrimidines tend to bind to HIV-1 RT in a “U” mode
(also named “horseshoe mode”), and they can bind to the different NNRTI-binding pock-
ets caused by various resistant RT mutations through torsional flexibility (wiggling) and
repositioning flexibility (jiggling) to retain potency against mutant HIV-1 viruses [25,26].
The studies of X-ray crystallography and molecular modeling revealed that diarylpyrim-
idines exhibited a three-dimensional pharmacophore model in an NNRTI-binding pocket
(Figure 2): an aminobenzonitrile moiety (A-ring, right wing), a central pyrimidine ring
(B-ring) and the NH linker which form two hydrogen bonds with the backbone of residue
K101, and a 2,4,6-trisubstituted phenoxy moiety (C-ring, left wing), and the left wing is
situated in the hydrophobic channel which is shaped by amino acid residues Y181, Y188,
W229, F227 and L234 [27–29].
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Figure 2. Illustration of the pharmacophore model of diarylpyrimidines.

The primer grip is a highly conserved structural motif consisting of the β12-β13
hairpin (F227-H235) (Figure 3); it is responsible for locating the 3′-OH end of the primer
strand at the polymerase catalytic site, making it important in the catalytic activity of
RT [30,31]. The primer grip contains three amino acid residues in the NNRTI-binding
pocket: F227, W229 and L234, and some mutations of F227 and L234 have been observed:
F227C/L/I/V, L234/I. However, the mutation of the key W229 has never been observed. As
for the other amino acid residues in the primer grip region, except for M230 (M230I/L), no
other drug-resistance mutations have been reported [32]. Targeting highly conserved amino
acid residues is of great significance for the discovery of new compounds with improved
drug resistance profiles [33], which inspired us to target the conserved residue W229 in the
NNRTI-binding pocket for rational drug design and further explore the chemical space of
the primer grip region.
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(B) Amino acid composition of primer grip.

On the basis of the above analysis, with the privileged aminobenzonitrile moiety
(right wing) and central pyrimidine ring (B-ring) unchanged, substituted benzene rings
or pyridine rings were introduced to the left wing of diarylpyrimidines by a CH2O linker,
expecting the newly introduced aromatic rings could develop stronger π-π interaction with
the conserved residue (W229) and explore primer grip region to enhance the drug resistance
profile (Figure 4). Here, we described the synthesis of these novel diarylpyrimidines as well
as their anti-HIV-1 activity, and then we further discussed the preliminary structure-activity
relationship (SAR) in detail and selected representative molecules for molecular dynamics
simulation studies.
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2. Result and Discussion
2.1. Chemistry

As indicated in Scheme 1, using 9 as the starting material, which we reported ear-
lier [34–36], it was subjected to nucleophilic substitution reaction with 3,5-dimethyl-4-
hydroxybenzaldehyde under the alkaline condition of potassium carbonate to obtain
intermediate 10. Reduction of 10 with NaBH4 gave intermediate 11, which was brominated
with PBr3 to give key intermediate 12. Finally, 12 was reacted with different substituted
phenols and thiophenols to obtain the target compounds TF1-TF16 via nucleophilic sub-
stitution reactions. TF17 was obtained by removing the Boc protecting group of TF16.
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Scheme 1. Reagents and conditions: (i) 4-hydroxy-3,5-dimethylbenzaldehyde, K2CO3, DMF, 100 ◦C,
10 h; (ii) NaBH4, MeOH, 0 ◦C, 0.5 h, r.t., 4 h; (iii) PBr3, CH2Cl2, 0 ◦C, 2 h, r.t., 2 h; a (iv) KOH, KI,
MeCN, 80 ◦C, 4 h; (v) CF3COOH, CH2Cl2, r.t., 3 h.

2.2. Biological Evaluation

These 17 newly synthesized compounds were tested in MT4 cells for their antiviral
activity using the MTT method [37]. The five marketed drugs approved by the U.S. Food
and Drug Administration: Zidovudine (AZT), NVP, EFV, ETR and RPV, were used as
positive drugs. EC50, CC50 and SI were used to express the biological evaluation results,
which were summarized in Tables 1–4.
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Table 1. The anti-HIV-1(IIIB) activity and cytotoxicity of TF1-17.
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ortho- or meta-substituted benzene rings, TF1 (-H, CC50 > 295,865.0 nM), TF2 (para-CN, 

CC50 > 279,329.6 nM), TF5 (para-OCH3, CC50 = 253,718.1 nM), and TF15 (para-NO2, CC50 = 

215,001.1 nM) showed low cytotoxicity than that of RPV (CC50 = 3.89 µM). This suggested 

that the introduction of the benzene ring and para-substituted benzene ring may help re-

duce cytotoxicity. However, all three compounds containing hydroxymethyl substituted 

benzene rings, TF8 (CC50 = 2917.9 nM), TF9 (CC50 = 3458.6 nM), TF10 (CC50 = 4804.6 nM), 

showed a sharp increase in cytotoxicity compared to TF1, which suggested that the intro-

duction of hydroxymethyl benzene ring may be detrimental to the improvement of the 

toxicity of compounds. 

In addition, 3-pyridine-containing and substituted 3-pyridine-containing com-

pounds (TF11-TF14) were also synthesized. Compared to TF11 (EC50 = 199.0 nM) with an 

unsubstituted pyridine ring, the activity of TF12~TF14 showed different degrees of in-

crease, among which TF12 (EC50 = 7.8 nM) was the most active compound. 

Table 1. The anti-HIV-1(IIIB) activity and cytotoxicity of TF1-17. 

 

 
 

Compounds  R 
EC50 a 

CC50 b (nM) SI c (ⅢB) 
ⅢB (nM) ROD (nM) 

TF1 
 

17.1 ± 2.3 > 295,865.0 > 295,865.0 > 17,326.7  

TF2 
 

7.6 ± 0.6 > 279,329.6 > 279,329.6 > 36,610.9 

17.1 ± 2.3 >295,865.0 >295,865.0 >17,326.7

TF2
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second-generation drug ETR (EC50 = 3.0 nM) and much superior to those of AZT (EC50 = 

27.3 nM) and NVP (EC50 = 122.6 nM). Moreover, at a concentration of 279,329.6 nM, TF2 

exhibited no cytotoxicity, which contributes to its higher SI values (SI > 36,610.9) toward 

HIV-1 IIIB. None of the compounds had inhibitory activity against HIV-2, which demon-

strated that these compounds belong to typical HIV-1 inhibitors.  

The preliminary SAR was summarized as follows. Inhibitory activity differed de-

pending on the types and positions of substituents on the benzene ring introduced to the 

left wing by a CH2O linker. For the compounds containing para-substituted benzene ring, 

the order of potency was as follows: -CN (TF2, EC50 = 7.6 nM) > -OCH3 (TF5, EC50 = 21.7 

nM) > -NO2 (TF15, EC50 = 23.1 nM) > -NH2 (TF17, EC50 = 32.5 nM) > -CH2OH (TF8, EC50 = 

42.8 nM) > -NHBoc (TF16, EC50 = 45.3 nM). For the compounds containing meta-substi-

tuted benzene ring, the order of potency was as follows: -CN (TF3, EC50 = 24.5 nM) > -

CH2OH (TF9, EC50 = 30.5 nM) > -OCH3 (TF6, EC50 = 35.3 nM). For the compounds contain-

ing ortho-substituted benzene ring, the order of potency was as follows: -CN (TF4, EC50 = 

7.8 nM) > -OCH3 (TF7, EC50 = 25.5 nM) > -CH2OH (TF10, EC50 = 32.2 nM). Among them, 

TF2 and TF4 showed the best antiviral activity. It preliminarily showed that compared to 

TF1 (-H, EC50 = 17.1 nM), the introduction of para- and ortho -CN substituted benzene rings 

were beneficial to the improvement of antiviral potency. 

Furthermore, we found that the substitution of different positions on the introduced 

benzene rings had a certain effect on cytotoxicity. Compared with compounds containing 

ortho- or meta-substituted benzene rings, TF1 (-H, CC50 > 295,865.0 nM), TF2 (para-CN, 

CC50 > 279,329.6 nM), TF5 (para-OCH3, CC50 = 253,718.1 nM), and TF15 (para-NO2, CC50 = 

215,001.1 nM) showed low cytotoxicity than that of RPV (CC50 = 3.89 µM). This suggested 

that the introduction of the benzene ring and para-substituted benzene ring may help re-

duce cytotoxicity. However, all three compounds containing hydroxymethyl substituted 

benzene rings, TF8 (CC50 = 2917.9 nM), TF9 (CC50 = 3458.6 nM), TF10 (CC50 = 4804.6 nM), 

showed a sharp increase in cytotoxicity compared to TF1, which suggested that the intro-

duction of hydroxymethyl benzene ring may be detrimental to the improvement of the 

toxicity of compounds. 

In addition, 3-pyridine-containing and substituted 3-pyridine-containing com-

pounds (TF11-TF14) were also synthesized. Compared to TF11 (EC50 = 199.0 nM) with an 

unsubstituted pyridine ring, the activity of TF12~TF14 showed different degrees of in-

crease, among which TF12 (EC50 = 7.8 nM) was the most active compound. 

Table 1. The anti-HIV-1(IIIB) activity and cytotoxicity of TF1-17. 

 

 
 

Compounds  R 
EC50 a 

CC50 b (nM) SI c (ⅢB) 
ⅢB (nM) ROD (nM) 

TF1 
 

17.1 ± 2.3 > 295,865.0 > 295,865.0 > 17,326.7  

TF2 
 

7.6 ± 0.6 > 279,329.6 > 279,329.6 > 36,610.9 7.6 ± 0.6 >279,329.6 >279,329.6 >36,610.9

TF3
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TF3 
 

24.5 ± 4.1 > 5522.3 5522.3 ± 296.6 225.2 

TF4 
 

7.8 ± 1.0 > 5293.0 5293.0 ± 355.6 674.4  

TF5 

 

21.7 ± 3.6 > 253,718.1 253,718.1 ± 5720.2 11,681.3  

TF6 
 

35.3 ± 4.1 > 6896.1 6896.1 ± 249.1 195.6  

TF7 
 

25.5 ± 8.4 > 8152.2 8152.2 ± 547.6 319.6  

TF8 

 

42.8 ± 5.6 > 2917.9 2917.9 ± 271.5 68.1 

TF9 
 

30.5 ± 4.0 > 3458.6 3458.6 ± 375.4 113.3  

TF10 
 

32.2 ± 3.3 > 4804.6 4804.6 ± 341.7 149.1  

TF11 
 

199.0 ± 13.0 > 14,827.6 14,827.6 ± 919.6 74.5 

TF12 
 

7.8 ± 0.8 > 2462.8 2462.8 ± 197.9 316.9  

TF13 
 

19.4 ± 3.4 > 4772.8 4772.8 ± 1561.8 246.4  

TF14 

 

23.6 ± 3.8 > 24,438.7 24,438.7 ± 6675.8 1034.6 

TF15 

 

23.1 ± 3.1 > 215,001.1 215,001.1 ± 20,337.8 9303.7  

TF16 

 

45.3 ± 14.1 > 6196.6 6196.6 ± 220.4 136.7 

TF17 

 

32.5 ± 1.7 > 5489.9 5489.9 ± 328.0 168.8  

AZT —— 27.3 ± 3.5 23.3 ± 2.1 > 7483.6 > 274.0  

NVP —— 122.6 ± 7.3 - > 15,020.7 >122.5  

EFV —— 2.4 ± 0.3 - > 6335.5 > 2689.1 

ETR —— 2.9 ± 0.4 - > 4594.6 > 1578.9  

RPV d —— 1.00 ± 0.27 - 3.98 (µM) 3989 
a EC50: concentration of compounds protecting 50 % of MT-4 cells from lesions caused by HIV-1 

virus infection. b CC50: concentration of compounds causing 50 % of HIV-uninfected MT-4 cells. c SI: 

selectivity index, CC50/EC50. d Used for comparison [5]. Standard deviation values were obtained 

from five parallel experiments. 

As shown in Table 2, compounds TF1-17 were further evaluated for their activity 

against drug-resistant strains of NNRTIs in MT-4 cells (L100I, K103N, Y181C, Y188L, 

E138K, F227L/V106A and RES056). 

  

24.5 ± 4.1 >5522.3 5522.3 ± 296.6 225.2

TF4
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TF3 
 

24.5 ± 4.1 > 5522.3 5522.3 ± 296.6 225.2 

TF4 
 

7.8 ± 1.0 > 5293.0 5293.0 ± 355.6 674.4  

TF5 

 

21.7 ± 3.6 > 253,718.1 253,718.1 ± 5720.2 11,681.3  

TF6 
 

35.3 ± 4.1 > 6896.1 6896.1 ± 249.1 195.6  

TF7 
 

25.5 ± 8.4 > 8152.2 8152.2 ± 547.6 319.6  

TF8 

 

42.8 ± 5.6 > 2917.9 2917.9 ± 271.5 68.1 

TF9 
 

30.5 ± 4.0 > 3458.6 3458.6 ± 375.4 113.3  

TF10 
 

32.2 ± 3.3 > 4804.6 4804.6 ± 341.7 149.1  

TF11 
 

199.0 ± 13.0 > 14,827.6 14,827.6 ± 919.6 74.5 

TF12 
 

7.8 ± 0.8 > 2462.8 2462.8 ± 197.9 316.9  

TF13 
 

19.4 ± 3.4 > 4772.8 4772.8 ± 1561.8 246.4  

TF14 

 

23.6 ± 3.8 > 24,438.7 24,438.7 ± 6675.8 1034.6 

TF15 

 

23.1 ± 3.1 > 215,001.1 215,001.1 ± 20,337.8 9303.7  

TF16 

 

45.3 ± 14.1 > 6196.6 6196.6 ± 220.4 136.7 

TF17 

 

32.5 ± 1.7 > 5489.9 5489.9 ± 328.0 168.8  

AZT —— 27.3 ± 3.5 23.3 ± 2.1 > 7483.6 > 274.0  

NVP —— 122.6 ± 7.3 - > 15,020.7 >122.5  

EFV —— 2.4 ± 0.3 - > 6335.5 > 2689.1 

ETR —— 2.9 ± 0.4 - > 4594.6 > 1578.9  

RPV d —— 1.00 ± 0.27 - 3.98 (µM) 3989 
a EC50: concentration of compounds protecting 50 % of MT-4 cells from lesions caused by HIV-1 

virus infection. b CC50: concentration of compounds causing 50 % of HIV-uninfected MT-4 cells. c SI: 

selectivity index, CC50/EC50. d Used for comparison [5]. Standard deviation values were obtained 

from five parallel experiments. 

As shown in Table 2, compounds TF1-17 were further evaluated for their activity 

against drug-resistant strains of NNRTIs in MT-4 cells (L100I, K103N, Y181C, Y188L, 

E138K, F227L/V106A and RES056). 

  

7.8 ± 1.0 >5293.0 5293.0 ± 355.6 674.4

TF5
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TF3 
 

24.5 ± 4.1 > 5522.3 5522.3 ± 296.6 225.2 

TF4 
 

7.8 ± 1.0 > 5293.0 5293.0 ± 355.6 674.4  

TF5 

 

21.7 ± 3.6 > 253,718.1 253,718.1 ± 5720.2 11,681.3  

TF6 
 

35.3 ± 4.1 > 6896.1 6896.1 ± 249.1 195.6  

TF7 
 

25.5 ± 8.4 > 8152.2 8152.2 ± 547.6 319.6  

TF8 

 

42.8 ± 5.6 > 2917.9 2917.9 ± 271.5 68.1 

TF9 
 

30.5 ± 4.0 > 3458.6 3458.6 ± 375.4 113.3  

TF10 
 

32.2 ± 3.3 > 4804.6 4804.6 ± 341.7 149.1  

TF11 
 

199.0 ± 13.0 > 14,827.6 14,827.6 ± 919.6 74.5 

TF12 
 

7.8 ± 0.8 > 2462.8 2462.8 ± 197.9 316.9  

TF13 
 

19.4 ± 3.4 > 4772.8 4772.8 ± 1561.8 246.4  

TF14 

 

23.6 ± 3.8 > 24,438.7 24,438.7 ± 6675.8 1034.6 

TF15 

 

23.1 ± 3.1 > 215,001.1 215,001.1 ± 20,337.8 9303.7  

TF16 

 

45.3 ± 14.1 > 6196.6 6196.6 ± 220.4 136.7 

TF17 

 

32.5 ± 1.7 > 5489.9 5489.9 ± 328.0 168.8  

AZT —— 27.3 ± 3.5 23.3 ± 2.1 > 7483.6 > 274.0  

NVP —— 122.6 ± 7.3 - > 15,020.7 >122.5  

EFV —— 2.4 ± 0.3 - > 6335.5 > 2689.1 

ETR —— 2.9 ± 0.4 - > 4594.6 > 1578.9  

RPV d —— 1.00 ± 0.27 - 3.98 (µM) 3989 
a EC50: concentration of compounds protecting 50 % of MT-4 cells from lesions caused by HIV-1 

virus infection. b CC50: concentration of compounds causing 50 % of HIV-uninfected MT-4 cells. c SI: 

selectivity index, CC50/EC50. d Used for comparison [5]. Standard deviation values were obtained 

from five parallel experiments. 

As shown in Table 2, compounds TF1-17 were further evaluated for their activity 

against drug-resistant strains of NNRTIs in MT-4 cells (L100I, K103N, Y181C, Y188L, 

E138K, F227L/V106A and RES056). 

  

21.7 ± 3.6 >253,718.1 253,718.1 ± 5720.2 11,681.3

TF6
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TF3 
 

24.5 ± 4.1 > 5522.3 5522.3 ± 296.6 225.2 

TF4 
 

7.8 ± 1.0 > 5293.0 5293.0 ± 355.6 674.4  

TF5 

 

21.7 ± 3.6 > 253,718.1 253,718.1 ± 5720.2 11,681.3  

TF6 
 

35.3 ± 4.1 > 6896.1 6896.1 ± 249.1 195.6  

TF7 
 

25.5 ± 8.4 > 8152.2 8152.2 ± 547.6 319.6  

TF8 

 

42.8 ± 5.6 > 2917.9 2917.9 ± 271.5 68.1 
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30.5 ± 4.0 > 3458.6 3458.6 ± 375.4 113.3  

TF10 
 

32.2 ± 3.3 > 4804.6 4804.6 ± 341.7 149.1  

TF11 
 

199.0 ± 13.0 > 14,827.6 14,827.6 ± 919.6 74.5 

TF12 
 

7.8 ± 0.8 > 2462.8 2462.8 ± 197.9 316.9  

TF13 
 

19.4 ± 3.4 > 4772.8 4772.8 ± 1561.8 246.4  

TF14 

 

23.6 ± 3.8 > 24,438.7 24,438.7 ± 6675.8 1034.6 

TF15 

 

23.1 ± 3.1 > 215,001.1 215,001.1 ± 20,337.8 9303.7  

TF16 

 

45.3 ± 14.1 > 6196.6 6196.6 ± 220.4 136.7 

TF17 

 

32.5 ± 1.7 > 5489.9 5489.9 ± 328.0 168.8  

AZT —— 27.3 ± 3.5 23.3 ± 2.1 > 7483.6 > 274.0  

NVP —— 122.6 ± 7.3 - > 15,020.7 >122.5  

EFV —— 2.4 ± 0.3 - > 6335.5 > 2689.1 

ETR —— 2.9 ± 0.4 - > 4594.6 > 1578.9  

RPV d —— 1.00 ± 0.27 - 3.98 (µM) 3989 
a EC50: concentration of compounds protecting 50 % of MT-4 cells from lesions caused by HIV-1 

virus infection. b CC50: concentration of compounds causing 50 % of HIV-uninfected MT-4 cells. c SI: 

selectivity index, CC50/EC50. d Used for comparison [5]. Standard deviation values were obtained 

from five parallel experiments. 

As shown in Table 2, compounds TF1-17 were further evaluated for their activity 

against drug-resistant strains of NNRTIs in MT-4 cells (L100I, K103N, Y181C, Y188L, 

E138K, F227L/V106A and RES056). 

  

35.3 ± 4.1 >6896.1 6896.1 ± 249.1 195.6

TF7
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TF3 
 

24.5 ± 4.1 > 5522.3 5522.3 ± 296.6 225.2 

TF4 
 

7.8 ± 1.0 > 5293.0 5293.0 ± 355.6 674.4  

TF5 

 

21.7 ± 3.6 > 253,718.1 253,718.1 ± 5720.2 11,681.3  

TF6 
 

35.3 ± 4.1 > 6896.1 6896.1 ± 249.1 195.6  

TF7 
 

25.5 ± 8.4 > 8152.2 8152.2 ± 547.6 319.6  

TF8 

 

42.8 ± 5.6 > 2917.9 2917.9 ± 271.5 68.1 

TF9 
 

30.5 ± 4.0 > 3458.6 3458.6 ± 375.4 113.3  

TF10 
 

32.2 ± 3.3 > 4804.6 4804.6 ± 341.7 149.1  

TF11 
 

199.0 ± 13.0 > 14,827.6 14,827.6 ± 919.6 74.5 

TF12 
 

7.8 ± 0.8 > 2462.8 2462.8 ± 197.9 316.9  

TF13 
 

19.4 ± 3.4 > 4772.8 4772.8 ± 1561.8 246.4  

TF14 

 

23.6 ± 3.8 > 24,438.7 24,438.7 ± 6675.8 1034.6 

TF15 

 

23.1 ± 3.1 > 215,001.1 215,001.1 ± 20,337.8 9303.7  

TF16 

 

45.3 ± 14.1 > 6196.6 6196.6 ± 220.4 136.7 

TF17 

 

32.5 ± 1.7 > 5489.9 5489.9 ± 328.0 168.8  

AZT —— 27.3 ± 3.5 23.3 ± 2.1 > 7483.6 > 274.0  

NVP —— 122.6 ± 7.3 - > 15,020.7 >122.5  

EFV —— 2.4 ± 0.3 - > 6335.5 > 2689.1 

ETR —— 2.9 ± 0.4 - > 4594.6 > 1578.9  

RPV d —— 1.00 ± 0.27 - 3.98 (µM) 3989 
a EC50: concentration of compounds protecting 50 % of MT-4 cells from lesions caused by HIV-1 

virus infection. b CC50: concentration of compounds causing 50 % of HIV-uninfected MT-4 cells. c SI: 

selectivity index, CC50/EC50. d Used for comparison [5]. Standard deviation values were obtained 

from five parallel experiments. 

As shown in Table 2, compounds TF1-17 were further evaluated for their activity 

against drug-resistant strains of NNRTIs in MT-4 cells (L100I, K103N, Y181C, Y188L, 

E138K, F227L/V106A and RES056). 

  

25.5 ± 8.4 >8152.2 8152.2 ± 547.6 319.6

TF8
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TF3 
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TF4 
 

7.8 ± 1.0 > 5293.0 5293.0 ± 355.6 674.4  

TF5 

 

21.7 ± 3.6 > 253,718.1 253,718.1 ± 5720.2 11,681.3  

TF6 
 

35.3 ± 4.1 > 6896.1 6896.1 ± 249.1 195.6  

TF7 
 

25.5 ± 8.4 > 8152.2 8152.2 ± 547.6 319.6  

TF8 

 

42.8 ± 5.6 > 2917.9 2917.9 ± 271.5 68.1 

TF9 
 

30.5 ± 4.0 > 3458.6 3458.6 ± 375.4 113.3  

TF10 
 

32.2 ± 3.3 > 4804.6 4804.6 ± 341.7 149.1  

TF11 
 

199.0 ± 13.0 > 14,827.6 14,827.6 ± 919.6 74.5 

TF12 
 

7.8 ± 0.8 > 2462.8 2462.8 ± 197.9 316.9  

TF13 
 

19.4 ± 3.4 > 4772.8 4772.8 ± 1561.8 246.4  

TF14 

 

23.6 ± 3.8 > 24,438.7 24,438.7 ± 6675.8 1034.6 

TF15 

 

23.1 ± 3.1 > 215,001.1 215,001.1 ± 20,337.8 9303.7  

TF16 

 

45.3 ± 14.1 > 6196.6 6196.6 ± 220.4 136.7 

TF17 

 

32.5 ± 1.7 > 5489.9 5489.9 ± 328.0 168.8  

AZT —— 27.3 ± 3.5 23.3 ± 2.1 > 7483.6 > 274.0  

NVP —— 122.6 ± 7.3 - > 15,020.7 >122.5  

EFV —— 2.4 ± 0.3 - > 6335.5 > 2689.1 

ETR —— 2.9 ± 0.4 - > 4594.6 > 1578.9  

RPV d —— 1.00 ± 0.27 - 3.98 (µM) 3989 
a EC50: concentration of compounds protecting 50 % of MT-4 cells from lesions caused by HIV-1 

virus infection. b CC50: concentration of compounds causing 50 % of HIV-uninfected MT-4 cells. c SI: 

selectivity index, CC50/EC50. d Used for comparison [5]. Standard deviation values were obtained 

from five parallel experiments. 

As shown in Table 2, compounds TF1-17 were further evaluated for their activity 

against drug-resistant strains of NNRTIs in MT-4 cells (L100I, K103N, Y181C, Y188L, 

E138K, F227L/V106A and RES056). 

  

42.8 ± 5.6 >2917.9 2917.9 ± 271.5 68.1

TF9
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TF10 
 

32.2 ± 3.3 > 4804.6 4804.6 ± 341.7 149.1  

TF11 
 

199.0 ± 13.0 > 14,827.6 14,827.6 ± 919.6 74.5 

TF12 
 

7.8 ± 0.8 > 2462.8 2462.8 ± 197.9 316.9  

TF13 
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TF14 

 

23.6 ± 3.8 > 24,438.7 24,438.7 ± 6675.8 1034.6 
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23.1 ± 3.1 > 215,001.1 215,001.1 ± 20,337.8 9303.7  
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45.3 ± 14.1 > 6196.6 6196.6 ± 220.4 136.7 
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32.5 ± 1.7 > 5489.9 5489.9 ± 328.0 168.8  

AZT —— 27.3 ± 3.5 23.3 ± 2.1 > 7483.6 > 274.0  

NVP —— 122.6 ± 7.3 - > 15,020.7 >122.5  

EFV —— 2.4 ± 0.3 - > 6335.5 > 2689.1 

ETR —— 2.9 ± 0.4 - > 4594.6 > 1578.9  

RPV d —— 1.00 ± 0.27 - 3.98 (µM) 3989 
a EC50: concentration of compounds protecting 50 % of MT-4 cells from lesions caused by HIV-1 

virus infection. b CC50: concentration of compounds causing 50 % of HIV-uninfected MT-4 cells. c SI: 

selectivity index, CC50/EC50. d Used for comparison [5]. Standard deviation values were obtained 

from five parallel experiments. 

As shown in Table 2, compounds TF1-17 were further evaluated for their activity 

against drug-resistant strains of NNRTIs in MT-4 cells (L100I, K103N, Y181C, Y188L, 

E138K, F227L/V106A and RES056). 

  

30.5 ± 4.0 >3458.6 3458.6 ± 375.4 113.3

TF10
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19.4 ± 3.4 > 4772.8 4772.8 ± 1561.8 246.4  
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23.6 ± 3.8 > 24,438.7 24,438.7 ± 6675.8 1034.6 
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EFV —— 2.4 ± 0.3 - > 6335.5 > 2689.1 
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selectivity index, CC50/EC50. d Used for comparison [5]. Standard deviation values were obtained 

from five parallel experiments. 

As shown in Table 2, compounds TF1-17 were further evaluated for their activity 

against drug-resistant strains of NNRTIs in MT-4 cells (L100I, K103N, Y181C, Y188L, 

E138K, F227L/V106A and RES056). 

  

32.2 ± 3.3 >4804.6 4804.6 ± 341.7 149.1

TF11
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TF5 

 

21.7 ± 3.6 > 253,718.1 253,718.1 ± 5720.2 11,681.3  

TF6 
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19.4 ± 3.4 > 4772.8 4772.8 ± 1561.8 246.4  

TF14 

 

23.6 ± 3.8 > 24,438.7 24,438.7 ± 6675.8 1034.6 

TF15 

 

23.1 ± 3.1 > 215,001.1 215,001.1 ± 20,337.8 9303.7  

TF16 

 

45.3 ± 14.1 > 6196.6 6196.6 ± 220.4 136.7 

TF17 

 

32.5 ± 1.7 > 5489.9 5489.9 ± 328.0 168.8  

AZT —— 27.3 ± 3.5 23.3 ± 2.1 > 7483.6 > 274.0  

NVP —— 122.6 ± 7.3 - > 15,020.7 >122.5  

EFV —— 2.4 ± 0.3 - > 6335.5 > 2689.1 

ETR —— 2.9 ± 0.4 - > 4594.6 > 1578.9  

RPV d —— 1.00 ± 0.27 - 3.98 (µM) 3989 
a EC50: concentration of compounds protecting 50 % of MT-4 cells from lesions caused by HIV-1 

virus infection. b CC50: concentration of compounds causing 50 % of HIV-uninfected MT-4 cells. c SI: 

selectivity index, CC50/EC50. d Used for comparison [5]. Standard deviation values were obtained 

from five parallel experiments. 

As shown in Table 2, compounds TF1-17 were further evaluated for their activity 

against drug-resistant strains of NNRTIs in MT-4 cells (L100I, K103N, Y181C, Y188L, 

E138K, F227L/V106A and RES056). 

  

199.0 ±
13.0 >14,827.6 14,827.6 ± 919.6 74.5

TF12
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As shown in Table 2, compounds TF1-17 were further evaluated for their activity 
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7.8 ± 0.8 >2462.8 2462.8 ± 197.9 316.9

TF13
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As shown in Table 2, compounds TF1-17 were further evaluated for their activity 

against drug-resistant strains of NNRTIs in MT-4 cells (L100I, K103N, Y181C, Y188L, 

E138K, F227L/V106A and RES056). 

  

19.4 ± 3.4 >4772.8 4772.8 ± 1561.8 246.4
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As shown in Table 2, compounds TF1-17 were further evaluated for their activity 

against drug-resistant strains of NNRTIs in MT-4 cells (L100I, K103N, Y181C, Y188L, 

E138K, F227L/V106A and RES056). 

  

23.6 ± 3.8 >24,438.7 24,438.7 ± 6675.8 1034.6
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45.3 ± 14.1 >6196.6 6196.6 ± 220.4 136.7
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second-generation drug ETR (EC50 = 3.0 nM) and much superior to those of AZT (EC50 = 

27.3 nM) and NVP (EC50 = 122.6 nM). Moreover, at a concentration of 279,329.6 nM, TF2 

exhibited no cytotoxicity, which contributes to its higher SI values (SI > 36,610.9) toward 

HIV-1 IIIB. None of the compounds had inhibitory activity against HIV-2, which demon-

strated that these compounds belong to typical HIV-1 inhibitors.  

The preliminary SAR was summarized as follows. Inhibitory activity differed de-

pending on the types and positions of substituents on the benzene ring introduced to the 

left wing by a CH2O linker. For the compounds containing para-substituted benzene ring, 

the order of potency was as follows: -CN (TF2, EC50 = 7.6 nM) > -OCH3 (TF5, EC50 = 21.7 

nM) > -NO2 (TF15, EC50 = 23.1 nM) > -NH2 (TF17, EC50 = 32.5 nM) > -CH2OH (TF8, EC50 = 

42.8 nM) > -NHBoc (TF16, EC50 = 45.3 nM). For the compounds containing meta-substi-

tuted benzene ring, the order of potency was as follows: -CN (TF3, EC50 = 24.5 nM) > -

CH2OH (TF9, EC50 = 30.5 nM) > -OCH3 (TF6, EC50 = 35.3 nM). For the compounds contain-

ing ortho-substituted benzene ring, the order of potency was as follows: -CN (TF4, EC50 = 

7.8 nM) > -OCH3 (TF7, EC50 = 25.5 nM) > -CH2OH (TF10, EC50 = 32.2 nM). Among them, 

TF2 and TF4 showed the best antiviral activity. It preliminarily showed that compared to 

TF1 (-H, EC50 = 17.1 nM), the introduction of para- and ortho -CN substituted benzene rings 

were beneficial to the improvement of antiviral potency. 

Furthermore, we found that the substitution of different positions on the introduced 

benzene rings had a certain effect on cytotoxicity. Compared with compounds containing 

ortho- or meta-substituted benzene rings, TF1 (-H, CC50 > 295,865.0 nM), TF2 (para-CN, 

CC50 > 279,329.6 nM), TF5 (para-OCH3, CC50 = 253,718.1 nM), and TF15 (para-NO2, CC50 = 

215,001.1 nM) showed low cytotoxicity than that of RPV (CC50 = 3.89 µM). This suggested 

that the introduction of the benzene ring and para-substituted benzene ring may help re-

duce cytotoxicity. However, all three compounds containing hydroxymethyl substituted 

benzene rings, TF8 (CC50 = 2917.9 nM), TF9 (CC50 = 3458.6 nM), TF10 (CC50 = 4804.6 nM), 

showed a sharp increase in cytotoxicity compared to TF1, which suggested that the intro-

duction of hydroxymethyl benzene ring may be detrimental to the improvement of the 

toxicity of compounds. 

In addition, 3-pyridine-containing and substituted 3-pyridine-containing com-

pounds (TF11-TF14) were also synthesized. Compared to TF11 (EC50 = 199.0 nM) with an 

unsubstituted pyridine ring, the activity of TF12~TF14 showed different degrees of in-

crease, among which TF12 (EC50 = 7.8 nM) was the most active compound. 

Table 1. The anti-HIV-1(IIIB) activity and cytotoxicity of TF1-17. 

 

 
 

Compounds  R 
EC50 a 

CC50 b (nM) SI c (ⅢB) 
ⅢB (nM) ROD (nM) 

TF1 
 

17.1 ± 2.3 > 295,865.0 > 295,865.0 > 17,326.7  

TF2 
 

7.6 ± 0.6 > 279,329.6 > 279,329.6 > 36,610.9 

Compounds R
EC50

a

CC50
b (nM) SI c (IIIB)

IIIB (nM) ROD (nM)

AZT —— 27.3 ± 3.5 23.3 ± 2.1 >7483.6 >274.0
NVP —— 122.6 ± 7.3 - >15,020.7 >122.5
EFV —— 2.4 ± 0.3 - >6335.5 >2689.1
ETR —— 2.9 ± 0.4 - >4594.6 >1578.9

RPV d —— 1.00 ± 0.27 - 3.98 (µM) 3989
a EC50: concentration of compounds protecting 50% of MT-4 cells from lesions caused by HIV-1 virus infection.
b CC50: concentration of compounds causing 50% of HIV-uninfected MT-4 cells. c SI: selectivity index, CC50/EC50.
d Used for comparison [5]. Standard deviation values were obtained from five parallel experiments.

Table 2. The activity of anti-HIV-1 mutant strains of TF1–17.

Compounds
EC50

a (nM)

L100I K103N Y181C Y188L E138K F227L + V106A RES056

TF1 221.3 ± 53.5 50.7 ± 9.6 515.3 ± 60.4 1519.8 ± 92.1 76.5 ± 9.4 1710.6 ± 581.4 6853.1 ± 1172.2
TF2 117.0 ± 49.5 28.1 ± 7.1 139.3 ± 34.9 1390.3 ± 118.8 44.0 ± 2.9 1136.6 ± 346.5 > 279,329.6
TF3 116.0 ± 5.8 48.4 ± 7.5 245.0 ± 39.6 894.7 ± 90.2 87.7 ± 8.5 755.4 ± 155.6 1543.5 ± 102.5
TF4 314.9 ± 30.7 75.9 ± 13.9 482.3 ± 42.6 > 5296.1 103.1 ± 6.8 1279.5 ± 303.3 > 5296.1
TF5 126.1 ± 12.6 44.5 ± 4.9 267.8 ± 28.9 963.7 ± 98.1 65.3 ± 10.0 1406.4 ± 569.6 > 253,718.1
TF6 156.0 ± 16.8 91.2 ± 14.4 386.7 ± 87.4 1391.7 ± 83.6 149.7 ± 0.7 1096.7 ± 281.1 > 6896.1
TF7 451.9 ± 70.5 164.1 ± 5.5 790.6 ± 62.9 > 8152.2 180.7 ± 10.7 1224.1 ± 179.3 > 8152.2
TF8 328.9 ± 56.7 110.2 ± 4.6 667.2 ± 78.0 885.5 ± 20.1 147.5 ± 4.6 853.3 ± 81.4 1418.6 ± 9.7
TF9 308.1 ± 46.3 119.6 ± 18.2 499.2 ± 44.6 1095.3 ± 95.7 147.1 ± 12.0 999.8 ± 29.6 1586.6 ± 87.5

TF10 634.6 ± 28.2 158.4 ± 18.6 765.6 ± 22.5 > 4804.6 178.8 ± 26.9 1487.4 ± 33.9 > 4804.6
TF11 9574.0 ± 22.2 444.1 ± 68.6 > 14,827.6 > 14,827.6 ≥ 3024.0 > 14,827.6 > 14,827.6
TF12 245.6 ± 54.6 34.7 ± 8.8 384.5 ± 75.5 ≥ 1560.8 46.2 ± 7.1 742.4 ± 145.1 > 2462.8
TF13 125.3 ± 5.9 28.0 ± 2.5 265.2 ± 24.6 1053.3 ± 66.8 57.7 ± 11.6 1650.5 ± 19.9 1182.9 ± 68.2
TF14 185.1 ± 11.6 36.7 ± 3.7 285.5 ± 52.1 773.6 ± 39.2 67.4 ± 8.1 999.4 ± 125.8 1192.8 ± 182.2
TF15 105.2 ± 15.2 46.3 ± 9.7 195.9 ± 25.4 1079.6 ± 99.4 50.0 ± 4.4 1655.9 ± 448.3 1801.7 ± 68.5
TF16 715.2 ± 183.5 131.7 ± 28.4 1274.9 ± 153.7 > 6196.6 245.5 ± 30.4 ≥ 1618.2 > 6196.6
TF17 226.5 ± 28.9 65.3 ± 7.6 552.5 ± 62.5 905.1 ± 147.4 151.9 ± 10.3 747.1 ± 72.2 > 5.490
AZT 10.0 ± 1.2 22.8 ± 1.1 25.1 ± 3.0 19.4 ± 2.9 30.1 ± 3.0 14.8 ± 1.1 25.1 ± 1.8
NVP 1856.7 ± 364.6 7495.1 ± 866.8 10,113.7 ± 850.9 ≥ 13,781.4 149.4 ± 12.0 > 15,020.7 > 15,020.7
EFV 35.0 ± 4.7 95.1 ± 9.1 5.5 ± 0.5 239.6 ± 30.4 4.4 ± 0.3 200.8 ± 17.3 183.8 ± 22.0
ETR 5.9 ± 1.0 3.0 ± 0.3 11.1 ± 1.3 18.1 ± 3.2 6.3 ± 1.2 20.4 ± 7.8 29.5 ± 4.8

RPV b 1.54 ± 0.00 1.31 ± 0.36 4.73 ± 0.48 79.4 ± 0.77 5.75 ± 0.11 5.75 ± 0.11 10.7 ± 7.96
a EC50: concentration of compounds protecting 50% of MT-4 cells from lesions caused by HIV-1 virus infection.
b Used for comparison [5]. Standard deviation values were obtained from five parallel experiments.

According to the results in Table 1, all compounds (EC50 = 7.6 ~ 199.0 nM) had potent
inhibitory activity against WT HIV-1. TF2 (EC50 = 7.6 nM), TF4 (EC50 = 7.8 nM) and
TF12 (EC50 = 7.8 nM) exhibited the best anti-HIV-1 activity, being comparable to that of
the second-generation drug ETR (EC50 = 3.0 nM) and much superior to those of AZT
(EC50 = 27.3 nM) and NVP (EC50 = 122.6 nM). Moreover, at a concentration of 279,329.6
nM, TF2 exhibited no cytotoxicity, which contributes to its higher SI values (SI > 36,610.9)
toward HIV-1 IIIB. None of the compounds had inhibitory activity against HIV-2, which
demonstrated that these compounds belong to typical HIV-1 inhibitors.
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Table 3. Resistance fold for K103N mutant strain of TF1–17.

Compounds
Resistance Folds a

Compds
Resistance Folds a

K103N K103N

TF1 3.00 TF10 4.94
TF2 3.68 TF11 2.23
TF3 1.92 TF12 4.49
TF4 9.74 TF13 1.47
TF5 2.00 TF14 1.54
TF6 2.60 TF15 2.00
TF7 6.31 TF16 2.93
TF8 2.56 TF17 1.97
TF9 3.87 EFV 47.5

a Resistance fold: RF, EC50 (K103N)/EC50 (WT).

Table 4. The activity of TF1-TF17 against HIV-1 WT RT.

Compds IC50
a (µM) Compds IC50

a (µM)

TF1 0.062 ± 0.000 TF11 0.483 ± 0.03
TF2 0.055 ± 0.001 TF12 0.038 ± 0.004
TF3 0.060 ± 0.000 TF13 0.059 ± 0.001
TF4 0.050 ± 0.002 TF14 0.041 ± 0.003
TF5 0.054 ± 0.004 TF15 0.063 ± 0.001
TF6 0.052 ± 0.004 TF16 0.160 ± 0.001
TF7 0.073 ± 0.003 TF17 0.057 ± 0.003
TF8 0.041 ± 0.001 NVP 0.568 ± 0.063
TF9 0.053 ± 0.000 EFV 0.013 ± 0.001
TF10 0.055 ± 0.000 ETR 0.011 ± 0.000 b

a IC50: Concentration of compounds needed to prevent 50% of biotin deoxyuridine triphosphate (biotin-dUTP)
from being incorporated into HIV-1 WT RT. b Used for comparison [5].

The preliminary SAR was summarized as follows. Inhibitory activity differed depend-
ing on the types and positions of substituents on the benzene ring introduced to the left
wing by a CH2O linker. For the compounds containing para-substituted benzene ring, the
order of potency was as follows: -CN (TF2, EC50 = 7.6 nM) > -OCH3 (TF5, EC50 = 21.7 nM) >
-NO2 (TF15, EC50 = 23.1 nM) > -NH2 (TF17, EC50 = 32.5 nM) > -CH2OH (TF8, EC50 = 42.8 nM)
> -NHBoc (TF16, EC50 = 45.3 nM). For the compounds containing meta-substituted benzene
ring, the order of potency was as follows: -CN (TF3, EC50 = 24.5 nM) > -CH2OH (TF9,
EC50 = 30.5 nM) > -OCH3 (TF6, EC50 = 35.3 nM). For the compounds containing ortho-
substituted benzene ring, the order of potency was as follows: -CN (TF4, EC50 = 7.8 nM) >
-OCH3 (TF7, EC50 = 25.5 nM) > -CH2OH (TF10, EC50 = 32.2 nM). Among them, TF2 and
TF4 showed the best antiviral activity. It preliminarily showed that compared to TF1 (-H,
EC50 = 17.1 nM), the introduction of para- and ortho -CN substituted benzene rings were
beneficial to the improvement of antiviral potency.

Furthermore, we found that the substitution of different positions on the introduced
benzene rings had a certain effect on cytotoxicity. Compared with compounds contain-
ing ortho- or meta-substituted benzene rings, TF1 (-H, CC50 > 295,865.0 nM), TF2 (para-
CN, CC50 > 279,329.6 nM), TF5 (para-OCH3, CC50 = 253,718.1 nM), and TF15 (para-NO2,
CC50 = 215,001.1 nM) showed low cytotoxicity than that of RPV (CC50 = 3.89 µM). This sug-
gested that the introduction of the benzene ring and para-substituted benzene ring may help
reduce cytotoxicity. However, all three compounds containing hydroxymethyl substituted
benzene rings, TF8 (CC50 = 2917.9 nM), TF9 (CC50 = 3458.6 nM), TF10 (CC50 = 4804.6 nM),
showed a sharp increase in cytotoxicity compared to TF1, which suggested that the intro-
duction of hydroxymethyl benzene ring may be detrimental to the improvement of the
toxicity of compounds.

In addition, 3-pyridine-containing and substituted 3-pyridine-containing compounds
(TF11-TF14) were also synthesized. Compared to TF11 (EC50 = 199.0 nM) with an unsubsti-
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tuted pyridine ring, the activity of TF12~TF14 showed different degrees of increase, among
which TF12 (EC50 = 7.8 nM) was the most active compound.

As shown in Table 2, compounds TF1-17 were further evaluated for their activity
against drug-resistant strains of NNRTIs in MT-4 cells (L100I, K103N, Y181C, Y188L, E138K,
F227L/V106A and RES056).

For single mutant K103N, all compounds (EC50 = 28.0 ~ 444.1 nM) displayed potent
inhibitory activity. Notably, TF2 (EC50 = 28.1 nM), TF12 (EC50 = 34.7 nM) and TF13
(EC50 = 28.0 nM) exhibited outstanding activity, which was better than that of NVP
(EC50 = 7495.1 nM) and EFV (EC50 = 95.1 nM). As for the effect of the types and posi-
tions of substituents on the introduced benzene ring on the activity, compared with TF1
(-H, EC50 = 50.7 nM), the activity of TF2 (para-CN, EC50 = 28.1 nM) was nearly doubled.
Moreover, TF3 (meta-CN, EC50 = 48.4 nM), TF5 (para-OCH3, EC50 = 44.5 nM), and TF15
(para-NO2, EC50 = 46.3 nM) showed comparable activity with TF1; it preliminarily showed
that the para-CN was also the privileged substituent. Regarding the resistance fold (Table 3),
compared with EFV (RF = 47.5), the activity of all compounds against the K103N mutant
strain was not significantly reduced compared to the wild strain (RF = 1.47 ~ 9.74).

As for single mutant E138K, all compounds showed sub-micromolar inhibitory ac-
tivity with the exception of TF11. Among them, TF2 (EC50 = 44.0 nM) was the most
active compound. TF12 (EC50 = 46.2 nM), TF13 (EC50 = 57.7 nM), TF14 (EC50 = 67.4 nM)
and TF15 (EC50 = 50.0 nM) also showed promising activities, which were significantly
more potent than NVP (EC50 = 149.4 nM). Similarly, the compounds with para-substituted
electron-withdrawing groups on the benzene ring (TF2 (para-CN), TF15 (para-NO2) were
more active.

In the case of single mutant strains L100I and Y181C, most of the compounds showed
sub-micromolar to micromolar inhibitory activity, TF2 (EC50 (L100I) = 117.0 nM, EC50 (Y181C)
= 139.3 nM) and TF15 (EC50 (L100I) = 105.2 nM, EC50 (Y181C) = 195.9 nM) had the best activity,
which was better than that of NVP (EC50 (L100I) = 1856.7 nM, EC50 (Y181C) = 10113.7 nM).
For single mutant Y188L and double mutant F227L + V106A, some compounds were
inactive, and most compounds showed sub-micromolar to micromolar inhibitory activity,
among which TF14 (EC50 (Y188L) = 773.6 nM) and TF12 (EC50 (F227L + V106A) = 742.4 nM) had
the best activity, respectively. For the double mutant RES056, unfortunately, only a few
compounds showed micromolar inhibitory activity; TF13 (EC50 = 1182.9 nM) and TF14
(EC50 = 1192.8 nM) had the best inhibitory activity.

To verify the target of synthesized compounds (TF1-TF17), they were further tested
for enzyme inhibitory activity by the ELISA method [38], and the results are shown in
Table 4. All compounds (IC50 = 0.038 ~ 0.438 µM) exhibited potent inhibitory activity
against WT HIV-1 RT, being superior to that of NVP (IC50 = 0.568 µM). The three most
potent compounds against WT HIV-1 mutant, TF2 (IC50 = 0.055 µM), TF4 (IC50 = 0.050 µM)
and TF12 (IC50 = 0.038 µM), displayed higher enzyme inhibitory activity. The weaker
inhibitors of the WT HIV-1 strain showed reduced inhibitory activity, such as TF11 and TF16
(IC50 = 0.483 and 0.160 µM, respectively). It is noteworthy that the antiviral activity of some
compounds was inconsistent with their enzyme-inhibitory potency to some extent. This
discrepancy may be caused by the variations in the HIV-1 RT-substrate binding affinities
and polymerase processivity on different nucleic acid templates [39]. Nonetheless, these
novel synthesized compounds functioned as traditional NNRTIs.

2.3. Molecular Dynamics Simulation Studies

In order to predict the binding modes of these novel synthesized diarylpyrimidines in
the NNRTI-binding pocket and initially explain the anti-resistance profiles to the K103N
strain of TF2, MD simulations were performed in detail using the software Schrödinger [40].
The co-crystal structures of HIV-1 WT RT in complex with RPV (PDB code:2ZD1) [22] and
HIV-1 K103N RT in complex with RPV (PDB code:3MEG) [27] were chosen as templates for
docking studies.
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The binding modes of TF2 to the allosteric pocket in WT and K103N HIV-1 RT were
investigated by running a 500 ns MD simulation. Figure 5 shows that the root-mean-square
deviation (RMSD) from the initial structure of TF2 was computed throughout the MD
simulation for all systems. Figure 5A illustrates the RMSD of ligand TF2; the plot showed
that the inhibitor in the WT and K103N mutant strains had deviated from the starting
structure. Figure 5B illustrates the RMSD of the complex of RT and ligand TF2, which
formed different conformational during the MD time. As a result of the narrow range of
RMSD values, these conformational ensembles were structurally similar.
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Compound TF2 bound to WT and K103N RTs in similar binding modes, the binding
modes of TF2 within the NNRTI-binding pocket resembled other diarylpyrimidines as the
typical conformation (U shape), as noted in the snapshots collected at the end of the MD
trajectories (Figure 6). However, there were some differences in the orientation of some
groups and the distance between them and several remarkable features and well-known
interactions were delineated here.

In the WT RT protein (Figure 6A), the right benzonitrile moiety was situated in the toler-
ant region I, where the cyano group could form a water-mediated hydrogen bond with K103.
Stable hydrogen-bonding interactions were formed between the 2-aminopyrimidine ring
of TF2 and the backbone (both NH and C = O units) of K101. The left 2,4,6-trisubstituted
moiety remained stable in a hydrophobic sub-pocket formed by Y181, Y188, and W229.
Moreover, the newly introduced p-cyanobenzonitrile group formed π-π stacking interaction
with Y188 and hydrogen-bonding interaction with an extra amino acid residue H221. In
the K103N RT protein (Figure 6B), compared to the binding mode in WT RT, the overall
structure of TF2 was shifted, causing it to move away from K101 and affecting hydrogen-
bonding interactions. A hydrogen bond was formed between the pyrimidine-bound NH of
TF2 and the carbonyl oxygen of K101, but the N atom on the pyrimidine ring formed water
bridge-mediated hydrogen bonds with K101 and E138. Besides, the left 2,4,6-trisubstituted
moiety was also positioned in the hydrophobic sub-pocket, and the phenyl group formed
π-π stacking interaction with the indole ring of W229. Similarly, the p-cyanophenyl moiety
extended out of the hydrophobic channel, but no additional interactions with surrounding
amino acids were found.

MMGBSA calculations [41] were used to determine the relative binding strengths
of the compound TF2 to the WT and K103N HIV-1 RTs. These estimations are shown
in Table 5. Accordingly, the binding affinity (∆Gbind) of TF2 to WT RT was higher than
that to K103N RT, supporting the experimental EC50 values. Two important interactions
observed in the complex of TF2 and WT were the hydrogen-bonding interaction with an
extra residue H221 and a water-mediated hydrogen bond with K103. The H bond (∆GHbond)
contributed more to TF2 binding to WT RT comparing K103N RT, which was consistent
with the MD studies.
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Table 5. MM/GBSA energy calculations.

Binding Energies a

(kcal/mol) TF2→ NNIBP (WT) TF2→ NNIBP (K103N)

∆GHbond −1.1 ± 0.3 −0.9 ± 0.3
∆Gbind −113.8 ± 3.8 −109.0 ± 4.5

a ∆GHbond = Hydrogen-bonding correction; ∆Gbind = total binding free energy.

Overall, a comparison with WT RT revealed that K103N mutation would destabilize
the binding mode of TF2 by partially disrupting the protein-ligand hydrophobic and
hydrogen bond interactions, which could also contribute to the reduced activity against
this strain. Moreover, the newly introduced p-cyanophenyl moiety reached the primer grip
region, but no interaction with the key amino acid here was observed. It pointed to the
outside of the β12, which may not be an ideal location to interact with amino acids in the
primer grip region. This also inspired us to pay attention to the selection of linkers to make
it more oriented to explore the primer grip region.

3. Materials and Methods
3.1. Synthesis of Compounds

On a column filled with Silica Gel GF254 for thin-layer chromatography (TLC) and
spots were observed using UV radiation at 254 and 365 nm wavelengths. The melting points
(mp) of compounds were determined using a micro melting point meter. Flash column chro-
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matography was carried out on a column filled with Silica Gel 60 (200–300 mesh). 1H NMR and
13C NMR spectra were acquired on a Bruker AV-400 spectrometer with tetramethylsilane as
the internal standard and DMSO-d6 as solvent. The relevant mass spectrometry data were
measured by a Standard G1313A Autosampler instrument. Reagents used in this work
required no further purification and were bought from commercial sources.

4-((4-(4-Formyl-2,6-dimethylphenoxy)pyrimidin-2-yl)amino)benzonitrile (10)
9 (3.00 g, 13.04 mmol), 4-hydroxy-3,5-dimethylbenzaldehyde (2.35 g, 15.65 mmol) and

K2CO3 (3.60 g, 26.08 mmol) were mixed at 5 mL DMF. The reaction mixture was stirred at
100 ◦C for 10 h. After the reaction was finished (monitored by TLC), water (40 mL) was
added, and the precipitate was filtered to obtain 10, brown solid, yield: 61%. 1H NMR
(400 MHz, DMSO-d6) δ 10.13 (s, 1H, -CHO), 10.03 (s, 1H, NH), 8.50 (d, J = 5.6 Hz, 1H,
C6-Pyrimidine-H), 7.80 (s, 2H, Benzene-H), 7.56 (d, J = 8.6 Hz, 2H, Benzene-H), 7.44 (d,
J = 8.7 Hz, 2H, Benzene-H), 6.71 (d, J = 5.6 Hz, 1H, C5-Pyrimidine-H), 2.17 (s, 6H, 2×CH3).
ESI-MS: m/z calcd for C20H16N4O2 345.13 [M + H]+, found 345.4 [M + H]+.

4-((4-(4-(Hydroxymethyl)-2,6-dimethylphenoxy)pyrimidin-2-yl)amino) benzonitrile (11)
10 (1.00 g, 2.91 mmol) was dissolved in 30 mL MeOH, then NaBH4 (0.10 g, 2.91 mmol)

was added slowly in portions at 0 ◦C. The reaction was stirred for 0.5 h at 0 ◦C and for
a further 4 h at room temperature. A saturated brine solution (30 mL) was added, and
the mixture was extracted with ethyl acetate (3 × 20 mL) after the reaction solution was
concentrated under reduced pressure. Then, the organic layer was dried with anhydrous
sodium sulfate. Flash column chromatography was used to separate 11 from the mixture
with ethyl acetate and petroleum ether, white solid, yield: 45%. 1H NMR (400 MHz, DMSO-
d6) δ 10.11 (s, 1H, NH), 8.44 (d, J = 5.6 Hz, 1H, C6-Pyrimidine-H), 7.59 (d, J = 8.7 Hz, 2H,
Benzene-H), 7.50 (d, J = 8.8 Hz, 2H, Benzene-H), 7.15 (s, 2H, Benzene-H), 6.60 (d, J = 5.6 Hz,
1H, C5-Pyrimidine-H), 5.25 (t, J = 5.6 Hz, 1H, OH), 4.52 (d, J = 5.6 Hz, 2H, CH2), 2.07 (s, 6H,
2×CH3). ESI-MS: m/z calcd for C20H18N4O2 347.14 [M + H]+, found 347.3 [M + H]+.

4-((4-(4-(Bromomethyl)-2,6-dimethylphenoxy)pyrimidin-2-yl)amino)benzonitrile (12)
11 (1.00g, 2.88 mmol) was dissolved in 20 mL dichloromethane, then PBr3 (0.33 mL,

3.46 mmol) was dissolved in 1.5 mL dichloromethane and added dropwise to the reaction
solution at 0 ◦C. The reaction mixture was stirred for 2 h at 0 ◦C and for a further 2 h at room
temperature until TLC detection of the reaction was complete. A saturated brine solution
(30 mL) was added, and the mixture was extracted with ethyl acetate (3 × 20 mL) after the
reaction solution was concentrated under reduced pressure. Then, the organic layer was
dried with anhydrous sodium sulfate. Flash column chromatography was used to separate
12 from the mixture with ethyl acetate and petroleum ether, white solid, yield: 51%. 1H
NMR (400 MHz, DMSO-d6) δ 10.14 (s, 1H, NH), 8.47 (d, J = 5.6 Hz, 1H, C6-Pyrimidine-H),
7.56 (d, J = 8.6 Hz, 2H, Benzene-H), 7.52 (d, J = 8.2 Hz, 2H, Benzene-H), 7.32 (s, 2H, Benzene-
H), 6.66 (d, J = 5.6 Hz, 1H, C5-Pyrimidine-H), 4.79 (d, J = 18.3 Hz, 2H, CH2), 2.07 (s, 6H,
2×CH3). ESI-MS: m/z calcd for C20H17BrN4O 409.06 [M + H]+, found 409.4 [M + H]+.

3.1.1. General Synthesis Procedure for the Preparation of TF1-TF16

Intermediate 12 (0.25 mmol), different substituted thiophenols (0.30 mmol), KOH
(0.30 mmol) and KI (0.30 mmol) were mixed in 10 mL MeOH. Stirred at 80 ◦C for 4 h, and
the reaction was detected by TLC. Dichloromethane (3 × 20 mL) was used to extract the
reaction solution after adding saturated sodium chloride solution (30 mL); then, the organic
layer was dried with anhydrous sodium sulfate. Using flash column chromatography, the
target compounds were separated from ethyl acetate/petroleum ether.

4-((4-(2,6-dimethyl-4-(phenoxymethyl)phenoxy)pyrimidin-2-yl)amino) benzonitrile (TF1)
White solid, yield: 50%, mp: 179–182 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.17 (s,

1H, NH), 8.46 (d, J = 5.6 Hz, 1H, C6-Pyrimidine-H), 7.57 (d, J = 8.5 Hz, 2H, Benzene-H), 7.49
(d, J = 8.6 Hz, 2H, Benzene-H), 7.33 (d, J = 9.8 Hz, 4H, Benzene-H), 7.09 (d, J = 8.0 Hz, 2H,
Benzene-H), 6.97 (t, J = 7.3 Hz, 1H, Benzene-H), 6.65 (d, J = 5.6 Hz, 1H, C5-Pyrimidine-H),
5.08 (s, 2H, CH2), 2.09 (s, 6H, 2×CH3). 13C NMR (100 MHz, DMSO-d6) δ 168.97, 160.76,
159.68, 158.95, 149.60, 145.07, 134.90, 133.11, 130.90, 130.01, 129.05, 121.24, 119.90, 118.57,
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115.13, 102.90, 99.33, 69.39, 16.55. ESI-MS: m/z calcd for C26H22N4O2 423.17 [M + H]+, found
423.17 [M + H]+.

4-((4-(4-((4-cyanophenoxy)methyl)-2,6-dimethylphenoxy)pyrimidin-2-yl)amino) ben-
zonitrile (TF2)

White solid, yield: 62%, mp: 202–205 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.09 (s,
1H, NH), 8.40 (d, J = 5.6 Hz, 1H, C6-Pyrimidine-H), 7.76–7.71 (m, 2H, Benzene-H), 7.50 (d,
J = 8.6 Hz, 2H, Benzene-H), 7.41 (d, J = 8.6 Hz, 2H, Benzene-H), 7.27 (s, 2H, Benzene-H),
7.19 (d, J = 8.7 Hz, 2H, Benzene-H), 6.58 (d, J = 5.6 Hz, 1H, C5-Pyrimidine-H), 5.13 (s, 2H,
CH2), 2.02 (s, 6H, 2×CH3). 13C NMR (100 MHz, DMSO-d6) δ 168.93, 162.37, 160.80, 159.67,
149.85, 145.07, 134.71, 133.94, 133.09, 131.07, 129.29, 119.91, 119.55, 118.58, 116.27, 103.57,
102.89, 99.33, 70.05, 16.54. ESI-MS: m/z calcd for C27H21N5O2 448.17 [M + H]+, found 448.38
[M + H]+.

3-((4-((2-((4-cyanophenyl)amino)pyrimidin-4-yl)oxy)-3,5-dimethylbenzyl)oxy) ben-
zonitrile (TF3)

White solid, yield: 54%, mp: 199–202 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.17 (s,
1H, NH), 8.47 (d, J = 5.7 Hz, 1H, C6-Pyrimidine-H), 7.60–7.43 (m, 9H, Benzene-H), 7.34 (s,
2H, Benzene-H), 6.66 (d, J = 5.6 Hz, 1H, C5-Pyrimidine-H), 5.17 (s, 2H, CH2), 2.10 (s, 6H,
2×CH3). 13C NMR (100 MHz, DMSO-d6) δ 168.94, 160.79, 159.67, 159.08, 149.82, 145.07,
134.10, 133.09, 131.36, 131.04, 129.31, 125.26, 121.00, 119.92, 119.10, 118.59, 118.03, 112.83,
102.90, 99.33, 70.11, 16.54. ESI-MS: m/z 448.38 calcd for C27H21N5O2 446.17 [M-H]−, found
446.44 [M-H]−.

2-((4-((2-((4-cyanophenyl)amino)pyrimidin-4-yl)oxy)-3,5-dimethylbenzyl)oxy) ben-
zonitrile (TF4)

White solid, yield: 61%, mp: 198–201 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.15 (s, 1H,
NH), 8.47 (d, J = 5.6 Hz, 1H, C6-Pyrimidine-H), 7.77 (dd, J = 7.7, 1.7 Hz, 1H, Benzene-H),
7.70 (td, J = 8.0, 7.5, 1.7 Hz, 1H, Benzene-H), 7.61 (d, J = 8.5 Hz, 2H, Benzene-H), 7.48 (d,
J = 8.6 Hz, 2H, Benzene-H), 7.43 (d, J = 8.6 Hz, 1H, Benzene-H), 7.35 (s, 2H, Benzene-H),
7.14 (t, J = 7.6 Hz, 1H, Benzene-H), 6.65 (d, J = 5.6 Hz, 1H, C5-Pyrimidine-H), 5.30 (s,
2H, CH2), 2.11 (s, 6H, 2×CH3). 13C NMR (100 MHz, DMSO-d6) δ 168.93, 160.72, 160.47,
159.71, 149.73, 145.01, 135.52, 134.30, 133.91, 133.17, 131.07, 128.77, 121.84, 119.86, 118.57,
116.88, 114.01, 103.03, 101.35, 99.42, 70.34, 16.64. ESI-MS: m/z calcd for C27H21N5O2 448.17
[M + H]+, found 448.30 [M + H]+.

4-((4-(4-((4-methoxyphenoxy)methyl)-2,6-dimethylphenoxy)pyrimidin-2-yl) amino)
benzonitrile (TF5)

White solid, yield: 63%, mp: 188–191 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.16 (s,
1H, NH), 8.46 (d, J = 5.6 Hz, 1H, C6-Pyrimidine-H), 7.58 (d, J = 8.5 Hz, 2H, Benzene-H),
7.51 (d, J = 8.6 Hz, 2H, Benzene-H), 7.30 (s, 2H, Benzene-H), 7.06–7.00 (m, 2H, Benzene-H),
6.92–6.85 (m, 2H, Benzene-H), 6.65 (d, J = 5.6 Hz, 1H, C5-Pyrimidine-H), 5.02 (s, 2H, CH2),
3.71 (s, 3H, CH3), 2.09 (s, 6H, 2×CH3). 13C NMR (100 MHz, DMSO-d6) δ 168.98, 160.76,
159.68, 153.97, 153.01, 149.52, 145.08, 135.15, 133.12, 130.85, 128.95, 119.91, 118.60, 116.03,
115.10, 102.90, 99.33, 70.00, 55.82, 16.55. ESI-MS: m/z calcd for C27H24N4O3 453.18 [M + H]+,
found 453.20 [M + H]+.

4-((4-(4-((3-methoxyphenoxy)methyl)-2,6-dimethylphenoxy)pyrimidin-2-yl) amino)
benzonitrile (TF6)

White solid, yield: 63%, mp: 149–152 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.17 (s,
1H, NH), 8.47 (d, J = 5.6 Hz, 1H, C6-Pyrimidine-H), 7.59 (d, J = 8.5 Hz, 2H, Benzene-H),
7.50 (d, J = 8.6 Hz, 2H, Benzene-H), 7.32 (s, 2H, Benzene-H), 7.22 (t, J = 8.2 Hz, 1H, Benzene-
H), 6.71–6.62 (m, 3H, Benzene-H), 6.56 (dd, J = 8.2, 2.3 Hz, 1H, C5-Pyrimidine-H), 5.08
(s, 2H, CH2), 3.76 (s, 3H, CH3), 2.10 (s, 6H, 2×CH3). 13C NMR (100 MHz, DMSO-d6) δ
168.97, 161.04, 160.75, 160.23, 159.69, 149.59, 145.07, 134.85, 133.12, 130.89, 130.45, 129.02,
119.90, 118.60, 107.34, 107.06, 102.92, 101.37, 99.33, 69.56, 55.55, 16.55. ESI-MS: m/z calcd for
C27H24N4O3 453.18 [M + H]+, found 453.25 [M + H]+.

4-((4-(4-((2-methoxyphenoxy)methyl)-2,6-dimethylphenoxy)pyrimidin-2-yl) amino)
benzonitrile (TF7)



Pharmaceuticals 2022, 15, 1438 13 of 19

White solid, yield: 58%, mp: 208–211 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.15 (s,
1H, NH), 8.47 (d, J = 5.7 Hz, 1H, C6-Pyrimidine-H), 7.63 (d, J = 8.3 Hz, 2H, Benzene-H), 7.52
(d, J = 8.5 Hz, 2H, Benzene-H), 7.31 (s, 2H, Benzene-H), 7.12 (d, J = 7.4 Hz, 1H, Benzene-H),
7.01 (d, J = 7.5 Hz, 1H, Benzene-H), 6.92 (p, J = 7.4 Hz, 2H, Benzene-H), 6.65 (d, J = 5.7 Hz,
1H, C5-Pyrimidine-H), 5.06 (s, 2H, CH2), 3.78 (s, 3H, CH3), 2.10 (s, 6H, 2×CH3). 13C NMR
(100 MHz, DMSO-d6) δ 168.99, 160.65, 159.72, 149.72, 149.50, 148.45, 145.05, 135.02, 133.19,
130.81, 129.05, 121.71, 121.08, 119.89, 118.66, 114.20, 112.62, 102.99, 99.47, 70.27, 55.95,
16.58.ESI-MS: m/z calcd for C27H24N4O3 453.18 [M + H]+, found 453.32 [M + H]+.

4-((4-(4-((4-(hydroxymethyl)phenoxy)methyl)-2,6-dimethylphenoxy)pyrimidin-2-yl)
amino)benzonitrile (TF8)

White solid, yield: 50%, mp: 209–212 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.16 (s, 1H,
NH), 8.46 (d, J = 5.6 Hz, 1H, C6-Pyrimidine-H), 7.57 (d, J = 8.6 Hz, 2H, Benzene-H), 7.51 (d,
J = 8.6 Hz, 2H, Benzene-H), 7.32 (s, 2H, Benzene-H), 7.26 (d, J = 8.1 Hz, 2H, Benzene-H), 7.04
(d, J = 8.2 Hz, 2H, Benzene-H), 6.65 (d, J = 5.6 Hz, 1H, C5-Pyrimidine-H), 5.07 (s, 3H, CH2,
OH), 4.43 (d, J = 5.7 Hz, 2H, CH2,), 2.09 (s, 6H, 2×CH3). 13C NMR (100 MHz, DMSO-d6) δ
168.98, 160.77, 159.68, 157.87, 149.58, 145.08, 135.31, 134.97, 133.11, 130.88, 129.05, 128.42,
119.91, 118.59, 114.73, 102.90, 99.33, 69.53, 63.02, 16.55. ESI-MS: m/z calcd for C27H24N4O3
451.18 [M − H]−, found 451.54 [M − H]−.

4-((4-(4-((3-(hydroxymethyl)phenoxy)methyl)-2,6-dimethylphenoxy)pyrimidin-2-yl)
amino)benzonitrile (TF9)

White solid, yield: 50%, mp: 147–150 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.17 (s,
1H, NH), 8.47 (d, J = 5.7 Hz, 1H, C6-Pyrimidine-H), 7.59 (d, J = 8.7 Hz, 2H, Benzene-H), 7.51
(d, J = 8.4 Hz, 2H, Benzene-H), 7.32 (s, 2H, Benzene-H), 7.27 (t, J = 7.9 Hz, 1H, Benzene-H),
7.05 (s, 1H, Benzene-H), 6.94 (d, J = 7.8 Hz, 2H, Benzene-H), 6.65 (d, J = 5.6 Hz, 1H, C5-
Pyrimidine-H), 5.19 (t, J = 5.8 Hz, 1H, OH), 5.08 (s, 2H, CH2), 4.51 (d, J = 5.5 Hz, 2H, CH2),
2.09 (s, 6H, 2×CH3). 13C NMR (100 MHz, DMSO-d6) δ 168.98, 160.76, 159.68, 158.94, 149.57,
145.08, 144.86, 134.96, 133.13, 130.88, 129.63, 129.05, 119.91, 119.29, 118.60, 113.29, 113.08,
102.91, 99.35, 69.42, 63.24, 16.56. ESI-MS: m/z calcd for C27H24N4O3 453.18 [M + H]+, found
453.48 [M + H]+.

4-((4-(4-((2-(hydroxymethyl)phenoxy)methyl)-2,6-dimethylphenoxy)pyrimidin-2-yl)
amino)benzonitrile (TF10)

White solid, yield: 45%, mp: 179–182 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.21–10.16
(m, 1H, NH), 8.46 (d, J = 5.6 Hz, 1H, C6-Pyrimidine-H), 7.62 (d, J = 8.5 Hz, 2H, Benzene-H),
7.49 (d, J = 8.6 Hz, 2H, Benzene-H), 7.43 (dd, J = 7.5, 1.7 Hz, 1H, Benzene-H), 7.31 (s, 2H,
Benzene-H), 7.22 (td, J = 7.8, 1.8 Hz, 1H, Benzene-H), 7.08 (d, J = 8.2 Hz, 1H, Benzene-H),
6.97 (t, J = 7.4 Hz, 1H, Benzene-H), 6.64 (d, J = 5.6 Hz, 1H, C5-Pyrimidine-H), 5.34 (s,
1H, OH), 5.14 (s, 2H, CH2), 4.60 (s, 2H, CH2), 2.10 (s, 6H, 2×CH3). 13C NMR (100 MHz,
DMSO-d6) δ 169.04, 160.47, 159.54, 155.60, 149.33, 144.99, 135.31, 133.14, 131.24, 130.82,
128.25, 128.01, 127.63, 120.92, 119.84, 118.68, 112.08, 103.03, 99.43, 69.30, 58.43, 16.64.ESI-MS:
m/z calcd for C27H24N4O3 453.18 [M + H]+, found 453.38 [M + H]+.

4-((4-(2,6-Dimethyl-4-((pyridin-3-yloxy)methyl)phenoxy)pyrimidin-2-yl)amino) ben-
zonitrile (TF11)

White solid, yield: 47%, mp: 237–240 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.16 (s,
1H, NH), 8.46 (d, J = 5.6 Hz, 1H, C6-Pyrimidine-H), 7.66 (t, J = 2.3 Hz, 1H, Pyridine-H), 7.62
(d, J = 5.5 Hz, 1H, Benzene-H), 7.54 (d, J = 8.5 Hz, 2H, Benzene-H), 7.39 (s, 2H, Benzene-H),
7.38 (d, J = 8.7 Hz, 2H, Benzene-H), 7.32 (dd, J = 9.0, 5.4 Hz, 1H, Pyridine-H), 6.96 (dd,
J = 8.9, 2.7 Hz, 1H, Pyridine-H), 6.65 (d, J = 5.6 Hz, 1H, C5-Pyrimidine-H), 5.38 (s, 2H, CH2),
2.08 (s, 6H, 2×CH3). 13C NMR (100 MHz, DMSO-d6) δ 168.79, 160.82, 159.65, 150.23, 144.99,
134.09, 133.33, 133.26, 133.04, 131.54, 129.48, 127.51, 119.80, 118.48, 102.93, 99.39, 62.23, 16.58.
ESI-MS: m/z calcd for C25H21N5O2 424.17 [M + H]+, found 424.10 [M + H]+.

3-((4-((2-((4-cyanophenyl)amino)pyrimidin-4-yl)oxy)-3,5-dimethylbenzyl)oxy) picol-
inonitrile (TF12)

White solid, yield: 41%, mp: 245–248 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.14 (s,
1H, NH), 8.47 (d, J = 5.6 Hz, 1H, C6-Pyrimidine-H), 8.36 (d, J = 4.5 Hz, 1H, Pyridine-H), 7.97
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(d, J = 8.7 Hz, 1H, Pyridine-H), 7.76 (dd, J = 8.8, 4.5 Hz, 1H, Pyridine-H), 7.61 (d, J = 8.5 Hz,
2H, Benzene-H), 7.50 (d, J = 8.5 Hz, 2H, Benzene-H), 7.36 (s, 2H, Benzene-H), 6.65 (d,
J = 5.6 Hz, 1H, C5-Pyrimidine-H), 5.36 (s, 2H, CH2), 2.11 (s, 6H, 2×CH3). 13C NMR (100
MHz, DMSO-d6) δ 168.91, 160.75, 159.70, 158.34, 149.91, 145.00, 143.70, 133.33, 133.17, 131.18,
129.48, 128.99, 122.69, 122.61, 119.85, 118.58, 115.95, 103.03, 99.41, 70.77, 16.63. ESI-MS: m/z
calcd for C26H20N6O2 447.16 [M − H]−, found 447.24 [M − H]−.

5-((4-((2-((4-cyanophenyl)amino)pyrimidin-4-yl)oxy)-3,5-dimethylbenzyl)oxy) nicoti-
nonitrile (TF13)

White solid, yield: 52%, mp: 195–198 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.09 (s,
1H, NH), 8.64 (d, J = 2.9 Hz, 1H, Pyridine-H), 8.58 (d, J = 1.5 Hz, 1H, Pyridine-H), 8.40 (d,
J = 5.6 Hz, 1H, C6-Pyrimidine-H), 8.05 (t, J = 2.3 Hz, 1H, Pyridine-H), 7.51 (d, J = 8.5 Hz,
2H, Benzene-H), 7.42 (d, J = 8.6 Hz, 2H, Benzene-H), 7.28 (s, 2H, Benzene-H), 6.59 (d,
J = 5.6 Hz, 1H, C5-Pyrimidine-H), 5.17 (s, 2H, CH2), 2.03 (s, 6H, 2×CH3). 13C NMR (100
MHz, DMSO-d6) δ 168.91, 160.83, 159.67, 154.64, 149.98, 145.06, 145.01, 143.13, 133.54, 133.10,
131.15, 129.49, 124.45, 119.92, 118.60, 117.21, 109.75, 102.91, 99.34, 70.61, 16.54. ESI-MS: m/z
calcd for C26H20N6O2 447.16 [M − H]−, found 447.27 [M − H]−.

4-((4-(4-(((6-fluoropyridin-3-yl)oxy)methyl)-2,6-dimethylphenoxy)pyrimidin-2-yl)
amino)benzonitrile (TF14)

White solid, yield: 61%, mp: 185–188 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.16 (s, 1H,
NH), 8.47 (d, J = 5.6 Hz, 1H, C6-Pyrimidine-H), 8.04 (dd, J = 3.1, 1.8 Hz, 1H, Pyridine-H),
7.74 (ddd, J = 9.4, 6.7, 3.1 Hz, 1H, Pyridine-H), 7.58 (d, J = 8.6 Hz, 2H, Benzene-H), 7.49 (d,
J = 8.6 Hz, 2H, Benzene-H), 7.34 (s, 2H, Benzene-H), 7.16 (dd, J = 8.9, 3.4 Hz, 1H, Pyridine-
H), 6.65 (d, J = 5.6 Hz, 1H, C5-Pyrimidine-H), 5.17 (s, 2H, CH2), 2.10 (s, 6H, 2×CH3). 13C
NMR (100 MHz, DMSO-d6) δ 168.93, 160.80, 159.67, 158.86, 156.58, 153.59, 153.55, 149.81,
145.06, 134.15, 133.86, 133.70, 133.11, 131.04, 129.26, 128.98, 128.90, 119.91, 118.59, 110.50,
110.10, 102.89, 99.32, 70.73, 16.54. ESI-MS: m/z calcd for C25H20FN5O2 442.16 [M + H]+,
found 442.61 [M + H]+.

4-((4-(2,6-Dimethyl-4-((4-nitrophenoxy)methyl)phenoxy)pyrimidin-2-yl)amino) ben-
zonitrile (TF15)

White solid, yield: 71%, mp: 233–236 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.20 (s,
1H, NH), 8.48 (d, J = 5.6 Hz, 1H, C6-Pyrimidine-H), 8.25 (d, J = 8.8 Hz, 2H, Benzene-H), 7.59
(d, J = 8.6 Hz, 2H, Benzene-H), 7.49 (d, J = 8.5 Hz, 2H, Benzene-H), 7.37 (s, 2H, Benzene-H),
7.31 (d, J = 8.9 Hz, 2H, Benzene-H), 6.67 (d, J = 5.6 Hz, 1H, C5-Pyrimidine-H), 5.27 (s, 2H,
CH2), 2.11 (s, 6H, 2×CH3). 13C NMR (100 MHz, DMSO-d6) δ 168.91, 164.18, 160.80, 159.66,
149.93, 145.08, 141.45, 133.73, 133.06, 131.11, 129.33, 126.36, 119.92, 118.57, 115.71, 102.86, 99.30,
70.56, 16.53. ESI-MS: m/z calcd for C26H21N5O4 468.16 [M + H]+, found 468.19 [M + H]+.

(4-((4-((2-((4-cyanophenyl)amino)pyrimidin-4-yl)oxy)-3,5-dimethylbenzyl)oxy) phenyl)
carbamic acid tert-butyl ester (TF16)

White solid, yield: 73%, mp: 184–187 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.15 (s,
1H, NH), 9.14 (s, 1H, NH), 8.46 (d, J = 5.7 Hz, 1H, C6-Pyrimidine-H), 7.58 (d, J = 8.7 Hz, 2H,
Benzene-H), 7.51 (d, J = 8.7 Hz, 2H, Benzene-H), 7.38 (d, J = 8.5 Hz, 2H, Benzene-H), 7.31 (s,
2H, Benzene-H), 7.02–6.96 (m, 2H, Benzene-H), 6.64 (d, J = 5.7 Hz, 1H, C5-Pyrimidine-H),
5.01 (s, 2H, CH2), 2.09 (s, 6H, 2×CH3), 1.47 (s, 9H, 3×CH3). 13C NMR (100 MHz, DMSO-d6)
δ 168.97, 160.77, 159.67, 154.19, 153.40, 149.57, 145.07, 134.99, 133.34, 133.12, 130.85, 129.14,
120.11, 119.90, 118.60, 115.14, 102.90, 99.32, 79.13, 69.75, 28.65, 16.54. ESI-MS: m/z calcd for
C31H31N5O4 538.24 [M + H]+, found 538.16 [M + H]+.

3.1.2. Preparation Method of TF17

TF16 (0.2 g, 0.37 mmol) was dissolved in 5 mL dichloromethane. Following the
addition of the trifluoroacetic acid (2 mL), the mixture was stirred for 5 hours at room
temperature. After the reaction was finished (monitored by TLC), the reaction solution
was mixed with water (10 mL) and adjusted pH value to 9–10 with saturated sodium
bicarbonate aqueous. Dichloromethane (3 × 20 mL) was used to extract the reaction
solution after adding saturated sodium chloride solution (30 mL). Then, the organic layer
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was dried with anhydrous sodium sulfate. Flash column chromatography was used to
separate TF17 from the mixture with ethyl acetate and petroleum ether.

4-((4-(4-((4-Aminophenoxy)methyl)-2,6-dimethylphenoxy)pyrimidin-2-yl)amino) ben-
zonitrile (TF17)

White solid, yield: 65%, mp: 241–244 ◦C . 1H NMR (400 MHz, DMSO-d6) δ 10.17
(s, 1H, NH), 9.35 (s, 2H, NH2), 8.47 (d, J = 5.7 Hz, 1H, C6-Pyrimidine-H), 7.56 (d, J = 8.7
Hz, 2H, Benzene-H), 7.50 (d, J = 8.6 Hz, 2H, Benzene-H), 7.32 (s, 2H, Benzene-H), 7.21 (d,
J = 8.5 Hz, 2H, Benzene-H), 7.14 (d, J = 8.5 Hz, 2H, Benzene-H), 6.66 (d, J = 5.7 Hz, 1H,
C5-Pyrimidine-H), 5.09 (s, 2H, CH2), 2.09 (s, 6H, 2×CH3). 13C NMR (100 MHz, DMSO-d6)
δ 168.95, 160.83, 159.65, 157.18, 149.71, 145.09, 134.59, 133.11, 130.96, 129.20, 127.78, 123.35,
119.95, 118.57, 116.11, 102.85, 99.31, 69.97, 16.54. ESI-MS: m/z calcd for C26H23N5O2 438.19
[M + H]+, found 438.57 [M + H]+.

3.2. In Vitro Anti-HIV Assay

Evaluation of the anti-HIV activity and cytotoxicity of the target compounds was
performed by utilizing the MTT method in MT-4 cells described previously [37]. Stock
solutions (10 × final concentration) of test compounds were added in 25 µL volumes to
two series of triplicate wells to allow simultaneous evaluation of their effects on mock- and
HIV-infected cells at the beginning of each experiment. Serial five-fold dilutions of test
compounds were prepared directly in flat-bottomed 96-well microtiter trays by adding
100 µL medium to the 25 µL stock solution and transferring 25 µL of this solution to
another well that contained 100 µL medium using a Biomek 3000 robot (Beckman Instru-
ments, Fullerton, CA). Each sample includes untreated control HIV- and mock-infected
cell samples. WT HIV-1 strain (IIIB), HIV-1 drug-resistant strains including L100I, K103N,
Y181C, Y188L, E138K, K103N/Y181C, F227L/V106A or HIV-2 strain (ROD) stock (50 µL)
at 100–300 CCID50 (50% cell culture infectious dose) or culture medium was added to
either the infected or mock-infected wells of the microtiter tray. Mock-infected cells were
used to evaluate the effect of test compounds on uninfected cells to evaluate their cyto-
toxicity. Exponentially growing MT-4 cells were centrifuged for 5 min at 1000 rpm, and
the supernatant was discarded. The MT-4 cells were resuspended at 6 × 105 cells/mL
and then transferred 50 µL volumes to the microtiter tray wells. After infection five days,
the viability of mock- and HIV-infected cells was examined spectrophotometrically by the
MTT assay. The 50% cytotoxic concentration (CC50) was defined as the concentration of
the test compound that reduced the viability of the mock-infected MT4 cells by 50%. The
50% effective concentration (EC50) was defined as the concentration of the test compound
achieving 50% protection from the cytopathic effect of the virus in infected cells.

3.3. HIV-1 RT Inhibition Assay

An HIV-1 reverse transcriptase (RT) assay kit produced by Roche was used for the RT
inhibition assay. All the reagents for performing the RT reaction came from the kit, and the
ELSIA procedures for RT inhibition assay were conducted following the description in the
kit protocol [38]. In brief, the reaction mixture containing template/primer complex, viral
nucleotides (dNTPs) and HIV-1 reverse transcriptase (RT) enzyme in the incubation buffer
with or without inhibitors was incubated for 1 h at 37 ◦C. Subsequently, the reaction mixture
was transferred to a streptavidine-coated microtiter plate (MTP) and incubated for another
1 h at 37 ◦C to ensure the retranscriptional cDNA chain that consisted biotin labeled dNTPs
bound to streptavidine. Then used, a washing buffer was used to remove the unbound
dNTPs, and an anti-DIG-POD working solution was added. After incubation for 1 h at
37 ◦C, the DIG-labeled dNTPs incorporated in cDNA were bound to the anti-DIG-POD
antibody. The unbound anti-DIG-PODs were removed, and the peroxidesubstrate (ABST)
solution was added to the MTPs. A colored reaction proceeds during the cleavage of the
substrate catalyzed by POD. The absorbance of the sample was determined at O.D. 405 nm
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using a microtiter plate ELISA reader. The percentage inhibitory activity of RT inhibitors
was calculated by the formula given below:

% Inhibition = [O.D. value with RT but without inhibitors − O.D. value
with RT and inhibitors]/[O.D. value with RT and inhibitors − O.D. value

without RT and inhibitors].

The IC50 values corresponded to the concentrations of the test compounds required to
inhibit the incorporation of biotin-dUTP into RT by 50%.

3.4. MD Simulation Methods

Ligand preparation: The ligand structure TF2 was generated with Chemdraw (version
20.0), and the structure was then transferred to 3D molecules using Chem3D (version 20.0),
which was then prepared with the LigPrep module of Schrodinger suites. The ligands were
prepared with an OPLS4 force field, and the ionization states were generated via Epik at
pH 7.0. A maximum of 32 conformations were generated per ligand, and the best-scoring
conformation was used for docking.

Ligand Docking: The co-crystal structures of HIV-1 WT RT in complex with RPV
(PDB code:2ZD1) [22], and HIV-1 K103N RT in complex with RPV (PDB code:3MEG) [27]
were prepared using the Protein Preparation Wizard module of Schrodinger suites (Release
2022-1). All original hydrogens were removed and re-added. The protein bond order was
reassigned with the CCD database, and H2O molecules were deleted. The protonation
state for the protein complex was set to pH 7.0. Furthermore, the missing side chains
were rebuilt using prime. The hydrogen bond order was reassigned with PROPKA, and
restrained minimization was carried out with the OPLS4 force field. The generated protein
complex structures were then used for docking.

Induced-fit docking (Schrodinger suites, Release 2022-1) was performed to investigate
the binding poses of TF2 with WT and K103N RT, respectively. Standard protocol was
used, and a maximum of 20 docking poses were generated per ligand. The nonnucleoside
reverse transcriptase inhibitor (NNRTI) RPV binding pocket was selected as the binding
pocket. The other parameters were set as default. The binding conformations of each
analogue with the best IFDs core were selected for analysis and next step MD simulations
(Figure S1).

Molecular Dynamic simulations: The input file for MD was the output file from the
best docked position of the Schrödinger Induced Fit Docking Panel [40]. A 500 ns molecular
dynamic simulation was run using the Desmond module of Schrödinger Suite 2022-1 with
an OPLS4 force field. Using the TIP3P water model and Desmond’s system builder module,
the protein-ligand complex was solved, and an orthorhombic simulation box with a buffer
distance of 10 Å between its edge and the atoms of the complex was created. A sufficient
number of counter-ions were added to the system to neutralize it, and 0.15 M NaCl was
added to the simulation box to preserve the isotonic condition. Energy minimization
was applied to the model up until a gradient threshold of 25 kcal/mol/Å was reached at
300 K and 1 bar of pressure using NPT ensemble class. The trajectory was documented as
the MD simulation was running, and using Desmond’s Simulation Event Analysis tool,
Protein-Ligand interactions, Protein-Ligand fluctuations, and contacts with different amino
acids were used to gauge the stability of the complex.

Free ligand-binding energy calculation (MM-GBSA): Free ligand-binding energy cal-
culation (MM-GBSA) [41]: The MM/GBSA calculation (Schrödinger Release 2022-1) was
performed to estimate the binding free energy of ligands when binding the various RTs.

4. Conclusions

In summary, based on the X-ray crystallographic analysis, to explore the primer grip
region and target the conserved residues, we have designed and synthesized 17 DAPY
derivatives with -CH2O- as the linker. According to the biological evaluation results,
all compounds (EC50 = 7.6 nM ~ 199 nM) exhibited potent activity against HIV-1 WT
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strain, TF2 (EC50 = 7.6 nM), TF4 (EC50 = 7.8 nM) and TF12 (EC50 = 7.8 nM) showed
the most potent activity, which was better than NVP (EC50 = 122.6 nM). Notably, TF2
(CC50 > 279,329.6 nM) showed low cytotoxicity. And for the tested HIV-1 mutant strains,
TF2 (EC50 (K103N) = 28.1 nM, EC50 (E138K) = 44.0 nM, EC50 (Y181C) = 139.3 nM) was the most
potent compound against HIV-1 K103N, E138K and Y181C mutant strains. Moreover, the
WT HIV-1 RT enzyme inhibitory assay indicated that the target of these novel compounds
was RT. Furthermore, detailed SARs of compounds and molecular dynamics simulation of
TF2 can provide insight into the binding modes of compounds, and the further structural
optimization of the compound can be guided accordingly. The molecular dynamics sim-
ulation studies of TF2 showed that the newly introduced p-cyanophenyl moiety reached
the primer grip region, but no interaction with the key amino acid here was observed. The
primer grip region has yet to be explored, and the development of novel NNRTI drugs
with improved tolerability and resistance profiles is still required.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15111438/s1, Figure S1, 1H and 13C NMR spectra of TF1–17.
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