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Filamentous biopolymer networks in cells and tissues are routinely imaged by confocal microscopy. Image
analysis methods enable quantitative study of the properties of these curvilinear networks. However,
software tools to quantify the geometry and topology of these often dense 3D networks and to localize
network junctions are scarce. To fill this gap, we developed a new software tool called ‘‘SOAX’’, which can
accurately extract the centerlines of 3D biopolymer networks and identify network junctions using
Stretching Open Active Contours (SOACs). It provides an open-source, user-friendly platform for network
centerline extraction, 2D/3D visualization, manual editing and quantitative analysis. We propose a method
to quantify the performance of SOAX, which helps determine the optimal extraction parameter values. We
quantify several different types of biopolymer networks to demonstrate SOAX’s potential to help answer key
questions in cell biology and biophysics from a quantitative viewpoint.

N
etwork structures made of filamentous biopolymers are ubiquitous among biological systems.
Biophysicists and cell biologists routinely use static and time-lapse confocal fluorescence microscopy
to image intracellular networks of actin filaments1,2 and microtubules3,4 as well as extracellular polymers

such as fibrin5,6, both in vitro and in live cells. To gain insight in the structural, dynamical, and mechanical
properties of these networks and to understand the mechanisms of their formation requires image analysis
methods for automated quantification of massive image datasets. However, user-friendly, flexible, and transpar-
ent7 software tools to reliably quantify the geometry and topology of these (often dense) networks and to localize
network junctions in 3D are scarce.

Previous methods for extracting biopolymer network structures include morphological thinning of a binary
segmentation8–11 or a computed tubularity map12,13, Radon transform14 and template matching15,16. However,
most of these methods extract disconnected points (i.e. pixels) on centerlines without inferring network topology
and they have not been implemented as part of a software platform. One available software tool is ‘‘Network
Extractor’’ (http://cismm.cs.unc.edu/), which finds one-pixel wide 3D network centerlines by thresholding and
thinning a tubularity map. Thresholding results, however, can suffer from inhomogeneous signal-to-noise ratio
(SNR). Other software for extracting curvilinear network structure are designed for neuronal structures17–20.
Vaa3D-Neuron19 (http://www.vaa3d.org/) is a semi-automatic neuron reconstruction and quantification tool
which requires the user to pinpoint the end points of a neuronal tree so that a minimal path algorithm can
reconstruct the structure. The Farsight Toolkit (http://farsight-toolkit.org/) also contains 3D neuron tracing and
reconstruction software command-line modules21,22.

To fill this gap in available software, here we provide an open source program, SOAX, designed to extract the
centerlines and junctions of biopolymer networks such as those of actin filaments, microtubules, and fibrin, in the
presence of image noise and unrelated structures such as those that appear in images of live cells. SOAX provides
quantification and visualization functions in an easy-to-use user interface.

The underlying method of SOAX is the multiple Stretching Open Active Contours (SOACs) method that was
proposed to extract the 3D meshwork of actin filaments imaged by confocal microscopy23. Here we implement
this method in SOAX and apply it generally to different types of biopolymer networks. While the SOAX method is
robust against noise, its parameters need to be adjusted depending on the type of biopolymer and the image SNR.
Parameters for actin filaments were previously chosen empirically23. Here we provide a new method to evaluate
the accuracy of the network extraction results and find a small set of candidate optimal solutions for the user to
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choose from, without relying on prior knowledge of ground truth.
The selected optimal extraction result can be subsequently used for
quantitative analysis of biopolymer filaments, such as their spatial
distribution, orientation and curvature. Time lapse movies can be
conveniently analyzed by reusing the selected parameters from one
image for other images drawn from the same dataset. We dem-
onstrate SOAX’s potential to help provide quantitative results to
answer key questions in cell biology and biophysics from a quant-
itative viewpoint.

Results
Description of SOAX software. SOAX extracts network structures in
three stages: SOAC initialization, SOAC evolution, and junction
configuration (Fig. 1a, Supplementary Note 1, Supplementary Movie
1)23. A SOAC is a parametric curve that ‘‘evolves’’: it is attracted
towards the centerline of a filament, stretches by elongation, and
stops stretching when its end reaches a filament tip. Figure 1b and
1c show examples of the extraction process for synthetic images.

In the initialization stage (second column in Fig. 1), multiple short
SOACs are automatically placed along intensity ridges of the image,
which correspond to centerlines of filaments in 3D or 2D, depending
on the dimensionality of the image. A ridge threshold parameter (t)
specifies the minimal intensity steepness for a ridge to host an initial
SOAC. These initial SOACs can be fragmented, jagged, and redundant.

In the evolution stage (third column in Fig. 1), the SOACs evolve
one after another and stretch according to the local intensity contrast,

weighted by a global parameter (kstr) that controls how easily SOACs
elongate overall. The yellow panel in Figure 1b shows the stretching
forces (red) applied at the SOAC tips as well as the image forces (cyan)
that keep it on the centerlines. SOACs stop stretching at a filament end
or when their tip collides with the body of another SOAC to form a T-
junction (blue box in Fig. 1b). Checks are performed to eliminate
SOAC overlap. After evolution, they smoothly lie on the centerlines
of filaments and connect with one another at T-junctions.

The final stage (fourth column in Fig. 1) is clustering nearby T-
junctions into a single junction followed by configuring the local
connectivity of SOACs by cutting and splicing them such that they
do not end or bend sharply at junctions (red box in Fig. 1b). This
stage results in a set of junction points and re-configured SOACs that
better represent the topology of physical filaments.

SOAX provides 3D volume rendering and slicing planes for
exploring image data and visually checking the result against the
image. A local visualization function reduces clutter when viewing
results in 3D. It also supports viewing the color-coded orientation
difference of resultant SOACs. Since cell images may contain struc-
tures other than networks, we implemented manual editing func-
tionalities to allow users to improve the automated results. Users can
cut, extend and modify the body of each SOAC and delete junctions.
For more details on these operations, please see http://www.cse.
lehigh.edu/,idealab/soax/.

Evaluating extraction results and choice of optimal parameters.
Our network extraction method includes several parameters such as

Figure 1 | Overview of SOAX for network centerline, topology and junction extraction. (a) Given an input image, multiple Stretching Open Active

Contours (SOACs) are automatically initialized. The SOACs evolve by moving, stretching, merging and forming junctions with one another. The final

network topology is configured by cutting and joining the contours such that SOACs do not end or bend sharply at junctions. (b) Result after each stage

on an image of two crossing filaments in a simulated image. The yellow zoomed-in window shows the forces exerted on a SOAC during its evolution.

Stretching forces (red) elongate it while image forces (cyan) keep it on the centerline of the filaments. Blue window shows two T-junctions (green dots)

formed after sequential SOAC evolution. Red window shows reconfigured SOACs and localized filament junction (green sphere) after clustering nearby

T-junctions. (c) Upper row: extraction process on a 3D synthetic filament meshwork. Lower row: zoomed-in view of the yellow window at upper row.

First column: input image. Second column: initialized SOACs. Third column: evolved and merged SOACs. Fourth column: reconfigured SOACs with

junctions (green spheres).

www.nature.com/scientificreports
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the active contour bending and stretching stiffness, distance
threshold for junction formation, SOAC overlap distance, and size
of region for local background calculation23. While these parameters
can be estimated for a set of images (using known values of filament
persistence length, pixel size and density of the network being
imaged), network extraction depends crucially on the SNR of the
image and the appropriate choice of two parameters mentioned
above: ridge threshold t and stretch factor kstr. Large values of the
ridge threshold t will result in SOAC initialization only at very bright
filaments, while low values may initialize SOACs on background
noise. Too large a stretch factor kstr will elongate SOACs beyond
the tips of filaments, while too small values may cause a SOAC to
prematurely stop extending due to intensity fluctuations along the
filament and the local background. Reliable network extraction
requires a procedure to estimate appropriate values for t and kstr

for images of varying SNR. Existing methods for real-time
segmentation evaluation usually rely on the availability of ground
truth24,25 or a predicted one generated by supervised machine
learning26, which in turn relies on ground truth data. Most of the
unsupervised evaluation approaches in the literature are based on
metrics defined on image regions, thus are not directly applicable to
the evaluation of contours27. Here we developed an evaluation
method based on an optimization function to help the user select
the best extraction result from a set of candidates.

We started by generating synthetic network images with simulated
shot noise (Fig. 2a) and applied SOAX with varying ridge thresholds
and stretch factors. Knowing the ground truth network for these
images allows us to evaluate the accuracy of each extraction result
using the Hausdorff distance (Fig. 2b) and vertex error (Fig. 2c). The
Hausdorff distance is the largest distance between any point on the
SOAX-extracted network and its closest point on the ground truth
network and vice versa; the vertex error is the average distance
between points on the extracted network and their closest points
on the ground truth network and vice versa. Figure 2b,c show an
optimal range for t and kstr (dark blue regions).

Evaluating the optimality of parameters based on the Hausdorff
distance or vertex error relies on knowledge of the ground truth,
which is not available for experimental images. Thus, we searched
for a distance measure that mimics the heat maps in Figure 2b,c but
does not require ground truth. We propose a new measure we call the
‘‘F-function’’ that evaluates an extraction result using only the image
and the result. We define F 5 2Ltotal 1 cL,t, where Ltotal is the total
length of SOACs in the extraction result, L,t is the length of SOAC
segments in regions of the image with local SNR below a threshold t,
and c is a factor larger than unity controlling how much low-SNR
SOACs are penalized (see Online Methods and Supplementary Note
2). Minimizing the F-function favors extraction results that are as
complete as possible (large Ltotal) but penalizes the portions with low

Figure 2 | Parameter optimization using the F-function. (a) Synthetic test image with mean local SNR 5 3.34. (b–c) Hausdorff distance and vertex error

(log-scale plots: ln(x 2 xmin 1 e), where x is the data value; xmin is the minimum value of all data; e is a constant offset) computed between ground truth

and results extracted using various values of the ridge threshold t (normalized intensity change per pixel) and stretch factor kstr (pixels per time step). (d)

The proposed F-function (log-scale) computed using t 5 2.2, c 5 2.0. The optimal parameters are t 5 0.02, kstr 5 0.14 acquired by minimizing the F-

function. The optimal result has Hausdorff distance 7.15 pixels and vertex error 1.08 pixels compared to ground truth. (e) Optimal extraction result

overlaid with original image in (a). (f) Optimal extraction result (magenta) overlaid with ground truth (translucent yellow).

www.nature.com/scientificreports
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local SNR. When t and c are chosen properly, the F-function can have
a similar dependence on t and kstr as the Hausdorff distance and
vertex error and have similar optimal region representing good
extraction results as the other two metrics (Fig. 2d). The optimal
extraction result selected from the optimal parameters in Figure 2d
corresponds to the image very well (Fig. 2e) and is very close to the
ground truth, with a Hausdorff distance of 7.15 pixels and vertex
error of 1.08 pixels (Fig. 2f).

Evaluation methods based on the ROC curve28 or F-measure29

used in pattern recognition and information retrieval can measure
the fraction of network centerlines extracted that are relevant (pre-
cision) and the fraction of relevant network centerlines that are
extracted (recall). The ROC curve is a plot of true positive rate (recall)
against false positive rate while the F-measure is the harmonic mean
of precision and recall and can be seen as a compromise between
them. However, we did not found them to be appropriate since the
true negatives, pixels that are not network centerlines, in the image
background dominate these scores. To solve this difficulty, the pro-
posed F-function focuses on the extracted centerlines, and thus only
considers true and false positives.

In our evaluation and optimization method we introduced two
additional parameters, t and c, on which the values of suggested
optimal parameters depend. Through analysis of synthetic images,
we found that valid t and c can be restricted to a fixed small range {(t,
c) j 1 , t , 5, 1 , c , 5, 3 , t 1 c , 6} regardless of the input image
SNR (Supplementary Note 2). An additional, but narrower, search
for optimal t, c within this restricted range needs to be performed.
For images with local SNR . 5 the largest values of t, c in that range
work well, but user input is typically required for smaller SNR since
(i) the optimal extraction is more sensitive to the choice of t, c and
(ii) while SOAX allows measuring the local SNR by clicking on
initialized or converged SOACs, evaluation of the local SNR can vary
depending on the local microenvironment and on the width of the
Point Spread Function (PSF). The extraction procedure implemen-
ted in SOAX is to (i) obtain a set of different extraction results by
varying t and kstr, and (ii) manually select a good one from a smaller
set of candidate optimal extraction results, which are generated by
minimizing the F-functions with varying values of t and c within a
small range.

Spatial distribution of actin filaments in emulsion droplets. To
demonstrate the use of SOAX in the quantitative analysis of biopoly-
mer organization in vitro, we polymerized fluorescently-labeled actin
in emulsion droplets in the presence of the cross-linking protein
fascin (Fig. 3a, 3d, 3g). Actin filament bundles as well as micro-
tubules can reach lengths of order 10 mm, comparable to the size
of plant, animal and yeast cells, implying interactions with confining
surfaces and organelles. Experiments such as those in Figure 3 can
provide a systematic understanding of how a confining geometry
restricts long cytoskeletal filaments and directs their orientation30.
Several theories predict the distribution of semiflexible polymers in
confined spaces, their density-dependent nematic ordering and
alignment along the confining surface31,32. However analysis of
experiments to quantify distributions of filament orientation, curva-
ture and density is limited by the lack of image analysis tools.
Figures 3 and 4 show how SOAX can be used to overcome these
limitations.

We first selected one of 42 droplet images prepared under the same
experimental conditions that have the same actin concentration for
droplet encapsulation (but varying encapsulation efficiency) and a
nearly uniform droplet radius r. We extracted the actin bundles using
420 combinations of ridge threshold t and stretch factor kstr distrib-
uted in the range 0.006 , t , 2 and 0.1 , kstr , 2. These upper and
lower limits were chosen manually to correspond to clear under- or
over-detection. We then manually select a good extraction result
from the set of 19 optimal candidates generated by minimizing F-

functions with various values of t and c as described in the previous
section. The F-function corresponding to the manually selected
result is shown in Figure 3j. A finer scan of t and kstr around the
selected values did not modify extraction results in this example. The
same optimal t and kstr were used to extract the remaining 41 droplet
images.

The optimal extraction result selected for quantitative analysis for
three droplets are shown in Figure 3b, 3e, 3h and Supplementary
Movie 2. To analyze the distribution of actin filaments inside the
droplet, we use the resultant SOACs to compute the filament density
distribution and filament intensity distribution along the radial dir-
ection (Fig. 3c, 3f, 3i). These two measurements reflect the concen-
tration and thickness distribution of actin filament bundles inside the
droplet. The three examples in Figure 3 show different patterns of
actin filament bundle distribution. Figure 3c shows that most bun-
dles of the droplet in Fig. 3a are arranged along the droplet boundary
at r < 13 mm, with a few thick bundles at r < 4.8 mm from the droplet
center (bundle thickness is proportional to the intensity at the SOAC
points). In the droplet of Fig. 3d, both the density and the bundle
thickness of the interior bundle network decrease with distance from
the droplet center (Fig. 3f). The droplet in Fig. 3g is similar to Fig. 3d
but exhibits a higher overall density and thickness in its interior
bundle network, with a concentration peak at r < 4.8 mm (Fig. 3i).
For all three droplets, an enhanced concentration of single filaments
or thin bundles is seen aligning with the droplet boundary. To further
investigate the origin of boundary alignment, Fig. 3k shows an
inverse linear correlation between average total actin signal intensity
and the fraction of actin filaments or bundles aligning with the drop-
let boundary.

To quantitatively analyze the orientation of actin filaments inside
the droplet, we measured the orientation of each SOAC segment
along the azimuthal angle Q and polar angle h, defined in a spherical
coordinate system (Fig. 4a, 4c, 4e). Filament/bundle alignment corre-
sponds to clustering in Q and h values. The orientation distribution of
actin bundles in the droplet interior (distance to droplet center ,0.9
r) is shown by a 2D histogram in Q and h (Fig. 4b, 4d, 4f). The middle
droplet exhibits a stronger alignment compared to the other droplets,
with 15% of all SOAC segments along 225u, Q ,15u and 80u, h ,

120u (Fig. 4d), while the orientation histograms of the other two
droplets show multiple local maxima (Fig. 4b, 4f).

The methods to calculate the density and orientation distributions
in Figures 3 and 4 are implemented in the software. An additional
analysis implemented in SOAX is the radial SOAC orientation dis-
tribution, defined as the angle between the tangent of a SOAC seg-
ment and the radial direction (Supplementary Figure 1). Thus SOAX
can be used in future studies of in vitro biopolymer networks in
confined spaces, or under imposed deformation, to quantify filament
distribution, topology, orientation and how these parameters relate
to mechanical properties of the filaments.

Microtubule orientation and curvature in adhered cells. Analysis
of biopolymer networks in live cells is challenging when manual
methods to extract every filament are too time consuming and
when the SNR is too low for automated methods such as
thresholding and thinning to work reliably. An example of this is
the microtubule network in an adhered cell shown in Figure 5a.
Examining how the entire network is distributed and how it is
reorganized over time can provide insight in the mechanisms that
cells use to change shape and move or divide.

The SOAX program can extract the microtubules inside the entire
cell (Fig. 5b). To better show the effectiveness of SOAX, Figure 5c
shows an enlarged region corresponding to the blue window in
Figure 5a, in which most microtubules are oriented along the north-
east direction. As before, we picked a good extraction result from a set
of 27 optimal candidates selected from 220 combinations of ridge
threshold t and stretch factor kstr (distributed in the range 0.002 , t

www.nature.com/scientificreports
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Figure 3 | Analysis of concentration and bundle thickness of actin filaments polymerized in an emulsion droplet in the presence of fascin cross-linkers
(droplet radius r < 13.5 mm) imaged by confocal microscopy. (a,d,g) Volume rendered image shows network of actin filament bundles with different

concentration. (b,e,h) Extraction results using the optimal parameters. Centerlines of actin bundles outside of the main droplet were manually deleted

using SOAX. (c,f,i) SOAC point density r (red), average intensity at SOAC points (blue) and average intensity at image voxels (green), as function of

distance from droplet center. Graphs show an enhanced concentration of thin bundles parallel to the droplet boundary. The distribution of thicker

bundles in the interior differs, with a sparse network in (a), a high concentration near the center in (b), and a distributed network in (g). (j) F-function

(t 5 1.8, c 5 2.0) shows the optimal t 5 0.01, kstr 5 0.2 for droplet in (d). (k) Scatter plot of fractions of surface SOAC points (distance to droplet center

$0.9 r) against average droplet intensity. Linear least squares fitting shows an inverse correlation with slope 20.015, and R2 5 0.58.

www.nature.com/scientificreports
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, 0.022 and 0.1 , kstr , 2, similar to Fig. 3) using the F-function
(Fig. 5d).

As a quantitative validation that most microtubules in Figure 5c
point northeast, on average, we computed the orientation histogram
of azimuthal angle Q. (We ignore the polar angle here because the
majority of microtubules lie along the x-y plane, since this region is a
very thin and flat part of the cell.) As shown by the blue curve in
Figure 5e, the distribution peaks at Q < 45u. To illustrate the ability of
SOAX to differentiate between different regions of the cell, we also
computed the histogram of Q for other parts of the original image in
Figure 5a (corresponding box and curve colors). As shown in
Figure 5e, microtubule orientation in the green window peaks at Q
< 245u and in the magenta window at Q < 90u while there is no
significant orientation preference in the red window at the cell
nucleus.

The distribution of curvature (defined as the magnitude of the rate
of change of the unit tangent vector with respect to arc length over a

distance large enough to be independent of the intrinsic stiffness of
the SOAC, see Online Methods) and effective persistence length
(showing how fast a microtubule changes direction) are also easy
to extract using built-in functions. Figure 5f shows peak in the curv-
ature distribution around 0.5 mm21. A fit to the 3D worm-like chain
model33 gives an effective persistence length of 9.0 mm, close to the
30 mm prior measurement of single microtubules in cells in 2D34.
This length is much shorter than the persistence length of purified
microtubules in vitro, of order mm, a result of frozen-in fluctuations
during microtubule elongation and motor pulling34–36.

Distribution of actin cables in fission yeast. Another challenge in
the analysis of cell images is inhomogeneous background and
presence of features in the image that need to be excluded in the
analysis. An example is the analysis of actin cable networks in yeast
and plant cells (Fig. 6). Actin cables contribute to cell polarization
and measurements of their properties in wild type and mutant cells

Figure 4 | Analysis of actin bundle orientation of droplet images in Figure 3. (a,c,e) Color-coded SOACs based on azimuthal angle Q (top view).

(b,d,f) 2D histogram of SOAC orientation vs azimuthal and polar angles. The count shows the number of SOAC segments between consecutive SOAC

points with a particular Q and h within 0.9 r of droplet center. The sparse network in (a) does not show a preferred orientation. Enhanced alignment is

observed at Q < 210u and h < 110u for droplet in (c). The droplet in (e) has more bundles around Q < 25u.

www.nature.com/scientificreports
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can provide information on the basic biophysical mechanisms of cell
growth37.

Fission and budding yeast contain however two types of actin
structures in interphase: actin cables and actin patches, both of which
are present in images where actin filaments are marked by GFP-
CHD, an actin filament side-binding protein37. Eliminating the actin
patches with the drug CK-666 (Fig. 6a) allows SOAX to segment the
actin cable network in fission yeast (Fig. 6b), after using the F-func-
tion to select a good extraction result from a set of 14 optimal candi-
dates out of 110 combinations of ridge threshold t and stretch factor
kstr (distributed in the range 0.001 , t , 0.041 and 0.1 , kstr , 1,
similar to Fig. 3) (Fig. 6c).

SOAX’s functionality further allows users to extract actin cable
networks even in the presence of actin patches (Fig. 6d). We provide
two mechanisms that reduce the influence of bright actin patches on
the extraction of the actin cable network. Considering that actin
patches usually have much higher intensity values than actin cables,
we first reduce the number of SOACs going through patches by
limiting initialization and SOAC elongation to within a specified
allowable intensity range. Second, we use the post-convergence man-
ual editing functions in SOAX to delete the few SOACs that initia-
lized on dim patches and to correct the SOACs that are attracted to
the patches from neighboring actin cables. The post-convergence
manual editing allows deletion of the few SOACs that initialized
on dim patches. It also enables correcting the kinks and sharp bends
due to actin patches near the body or tips of actin cables that act as
basins of attraction for the SOACs. This is done by examining the
centerline of the cables near actin patches, using the slicing planes in
three directions. After identifying SOACs that do not represent the

centerline of the cables, SOAX provides functionality to extend or
delete the SOAC segment going through the patch and to specify a
point linking two broken ends. The user can then let the SOAC
evolve for a few iterations to remove kinks.

Applying SOAX to multiple cells allowed us to quantitatively
measure the average spatial distribution of actin cables in wild type
fission yeast cells. Since fission yeast has cylindrical symmetry, we
measured the SOAC point density as function of distance to the cell
tips and the cell’s axis of cylindrical symmetry, which were found
manually (Fig. 6e). We found that for distances longer than 2 mm
from the cell tips, actin cables localize away from the cell middle and
close to the outer cell membrane. This result suggests that the
excluded volume of the nucleus in the cell middle and/or outward
pulling forces from myosin V in the cortical ER38 (that localizes close
to the outer membrane) play a role in actin cable positioning with the
cell. Use of SOAX in future studies with fission yeast mutants will
help resolve the underlying mechanism.

Discussion
We showed how SOAX provides a powerful and user-friendly plat-
form for extracting and quantifying biopolymer networks imaged by
confocal microscopy in 3D. The accompanying parameter optimiza-
tion program helps the user select the best extraction results among
candidates for subsequent analysis. Once a good parameter set is
found for one image, it can be re-used for a set of images obtained
under the same conditions, with care to use consistent image offset
background subtraction and rescaling (the latter can be adjusted in
SOAX but unless otherwise specified the program rescales the image
so that the maximum intensity is 1). The user can also manually edit

Figure 5 | Analysis of microtubules in an adhered HeLa cell stably expressing b-tubulin-GFP imaged by confocal microscopy. (a) Volume rendered

image (49.6 3 49.6 3 5.5 mm). (b) Extracted SOACs (magenta) and junctions (green). (c) Extraction result on the blue window in (a). (d) F-function

(t 5 2, c 5 1.3) suggests optimal t 5 0.014, kstr 5 0.3. (e) Histogram of SOAC orientation vs azimuthal angle for microtubules in the 4 local windows of (a)

shows alignment along Q < 45u (blue), Q < 245u (green), Q < 90u (magenta) and no significant alignment for the nucleus region (red). The p-values

(Mann-Whitney U test) of SOAC orientation Q distribution between each pair of local windows are less than 0.01. (f) Curvature distribution of

SOAC segments in (c) evaluated over segments of 8 pixels in length, excluding junctions. Fit to a 3D worm-like chain model gives an effective persistence

length lp 5 9.0 6 0.4 mm.

www.nature.com/scientificreports
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the best result to further improve it. The SOAX software and its
parameter optimization program are open source and available for
download at http://www.cse.lehigh.edu/,idealab/soax/.

The results in Figures 3–6 show the application of SOAX to 3D
images. However, SOAX can be equally well applied to 2D network
images (Supplementary Fig. 2), which are also very common in both
in vitro and live cell experiments. This works by treating a 2D image
as a 3D image with constant z coordinate. The main difference is the
computation of the magnitude of the SOAC tip stretching force,
where the local background neighborhood turns from a 2D annulus
to a pair of 1D line segments.

SOAX works best for images of filaments or bundles of filaments
that are sufficiently dilute such that the PSF width is narrower than
their average separation. Since SOAC image forces are computed by
comparing the intensity along the SOAC to the local background,
analysis of 3D wide-field microscopy images that include significant
out-of-focus background light would require deconvolution. SOAX
resamples the image before the extraction process to make the voxel
size isotropic along all axis directions. Sampling along the z direction
should be higher than the Nyquist rate, otherwise artefacts such as
false positive SOACs aligning along the z-direction may arise. The
anisotropic resolution of confocal microscopy along the z direction
will impact SOAX results so care must be taken in the analysis to
avoid systematic errors. SOAX specifically provides selective initia-
lization and damped elongation along z-axis to mitigate this prob-
lem: users can choose to only initialize SOACs along x and y axis
directions; a ‘‘damp z’’ option suppresses elongation for SOACs
aligned along z.

The network extraction time for the single frame images presented
in this work is of order minutes on a desktop computer, for optimal
parameters. For these parameters, most of the computation time was
spent evolving SOACs rather than checking overlap (sets of consec-
utive points along SOACs for which the distance is less than a defined

threshold23, see Supplementary Note 1), so we were in the regime
where our algorithm scales approximately linearly with image size.
Pairwise overlap checking becomes limiting for much larger images.

SOAX will also be helpful for analyzing the temporal evolution
of biopolymer networks. This can be achieved by batch processing
all frames of a time lapse image sequence. The network structure
in each frame from a 2D/3D time-lapse sequence can be extracted
and analyzed individually. SOAX can load simultaneously extrac-
tion results of different time frames for visual comparison of
changes in filament orientation, curvature and spatial distribution
over times. By comparing changes of junction location and fila-
ment shape and distribution in time, one can thus quantify biopo-
lymer network (de)polymerization dynamics as well as mechanical
deformations.

Methods
Ridge threshold t. We initialize SOACs on the centerlines of filaments by locating
intensity ridge points23 (Supplementary Note 1). We define a ridge point in axis k to be
the image location x where intensity is a local maximum along axis k. A ridge point is
detected by searching for a sign change in the kth component of gradient hkI(x) where
I(x) is image intensity. The magnitude of the sign change must be larger than ridge
threshold t. To allow initialization along filaments of different width, there is no
restriction on the distance between the positions of the positive and negative intensity
gradients (Supplementary Eq. 6). We assume image intensity in the range 0 and 1
(intensity rescaling can be performed within SOAX). Units of t and other parameters
are in rescaled intensity units and pixels.

Stretch factor kstr. The external force exerted on a SOAC is a weighted combination
of image force and stretching force, Fext 5 kimgFimg 1 kstrFstr. We use units in which
kimg 5 1 and vary kstr only. The image force is proportional to the magnitude of local
image intensity gradient. The stretching force is applied to SOAC tips and is
proportional to the local image contrast, 1 2 Ib/If, where If is intensity at SOAC tip
and background Ib is intensity calculated by sampling uniformly within concentric
circles or ellipses from a plane perpendicular to the SOAC tangent vector. The reason
we sample the background to the sides of the SOAC is to allow them to extend and
form junctions with bright filaments that lie ahead of them23.

Figure 6 | Analysis of actin cables in fission yeast cell imaged by confocal microscopy. (a) Volume rendered image of actin cables labeled by GFP-CHD

(11.3 3 4.1 3 5.2 mm). The cell was treated with CK-666 to inhibit actin patch formation. (b) Cell image with extracted SOACs (magenta) and junctions

(green). (c) F-function (t 5 2, c 5 1.8) shows the optimal t 5 0.009, kstr 5 0.3. (d) Volume rendered image of actin cables labeled by GFP-CHD in fission

yeast cell not treated with CK-666 and extracted SOACs (magenta). The manual editing capabilities of SOAX allowed deletion of SOACs and SOAC

segments going through actin patches. (e) Schematic of fission yeast sphero-cylindrical geometry and measurement of SOAC segment density as function

of distance to closest cell tip, xt, and radial distance r from axis of cylindrical symmetry (Dr and Dxt are the corresponding increments). (f) SOAC point

density distribution vs xt and r/Rc, where Rc is cell radius, averaged for n 5 30 cells. For distances longer than 2 mm from the cell tips, actin cables localize

away from the cell middle and close to the outer cell membrane. Actin cables for xt , 1 mm cannot be detected reliably due to the high density of actin

patches at the cell tips.
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SOAC evolution. SOACs evolve according to internal forces representing bending
and stretching stiffness and external forces described above (see Supplementary
Note 1).

F-function. The F-function evaluates a result based on the SNR of the local
neighborhood of a SOAC. The portion of resultant SOACs that lie in regions with
local SNR below t are considered uncertain thus penalized from the total length of
SOACs in proportion to parameter c (Supplementary Note 2 and Eq. 8). Unlike the
Hausdorff distance and vertex error, the F-function does not require ground truth to
evaluate the optimal t and kstr, therefore it can also be used for selecting optimal
parameters in experimental images that do not have ground truth. However, the
soundness of optimal parameters suggested by the F-function depends on the values
of t and c. Using synthetic images of varying SNR we find that valid t and c can be
found within a fixed small range (Supplementary Note 2). Thus, we vary t and c in a
small range to generate a set of ‘‘optimal candidates’’ for the user to choose from. This
procedure for guided fine-tuning is necessary, especially for low SNR images where a
narrower range of t and c is allowed and these values are sensitive to the precise
definition of the local SNR. The small range on the values of t and c we choose are
found by synthetic experiments. We construct synthetic images with different SNRs
due to either shot noise or Gaussian noise (for the latter see Supplementary Note 2).
For the shot noise case (Fig. 2) we first assign the background intensity 30 and the
foreground intensity 90 to the centerline pixels specified by a set of ground truth
SOACs and then convolve it with an anisotropic Gaussian 3D kernel with s 5 (1.73,
1.73, 5.0) pixels, which simulates the point spread function. Finally, we scale the image
intensity by 0.4 and use the resulting pixel intensity Ip to apply a Poisson distributed
random variable to each voxel, with average Ip.

SOAC point density and intensity calculation. For the emulsion droplet in Figure 3
we used the following procedure based on the extracted SOAC points. Given that the
droplet is a sphere of R pixels centered at p0, to calculate the SOAC point density, we
counted the number of SOAC points p with with r , jjp 2 p0jj# r 1 1, for all 0 # r #

R 2 1 (here r is in pixels); this number was then divided by the surface area 4pr2. For
the SOAC point intensity we measured the average intensity at the same points p. The
image intensity versus r is computed in a similar way by averaging the intensity of
voxels with distance to the center in the interval (r, r 1 1].

Filament orientation in 3D. Filament orientation in Figures 4 and 5e was quantified
by azimuthal angle Q and polar angle h using a spherical coordinate system. We
compute these angles for each SOAC segment denoted by a vector a 5 [x, y, z], which
is the line segment between consecutive SOAC points. Since we cannot distinguish the
polarity of the filament, we consider the orientation of 1a and 2a to be the same; thus
we define the range of Q and h to be (290u, 90u] and [0, 180u), respectively, both with a
period of p. To calculate the angles we use Q 5 atan(y/x) and h 5 acos(z/jjajj) for
positive x. When x , 0, we first invert a before applying these equations. When a is
aligned along the z-axis (x 5 y 5 0) then Q 5 h 5 0. When a is on the y-z plane but not
along z-axis (x 5 0, y ? 0), then we invert a when y , 0 and use Q 5 90u, h 5 acos(z/
jjajj). In Supplementary Figure 1 we also computed the distribution of the single radial
angle c (0u # c # 90u), which is the angle between a and the outward radial direction
from a pre-defined center.

Filament curvature. The curvature k in Figure 5f is defined as the magnitude of the
rate of change of unit tangent vector t(s) with respect to arc length s, k 5 jjdt/dsjj. We
estimate unit tangent vectors using SOAC points Dc 5 8 pixels apart in arc length, a
distance which is large enough to represent the curvature of the filament in the image
and is independent of the intrinsic stiffness of the SOAC33. Specifically, k(s) 5 jjt(s 1

Dc/2) 2 t(s 2 Dc/2)jj/Dc, where t sð Þ~ r szDc=2ð Þ{r s{Dc=2ð Þ
r szDc=2ð Þ{r s{Dc=2ð Þk k . To avoid

measuring curvature at junction points, we cut the SOACs at all junctions before
calculating the curvature distribution.

Actin bundles in emulsion droplets and confocal microscopy. Actin was
polymerized in the presence of 1.2 mM fascin and 0.95 mM streptavidin in an actin
polymerization buffer (25 mM imidazole-HCl (pH 7.4), 50 mM KCl, 2 mM MgCl2,
1 mM DTT, 0.1 mM MgATP, 1.33 mg/mL creatine phosphate, 2.48 mg/mL creatine
phosphokinase, 0.1 mg/mL glucose oxidase, 0.1 mg/mL catalase and 280 mM
sucrose). The actin concentration was 14 mM, including 34 mole% of AlexaFluor
488-actin and 0.42 mole% of biotinylated actin. An oil-lipid mixture was prepared by
dissolving a lipid mixture of DOPC, 40 mole% DOPS and 1 mole% biotinylated lipid
(Biotin-x-DHPE) in mineral oil containing 2% (w/w) Span 80 at a total lipid
concentration of 0.5 mg/mL. Water-in-oil droplets were prepared using a flow-
focusing microfluidic device, obtaining a narrow size distribution, as described
elsewhere39,40. Droplets were observed at room temperature by an inverted
microscope (DMIRB, Leica) equipped with a confocal spinning disc scan head
(Yokogawa), a EM-CCD camera (C9100, Hamamatsu Photonics) and a 100x oil
immersion objective. The intensity analysis in Figure 3k shows uneven actin
encapsulation among droplets.

Hela cells and confocal microscopy. We used HeLa cells stably expressing GFP-
tubulin41. The culture medium was prepared with MEM medium; Glutamine
(200 mM, 6 ml/500 ml media); sodium pyruvate (100 mM, 1 ml/100 ml media);
fetal bovine serum (10%); penicillin-streptomycin antibiotic (100X, 1 ml/100 ml
media). Cells were cultured in a flask in a NuAire CO2 incubator (5% CO2 at 37uC).

We used an Olympus FV1000 confocal microscope with an Olympus UPLAN 100X
oil immerse objective (NA 5 1.3). Image resolution in x-y plane was 62 nm/pixel and
z-step size 100 nm.

Fission yeast methods and confocal microscopy. The strain FC1218 (h2 41nmt1-
GFP-CHD (rng2)-leu11 ade6-M216 leu1-32 ura4-D1842) was cultured at 25uC in the
rich media YE5S for 24 h and then washed into the minimal medium without
thiamine EMM5S for 24 h at log phase to induce the expression of GFP-CHD. To
reduce the interference from actin patches, cells were treated with 100 mM Arp2/3
complex inhibitor CK-666 from a 10-mM stock in DMSO at 25uC for 10 min before
imaging. Images were collected using an UltraVIEW ERS spinning-disk confocal
microscope (Perkin Elmer, Waltham, MA) with a 100x/1.4 NA Plan-Apo objective
lens (Nikon, Melville, NY) as described before43. An ORCA-AG CCD camera
(Hamamatsu, Bridgewater, NJ) was used without binning. Z stacks spanning 5 mm
with a 0.2 mm spacing were collected.
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