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Abstract: Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are de-
myelinating diseases of the central nervous system, which differ in the pathogenic mechanism. A
common clinical presentation of both conditions is optic neuritis (ON). The study aimed to compare
the radial peripapillary capillary (RPC) vessel density in MS and NMOSD patients using optical
coherence tomography angiography (OCTA). A total of 40 MS patients, 13 NMOSD patients, and
20 controls were included. The average RPC vessel density was significantly lower in ON eyes
(MS+ON, NMOSD+ON) than in non-ON eyes (MS—ON, NMOSD—ON) and in MS+ON, MS—ON,
NMOSD+ON, and NMOSD—ON compared with the control group. In NMOSD+ON eyes, the vessel
density in superior nasal, nasal superior, and inferior sectors was significantly more decreased than
in MS+ON eyes. RPC reduction was also observed in inferior nasal and temporal superior sectors
in MS—ON eyes compared with NMOSD—ON eyes. In conclusion, our findings indicate that optic
neuritis is associated with a more significant RPC vessel density drop in NMOSD than in MS patients,
and the predilection to superior and inferior sectors may be useful as a differential diagnostic marker.

Keywords: multiple sclerosis; neuromyelitis optica spectrum disorder; optical coherence tomogra-
phy angiography

1. Introduction

Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are
central nervous system (CNS) diseases characterized by inflammation, demyelination, and
axonal loss [1,2]. Unlike in MS, a serum autoantibody marker can be found in up to 80%
of NMOSD patients [3]. This highly specific immunoglobulin G (IgG) targets the protein
aquaporin-4 (AQP4), a water channel presented in the membranes of astrocytes in the CNS.
Within the eye, the astrocytes are mainly restricted to the retinal nerve fiber layer (RNFL),
consisting of ganglion cells axons [4]. Optic neuritis (ON), a common manifestation of both
diseases, is often bilateral and has a more severe course with poorer visual prognosis in
NMOSD patients [5,6]. Moreover, the thinner RNFL after ON in NMOSD eyes suggests a
more widespread axonal damage [7,8].

The RNFL is supplied by a radial peripapillary capillary (RPC) plexus that runs
parallel with the axons. By using optical coherence tomography angiography (OCTA), a
non-invasive in vivo imaging technique, the RPC can be visualized. The OCTA software
also provides automatic vessel segmentation, and evaluation presented quantitatively as a
vessel density (VD) parameter [9].

RPC’s vessel density was independently evaluated in MS and NMOSD patients
in several studies [10-14]. Spain et al. reported that in MS patients, the RPC density
was significantly reduced in ON (MS+ON) and non-ON (MS—ON) eyes compared with
controls, but in the study of Wang et al., the RPC of MS—ON eyes did not differ from healthy
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eyes. However, both studies showed that the MS+ON group had lower RPC than the
MS—ON group [11,12]. Regarding the NMOSD patients, the studies were consistent in their
findings that the peripapillary vessel density was significantly decreased in NMOSD+ON
and NMOSD—ON groups compared with controls and in NMOSD+ON compared with
NMOSD—ON [13,14]. However, a comparative analysis of RPC in MS and NMOSD eyes
has not been reported so far.

The aim of this study was to investigate and compare the peripapillary vessel density
in MS and NMOSD patients in regard to the history of optic neuritis.

2. Materials and Methods
2.1. Ethical Approval

The study was approved by the medical ethics committee of the Poznan University of
Medical Sciences (approval No. 562/18 from May 2018) and was performed in accordance
with the Declaration of Helsinki. Written informed consent was obtained from all subjects
after an explanation of the nature of the study.

2.2. Study Participants

In this observational study, we recruited relapsing-remitting MS and AQP4-IgG
seropositive NMOSD patients at the Department of Ophthalmology and the Department
of Neurology of the Poznan University of Medical Sciences from June 2018 to September
2020. All patients with MS fulfilled the revised 2017 McDonald criteria [15]. NMOSD
patients were diagnosed according to the revised 2015 NMOSD diagnostic criteria [16].
The anti-aquaporin-4 antibodies were detected by means of indirect fluorescence using
a commercial cell-based assay with aquaporin 4 transfected cells (EUROIMMUN AG,
Liibeck, Germany). Analyses were performed in the Department of Neurochemistry and
Neuropathology at the Poznan University of Medical Sciences, which participates in an
international external quality control system and receives regular certification for the de-
tection of AQP4-IgG (Institut fiir Qualitdtssicherung, Liibeck, Germany). Clinical data,
including disease duration and the number of ON attacks, were recorded. We divided
the patients’ eyes into subgroups: eyes with prior optic neuritis (MS+ON, NMOSD+ON)
and eyes with no history of ON (MS—ON, NMOSD—ON). Age- and sex-matched healthy
volunteers served as controls.

All participants underwent an ocular examination, which included best-corrected
visual acuity (BCVA) measurement, Goldmann applanation tonometry with central corneal
thickness correction, slit-lamp biomicroscopy, indirect ophthalmoscopy, spectral-domain
OCT (SD-OCT), and OCT angiography. Visual acuity was assessed with The Early Treat-
ment of Diabetic Retinopathy Study chart and converted to logMAR notation.

The study inclusion criteria were age > 18 years, no ON attack within 6 months prior
to the examination, and at least 2 years of disease duration for MS patients. The participants
with myopia greater than 6 diopters, optic disc drusen, hypertensive or diabetic retinopathy,
glaucoma, history of uveitis, or eye surgery were excluded from the study. The eyes with
low OCT image quality were not incorporated into the analysis.

2.3. SD-OCT

The peripapillary retinal nerve fiber layer thickness was obtained using the optic
nerve head protocol and measured around a 3.45 mm diameter circle centered on the optic
disc (RTVue XR Avanti with AngioVue, Optovue Inc., Fremont, CA, USA; software version
2017.1.0.151). The RNFL thickness of the average total and the automatically generated
8 sectors, i.e., superior temporal (ST), superior nasal (SN), nasal superior (NS), nasal inferior
(NI), inferior nasal (IN), inferior temporal (IT), temporal inferior (TI), and temporal superior
(TS) were analyzed.

2.4. OCT Angiography

OCTA is a non-invasive and non-dye-based imaging modality based on a split-
spectrum amplitude-decorrelation angiography algorithm. It detects the blood motion
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in the vessels through sequentially obtained OCT cross-sectional scans. The flow density
maps show the perfused retinal blood vessels and provide the quantitative percentage
information of the vascularized area expressed as vessel density [17-19].

The OCTA en face image acquisition was performed with RTVue XR Avanti with
AngioVue (Optovue Inc., Fremont, CA, USA; software version 2017.1.0.151). The radial
peripapillary capillary plexus was visualized using a 4.5 X 4.5 mm rectangle scan centered
on the optic nerve head, and the peripapillary area was defined as a 1.0 mm wide round
annulus extending outward from the optic disc boundary. The AngioVue software auto-
matically analyzed the vessel density of the superficial retinal layers extended from the
internal limiting membrane to the outer boundary of the nerve fiber layer. We investigated
the average vessel density of the peripapillary area and the 8 sectors, as mentioned earlier.

The low-quality images with the signal strength index < 50 or significant motion
artifacts were excluded from the analysis.

2.5. Statistical Analysis

Statistical analysis was performed using Statistica v13.1 (StatSoft, Inc., Tulsa, OK,
USA) and SPSS (SPSS, Inc., Chicago, IL, USA). Data were tested by the Shapiro-Wilk test
to determine the normality of continuous variables. Differences among the cohorts were
tested using the Chi-square test for sex and the Kruskal-Wallis test for age and BCVA. The
Mann-Whitney U-test was used to evaluate differences in the time since the last ON attack
and disease duration between groups. To account for intrasubject inter-eye dependencies,
we used generalized estimating equation models for comparison of SD-OCT and OCTA
parameters between cohorts. Correlations between RPC vessel density and RNFL thickness
were assessed with Pearson’s r correlation test. Due to the exploratory nature of this
study, no adjustment for multiple comparisons was performed. Statistical significance was
established at p < 0.05.

3. Results
3.1. Study Population

A total of 40 MS patients, 13 NMOSD patients, and 20 healthy controls were enrolled.
Five eyes of MS and six eyes of NMOSD patients were excluded from analysis due to
the low image quality of the OCTA scan. The median time since the last ON attack (in
years) and interquartile range were 6.5 (4-8) for MS and 9.0 (4-9) for NMOSD patients
(p = 0.629). No significant differences were observed between patients and controls on age,
sex, and disease duration, except for BCVA (p < 0.001). Demographic and clinical features
are detailed in Table 1.

Table 1. Demographic and clinical characteristics of MS, NMOSD patients, and controls.

MS NMOSD Controls
Number of subjects 40 13 20
Number of eyes enrolled 75 20 40
ON eyes 30 9 -
Non-ON eyes 45 11 40
Age (years), mean + SD 35.15 +7.47 42.08 £+ 10.23 37.90 + 11.47
Sex (female/male) 32/8 11/2 17/3
Disease duration (years), median (min-max) 8 (3-32) 9 (1-33) -
BCVA of enrolled eyes (logMAR), median (min-max) 0.00 (0.00-0.20) 0.00 (0.00-2.30) 0.00 (0.00-0.00)

BCVA = best-corrected visual acuity; logMAR = the logarithm of the minimum angle of resolution; max = maximum; min = minimum;
MS = multiple sclerosis; NMOSD = neuromyelitis optica spectrum disorder; ON = optic neuritis; SD = standard deviation.

3.2. SD-OCT

The average RNFL thickness was lower in MS+ON, MS—ON, and NMOSD+ON
groups than in controls (p < 0.001; Tables 2 and 3, Figures 1 and 2B). The detailed analysis
revealed that compared with healthy eyes, the RNFL was significantly thinner in all
sectors in MS+ON and NMOSD+ON eyes and in all sectors except for NS in MS—ON
eyes (Tables 2 and 3, Figure 3). In patients with the same diagnosis, the average RNFL
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reduction was seen in ON eyes compared with non-ON eyes (p = 0.007 for MS, p < 0.001
for NMOSD; Table 3). The SN, NS, IT, and TI sectors were the only ones that differed in
axonal loss between MS+ON and MS—ON, whereas in NMOSD groups, the RNFL in ON
eyes was more affected in all sectors (Table 3, Figure 3). In NMOSD+ON eyes, the axonal
loss was only noted in NS (p = 0.004) and TS (p = 0.017), compared with MS+ON eyes.
However, the average and sectoral RNFL thickness were comparable between MS—ON
and NMOSD—ON groups (Table 3, Figure 3).

Table 2. Baseline spectral-domain OCT and OCT angiography results of patients and controls.

MS+ON MS—ON NMOSD+ON NMOSD—-ON Controls

Mean + SD Mean + SD Mean £+ SD Mean + SD Mean + SD
RNFL (um)
average 85.57 +11.39 91.00 4+ 10.48 73.89 4 15.93 99.73 +12.26 101.60 4+ 7.46
ST 119.17 + 15.78 125.98 + 16.85 101.78 4+ 24.30 134.64 + 19.09 137.90 4+ 13.81
SN 93.43 + 15.75 100.18 + 15.95 79.00 4+ 23.90 111.00 + 18.73 108.93 4+ 13.36
NS 72.33 +£10.49 79.89 + 14.43 59.67 + 11.98 81.55 4+ 12.64 84.83 £+ 14.26
NI 66.27 +12.35 70.16 4 10.99 59.00 £ 13.93 77.45 £+ 15.01 75.50 £9.19
IN 100.97 + 17.83 104.29 + 13.14 89.11 £ 28.53 116.64 + 20.22 116.60 = 14.14
IT 115.77 + 21.78 126.87 + 17.91 102.33 4= 24.35 133.18 4+ 20.03 138.38 +12.73
TI 51.23 +12.34 58.98 + 10.58 46.33 +10.31 63.00 4= 8.93 68.05 4 8.28
TS 65.50 + 18.23 70.96 + 13.19 55.33 +12.43 79.82 +12.49 83.18 - 8.84
RPC (%)
average 46.76 + 4.96 49.87 + 3.10 40.80 + 8.99 50.60 + 1.71 52.97 4+ 2.51
ST 50.85 + 7.44 54.56 4+ 4.53 43.53 + 11.62 53.68 +2.73 57.40 4+ 2.59
SN 46.52 £+ 6.60 48.78 + 5.02 36.81 + 11.10 49.19 £+ 3.02 49.98 4+ 3.98
NS 45.64 + 5.59 48.30 + 4.05 38.79 4+ 8.76 47.69 + 2.58 49.23 +3.78
NI 4341 £ 6.27 46.50 4+ 4.17 40.61 +=7.90 45.63 4 4.08 49.09 + 3.45
IN 48.24 + 6.15 48.98 4+ 4.22 39.09 4+ 112.00 51.14 +2.90 52.80 4 4.40
IT 54.16 + 6.50 56.14 + 4.40 43.46 +12.45 56.26 + 3.33 59.99 + 3.39
TI 41.99 £ 6.85 46.82 4+ 4.85 41.56 + 6.93 50.20 + 4.93 52.59 4+ 3.97
TS 46.14 +7.35 51.44 +4.31 43.76 + 7.33 53.68 + 3.67 56.10 4+ 3.63

IN = inferior nasal; IT = inferior temporal; MS = multiple sclerosis; NI = nasal inferior; NMOSD = neuromyelitis optica spectrum disorder;
NS = nasal superior; OCT = optical coherence tomography; ON = optic neuritis; RNFL = retinal nerve fiber layer; RPC = radial peripapillary
capillaries; SD = standard deviation; SN = superior nasal; ST = superior temporal; TI = temporal inferior; TS = temporal superior.

RPC

RNFL

Control

NMOSD+ON

V-

NMOSD-ON

p<5% Borderline

Figure 1. Representative OCT angiography and spectral-domain OCT images of the healthy, MS+ON, MS—ON,
NMOSD+ON, and NMOSD—ON left eyes. The color-coded flow density maps present reduced retinal peripapillary
vessel density in eyes with a history of optic neuritis, more pronounced in the NMOSD+ON eye. The attenuation of large
retinal vessels is only seen in the NMOSD+ON eye. The corresponding RNFL thickness maps show an axonal loss on
the temporal side of the optic disc in the MS+ON and MS—ON eyes, whereas, in the NMOSD+ON eye, all sectors were
markedly thinner. MS = multiple sclerosis; NMOSD = neuromyelitis optica spectrum disorder; OCT = optical coherence
tomography; ON = optic neuritis; RNFL = retinal nerve fiber layer; RPC = radial peripapillary capillaries.
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Table 3. Differences in RNFL thickness among patients and controls.
MS+ON vs. MS—ON vs. NMOSD+ON vs. NMOSD—-ON vs.
Controls Controls Controls Controls
RNFL (um) B (SE) p-Value B (SE) p-Value B (SE) p-Value B (SE) p-Value
average —16.033 (2.665)  <0.001 —9.400 (2.446) <0.001 —27.711(5.779)  <0.001 —1.873 (4.555) 0.681
ST —18.733 (4.089) <0.001  —11.922 (3.980) 0.003 —36.122(9.103)  <0.001 —3.264 (6.714) 0.627
SN —15.492 (4.120)  <0.001 —8.747 (3.708) 0.018 —29.925(8.244)  <0.001 2.075 (6.690) 0.756
NS —12.492 (3.669)  <0.001 —4.936 (3.894) 0.205 —25.158 (4.889)  <0.001 —3.280 (5.447) 0.547
NI —9.233 (2.998) 0.002 —5.344 (2.637) 0.043 —16.500 (5.520) 0.003 1.955 (5.641) 0.729
IN —15.633 (4.494) <0.001  —12.311(3.723) <0.001  —27.489(11.277) 0.015 0.036 (8.288) 0.996
IT —22.608 (5.000) <0.001 —11.508 (4.111) 0.005 —36.042 (9.291)  <0.001 —5.193 (7.943) 0.513
TI —16.817 (2.935)  <0.001 —9.072 (2.482) <0.001 —21.717 (3.461) <0.001 —5.050 (3.405) 0.138
TS —17.675(4.184) <0.001 —12.219(2.931) <0.001 —27.842(2.632) <0.001 —3.357 (4.436) 0.449
MS+ON vs. NMOSD+ON vs. NMOSD+ON vs. NMOSD—ON vs.
MS—ON NMOSD—-ON MS+ON MS—ON
RNFL (um) B (SE) p-Value B (SE) p-Value B (SE) p-Value B (SE) p-Value
average —6.633 (2.460) 0.007 —25.838 (7.069) <0.001 —11.678(5.948) 0.050 7.527 (4.649) 0.105
ST —6.811 (3.641) 0.061 —32.859 (10.421)  0.002 —17.389 (9.207) 0.059 8.659 (6.791) 0.202
SN —6.744 (3.279) 0.040 —32.000 (9.711)  <0.001  —14.433(8.402) 0.086 10.822 (6.646) 0.103
NS —7.556 (2.925) 0.010 —21.879 (6.099) <0.001 —12.667 (4.363) 0.004 1.657 (5.148) 0.748
NI —3.889 (2.788) 0.163 —18.455 (7.410) 0.013 —7.267 (5.661) 0.199 7.299 (5.600) 0.192
IN —3.322 (3.748) 0.375 —27.525(13.220)  0.037 —11.856 (11.398)  0.298 12.347 (8.069) 0.126
IT —11.100 (4.832) 0.022 —30.848 (11.551)  0.008 —13.433 (9.911) 0.175 6.315 (8.180) 0.440
TI —7.744 (2.728) 0.005 —16.667 (4.563)  <0.001 —4.900 (3.915) 0.211 4.022 (3.534) 0.255
TS —5.456 (4.108) 0.184 —24.485 (4.613) <0.001 —10.167 (4.248) 0.017 8.863 (4.678) 0.058

{3 = regression coefficient; IN = inferior nasal; IT = inferior temporal; MS = multiple sclerosis; NI = nasal inferior; NMOSD = neuromyelitis
optica spectrum disorder; NS = nasal superior; ON = optic neuritis; RNFL = retinal nerve fiber layer; SE = standard error; SN = superior

nasal; ST = superior temporal; TI = temporal inferior; TS = temporal superior.
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Figure 2. The boxplots demonstrate the average peripapillary vessel density (A) and RNFL thickness (B) of MS+ON,
MS—ON, NMOSD+ON, NMOSD—ON, and controls. The scatterplot presents the correlation between RPC and RNFL
parameters of all groups (C). MS =multiple sclerosis; NMOSD = neuromyelitis optica spectrum disorder; ON = optic neuritis;

RNFL = retinal nerve fiber layer; RPC = radial peripapillary capillaries; SD = standard deviation.
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Figure 3. Comparison of the sectoral RPC vessel density and RNFL thickness. The color- and pattern-coded sectors illustrate

the significant differences (p < 0.05) of the corresponding RPC (pink) and RNFL (lines) between patients and controls (top

row) and between selected groups (bottom row). The exact p-values are presented in Tables 3 and 4. IN = inferior nasal;

IT =

inferior temporal; MS = multiple sclerosis; NI = nasal inferior; NMOSD = neuromyelitis optica spectrum disorder;

NS = nasal superior; ON = optic neuritis; RNFL = retinal nerve fiber layer; RPC = radial peripapillary capillaries;

SN = superior nasal; ST = superior temporal; TI = temporal inferior; TS = temporal superior.

Table 4. Differences in RPC vessel density among patients and controls.

MS+ON vs. MS—ON vs. NMOSD+ON vs. NMOSD—ON vs.
Controls Controls Controls Controls
RPC (%) 3 (SE) p-Value 3 (SE) p-Value 3 (SE) p-Value 3 (SE) p-Value
average —6.209 (1.042) <0.001 —3.104 (0.711) <0.001 —12.172 (3.272)  <0.001 —2.372(0.739) 0.001
ST —6.548 (1.576) <0.001 —2.839 (0.859) <0.001 —13.862 (4.407) 0.002 —3.713 (0.925) <0.001
SN —3.466 (1.458) 0.017 —1.207 (1.116) 0.279 —13.171 (3.701)  <0.001 —0.792 (1.235) 0.521
NS —3.587 (1.223) 0.003 —0.925 (1.014) 0.361 —10.439 (2.991)  <0.001 —1.537 (1.089) 0.158
NI —5.668 (1.334) <0.001 —2.585 (0.967) 0.007 —8.474 (3.227) 0.009 —3.458 (1.587) 0.029
IN —4.557 (1.392) 0.001 —3.820 (1.050) <0.001 —13.709 (3.694)  <0.001 —1.661 (1.132) 0.142
IT —5.824 (1.403) <0.001 —3.843 (1.001) <0.001 —16.532 (4.808)  <0.001 —3.724 (1.251) 0.003
TI —10.603 (1.600)  <0.001 —5.770 (1.031) <0.001 —11.034 (2.691)  <0.001 —2.390 (1.859) 0.198
TS —9.955 (1.700) <0.001 —4.653 (0.939) <0.001 —12.339 (2.626)  <0.001 —2.413 (1.158) 0.037
MS+ON vs. NMOSD+ON vs. NMOSD+ON vs. NMOSD—ON vs.
MS—ON NMOSD—-ON MS+ON MS—ON
RPC (%) B(SE) p-Value B(SE) p-Value (SE) p-Value 3(SE) p-Value
average —3.106 (0.906) <0.001 —9.800 (3.266) 0.003 —5.963 (3.364) 0.076 0.731 (0.756) 0.333
ST —3.709 (1.551) 0.017 —10.148 (4.356) 0.020 —7.313 (4.628) 0.114 —0.874 (1.055) 0.408
SN —2.259 (1.367) 0.098 —12.380 (3.761)  <0.001 —9.706 (3.854) 0.012 0.415 (1.342) 0.757
NS —2.662 (1.092) 0.015 —8.902 (2.960) 0.003 —6.851 (3.055) 0.025 —0.611 (1.051) 0.561
NI —3.083 (1.173) 0.009 —5.016 (3.440) 0.145 —2.806 (3.362) 0.404 —0.873 (1.601) 0.586
IN —0.738 (1.128) 0.513 —12.047 (3.670) 0.001 —9.151 (3.780) 0.015 2.159 (1.044) 0.039
IT —1.981 (1.402) 0.158 —12.808 (4.659) 0.006 —10.708 (4.925) 0.030 0.119 (1.317) 0.928
TI —4.833 (1.444) <0.001 —8.644 (3.206) 0.007 —0.431 (2.976) 0.885 3.380 (1.890) 0.074
TS —5.302 (1.508) <0.001 —9.926 (2.757) <0.001 —2.384 (2.967) 0.422 2.240 (1.116) 0.045

{3 = regression coefficient; IN = inferior nasal; IT

= inferior temporal; MS = multiple sclerosis; NI = nasal inferior; NMOSD = neuromyelitis

optica spectrum disorder; NS = nasal superior; ON = optic neuritis; RPC = radial peripapillary capillaries; SE= standard error; SN = superior
nasal; ST = superior temporal; TI = temporal inferior; TS = temporal superior.
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3.3. OCTA

In MS+ON, MS—ON, NMOSD+ON, and NMOSD—ON groups, the average RPC
vessel density was significantly decreased compared with the control group (Tables 2 and 4,
Figures 1 and 2A). Regarding the peripapillary sectors, the vessel density in MS+ON and
NMOSD+ON was significantly reduced in all sectors, in MS—ON—in all sectors except
for SN and NS ones, and in four sectors (ST, NI, IT, TS) in NMOSD—ON, compared with
controls (Tables 2 and 4, Figure 3). The average peripapillary vessel density in MS and
NMOSD patients was also lower in ON eyes than in non-ON eyes (p < 0.001 and p = 0.003,
respectively; Table 4). The RPC in temporal, nasal and ST sectors were decreased in M5+ON
compared with MS—ON (Table 4, Figure 3). In NMOSD groups, the vessel density in ON
eyes was significantly reduced in all sectors except for NI (Table 4, Figure 3). Moreover, in
NMOSD+ON eyes, the sectoral vessel density was significantly lower in both inferior, SN
and NS sectors than in MS+ON, and the MS—ON eyes had lower RPC density in IN and
TS than NMOSD—ON (Table 4, Figure 3).

3.4. Association of OCTA and SD-OCT

A strong positive correlation was found between radial peripapillary vessel density
and RNFL thickness in MS+ON (r = 0.793, p < 0.001), MS—ON (r = 0.689, p < 0.001), and
NMOSD+ON (r = 0.949, p < 0.001) groups (Figure 2C).

4. Discussion

This study is the first to compare the radial peripapillary vessel density alterations in
MS and NMOSD patients using OCTA. We found that all RPC and RNFL sectors were lower
in MS and NMOSD eyes after optic neuritis than in healthy eyes. Comparing MS+ON and
NMOSD+ON groups, the vessel density was significantly reduced in NMOSD+ON eyes
with a predilection to inferior, superior nasal, and nasal superior sectors. This involvement
pattern might be related to the large retinal vessels’” location from the superior and inferior
edge of the optic disc. As presented in Figure 1, these vessels were significantly attenuated
in an exemplary NMOSD+ON eye.

Green and Cree reported that the narrowing of the peripapillary vascular tree ob-
served through fundoscopy was a feature of NMOSD eyes [20]. They also suggested
that the vessel attenuation in NMOSD+ON was not secondary to the reduced metabolic
demand of atrophied retina because, in MS+ON eyes, the large vessels had normal appear-
ance even with markedly reduced RNFL [20]. Although the cause of the retinal vessels’
alteration in NMOSD+ON is not entirely elucidated, the explanation may be sought in a
distinct immunopathological mechanism. The retinal peripapillary vessels are enveloped
by the end-foot processes of macroglial cells, i.e., astrocytes and Miiller cells, which form
and maintain the inner blood-retina barrier. The perivascular end-feet are enriched with
aquaporin-4, a water channel which is targeted by AQP4-IgG in NMOSD under inflam-
matory conditions [21]. The pathological studies of NMO lesions revealed that the blood
vessels had a narrow lumen and thickened, hyalinized or fibrotic walls [22,23]. How-
ever, while similar studies of retinal tissue were lacking, it might be speculated that the
attenuated peripapillary vessels had undergone the same changes.

We also observed more substantial axonal loss in NMOSD+ON than in MS+ON eyes,
but only NS and TS sectors differed significantly. Several studies reported that after ON,
superior and inferior portions of RNFL were thinner in NMOSD than MS eyes [8,24,25].
Interestingly, this sector-specific predilection of axonal damage was reflected in the RPC
reduction in our study, indicating that the blood vessels might be more affected than axons
in NMOSD+ON patients.

Comparing ON and non-ON eyes, the reduction of RPC vessel density had temporal
and nasal predilection in MS, whereas in NMOSD, 7 out of 8 sectors were significantly
affected. The axonal loss was observed in superonasal and inferotemporal quadrants in MS,
and in all sectors in NMOSD. These results pointed out that ON led to more widespread
vascular and axonal damage in NMOSD eyes. It was shown that depending on location in
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the retina, the ganglion cell axons varied in diameter size. Namely, the smallest-diameter
axons were more abundant in the temporal sector, while inferior, superior, and nasal axons
were larger [26]. Evangelou et al. demonstrated that these small parvocellular axons,
mainly located in the papillomacular bundle, were preferentially susceptible to damage
in MS patients [27]. Besides, in the absence of ON, the axonal loss might occur due to the
retrograde trans-synaptic degeneration from MS lesions in the posterior visual pathway [28].
In our MS—ON group, the peripapillary nerve fibers were significantly thinner in 7 out
of 8 sectors with parallel RPC reduction. On the contrary, in the MS5+ON compared with
MS—ON, the capillary density reduction was not strictly accompanied by the sectoral
RNFL thinning. However, we could not unequivocally explain this phenomenon.

In MS—ON eyes, the average global vessel density and axonal layer thickness were
significantly lower, whereas in NMOSD—ON eyes, only the vessel density was reduced
compared with controls. Our findings were in agreement with Spain et al.’s study of
MS patients, in which vascular and axonal decrease occurred independently of ON
episode [11]. Regarding NMOSD, only RPC vessel density was significantly lower in non-
ON eyes, as Huang et al. and Chen et al. reported [13,14]. This result was consistent with
our observations.

Our study’s most clinically valuable outcome was demonstrating the difference in
RPC vessel density between MS+ON and NMOSD+ON eyes. After optic neuritis, the
indirect fundus examination may show retinal peripapillary vessels’ attenuation indicating
the diagnosis of NMOSD, but such an assessment is very subjective. OCT angiography,
which provides automatic, precise, and repeatable analysis, is a useful tool for detecting
and monitoring the vessels alterations in time. We showed that the superior nasal, nasal
superior, and inferior sectors of RPC vessel density were more reduced in NMOSD+ON
than MS+ON eyes. Thus, we believe that the OCTA may contribute to an accurate diagnosis
of demyelinating optic neuritis in disputable cases.

A limitation of our study is a small group of NMOSD patients due to the low preva-
lence of this disease. Some patients were also unable to complete ophthalmic examination
because of visual and physical disability. Therefore, further studies with larger cohorts are
required to strengthen our observations.

In conclusion, we demonstrated a distinct pattern of RPC density and RNFL thickness
alterations in MS and NMOSD patients. After ON, the peripapillary vessel density was
more decreased in NMOSD than MS eyes, with a predilection to superior and inferior
sectors. In NMOSD, the ON was also associated with widespread vascular and axonal
damage, whereas in MS patients, the reduction of vessel density and nerve fiber layer
occurred independently of ON. Our findings suggest that the optic nerve inflammation
may affect the peripapillary capillary plexus more in NMOSD than in MS patients.
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