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Abstract: Precipitation has an important impact on people’s daily life and disaster prevention and
mitigation. However, it is difficult to provide more accurate results for rainfall nowcasting due to
spin-up problems in numerical weather prediction models. Furthermore, existing rainfall nowcasting
methods based on machine learning and deep learning cannot provide large-area rainfall nowcasting
with high spatiotemporal resolution. This paper proposes a dual-input dual-encoder recurrent neural
network, namely Rainfall Nowcasting Network (RN-Net), to solve this problem. It takes the past grid
rainfall data interpolated by automatic weather stations and doppler radar mosaic data as input data,
and then forecasts the grid rainfall data for the next 2 h. We conduct experiments on the Southeastern
China dataset. With a threshold of 0.25 mm, the RN-Net’s rainfall nowcasting threat scores have
reached 0.523, 0.503, and 0.435 within 0.5 h, 1 h, and 2 h. Compared with the Weather Research and
Forecasting model rainfall nowcasting, the threat scores have been increased by nearly four times,
three times, and three times, respectively.

Keywords: deep learning; RNN; rainfall nowcasting; radar echo data; automatic weather stations data

1. Introduction

Precipitation is the main forecast element of Numerical Weather Prediction [1] (NWP),
which has an important impact on people’s daily life [2,3] and disaster prevention and
mitigation [4]. After years of development, the current short-term and medium-term
NWP models have become more and more accurate. However, for rainfall nowcasting,
it is difficult to give accurate forecast results due to spin-up [5] and other problems in
NWP models.

In recent years, artificial intelligence has become the new engine of the global scientific
and technological revolution, and some scholars have applied machine learning and deep
learning to precipitation forecasting [6–13]. After Shi et al. [14] achieved precipitation
intensity nowcasting by radar echo extrapolation, it has emerged as a hot research topic in
the meteorological community. They formulated radar echo extrapolation as a spatiotem-
poral prediction problem, and used ConvLSTM applying convolution structure to LSTM to
predict future radar echo data by past radar echo data. They then used the Z–R relationship
to convert predicted radar echo data into precipitation intensity data to realize precipitation
intensity nowcasting. They conducted experiments on the dataset composed of radar echo
data during the 97 days of precipitation in Hong Kong in 2011–2013. ConvLSTM has
reached 0.577 for the Critical Success Index (CSI) with a threshold of 0.5 mm/h in the next
1.5 h, which has a strong ability to forecast precipitation intensity. In 2017, Shi et al. [15]
further proposed TrajGRU to improve the effect of precipitation intensity nowcasting. It
used the generated optical flow [16] to realize a connection structure based on position
changes, and the point in the convolution structure is connected to points with higher
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correlation instead of a fixed number of surrounding points. In the experiment on the
HKO-7 dataset, TrajGRU’s CSI reached 0.552 in the next 2 h with a threshold of 0.5 mm/h.

After Shi et al. [14] formulated radar echo extrapolation as a spatiotemporal prediction
problem, many spatiotemporal prediction methods [17,18] regarded radar echo extrapola-
tion as one of the problems to evaluate the effectiveness of their methods. Wang et al. [17]
proposed a spatiotemporal prediction method celled PredRNN, which solves the problem
of spatial features of each layer of ConvLSTM being independent of each other in time
series. Spatiotemporal memory units are added to PredRNN and connected through a
zigzag structure so that features can be propagated both spatially and temporally. They
conducted experiments on the radar echo dataset in Guangzhou, and the mean square
error of PredRNN is 30% higher than that of ConvLSTM. Bonnet et al. [19] applied the spa-
tiotemporal prediction method PredRNN++ [20] to the precipitation intensity nowcasting.
PredRNN++ utilized the Causal LSTM unit to integrate temporal and spatial features and
Gradient Highway (GHU) that could alleviate gradient disappearance. However, the pre-
cipitation intensity nowcasting based on radar echo extrapolation has two main problems.
One is that the radar echo data cannot reflect the real-world distribution of precipitation,
which is caused by the working principle of the radar and various noises. The second is
that the precipitation intensity converted from the radar echo data are inconsistent with
the actual precipitation intensity, which is caused by the inaccurate Z–R relationship.

Compared with radar echo data used in precipitation intensity nowcasting, the rainfall
data used in rainfall nowcasting can be directly measured by rain gauges and other
equipment, which can more accurately reflect the real-world precipitation. Currently,
there are few rainfall nowcasting methods based on machine learning and deep learning.
Zhang et al. [21] used a multi-layer perceptron to forecast the rainfall data of 56 weather
stations in China of the next 3 h. The forecast was derived from 13 physical factors related
to precipitation in the surrounding area. Although the forecast results can meet the needs
of nowcasting, its spatial resolution is too low to achieve large-area rainfall nowcasting.

Existing rainfall nowcasting methods based on machine learning and deep learning
are difficult in order to achieve rainfall nowcasting with high spatiotemporal resolution.
To be able to achieve this, we set the grid data interpolated from the rainfall data in the
dense automatic weather station as the forecast object. Since the original data are directly
measured by the rain gauge, the grid data will reflect the real-world rainfall distribution as
much as possible. In the grid data, the forecasting time resolution and spatial resolution
are 30 min and 5 km, respectively, which can meet the high spatiotemporal resolution
requirement. As the forecast target is sequential grid data, we formulate this forecasting
problem as a spatiotemporal prediction problem, which predicts future development
through past spatiotemporal features [22]. Rainfall depends on rainfall intensity and
rainfall duration so that its evolution is more complicated and diverse. Therefore, we
utilize both rainfall data and radar echo data as our input data to gain more meteorological
spatiotemporal features which can support this complex forecasting.

Based on experiments with multiple models, we propose a dual-input dual-encoder
RNN, namely Rainfall Nowcasting Network (RN-Net). RN-Net extracts spatiotemporal
features of the rainfall and the radar echo data via dual encoders. Then, these features
are combined by a fusion module. Finally, the fused features are fed into a predictor to
make forecasts. In order to reasonably evaluate the effectiveness of rainfall nowcasting,
we propose a new performance metric that combines multiple metrics in the field of
meteorological and spatiotemporal prediction. In the experiment, 10 months of radar echo
data and rainfall data in the southeastern coastal area of China were used as deep learning
samples and compared with rainfall nowcasting of the Weather Research and Forecasting
(WRF) [23] model. The results are expected to provide convenience for daily activities such
as travel and irrigation, and provide a basis for early warning of natural disasters such as
floods and mudslides.

The rest of this paper is organized as follows: Section 2 introduces the preparatory
work. Section 3 details the proposed RN-Net framework. Experimental results are demon-
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strated in Section 4. Finally, we conclude this paper and put forward some suggestions for
future work.

2. Preliminary
2.1. Data Details

The radar echo data used in this article is Doppler radar mosaic data. Radar echo
data contains various echo noise, such as non-meteorological echo, interference echo, etc.,
which mislead prediction. Therefore, we construct a singular point filter and a bilateral
filter to filter the value domain and the spatial domain, which can effectively eliminate
the pulsation and clutter while retaining the echo characteristics. In addition, a high-pass
filter is constructed to remove data below 15 dBZ, and only data related to precipitation
are retained. Since the data will be saved as an image format, we convert the radar echo
data into pixel data.

The rainfall interpolation data of the automatic weather station is selected as the
rainfall data in this article. Automatic weather stations are widely distributed and the
distribution of automatic weather stations used in this paper is shown in Figure 1a. Rainfall
data are usually measured by rain gauges. It collects the rainfall in a specific area and
divides the rainfall volume by the surface area to obtain the depth of rainfall. Inspired
by the E-OBS dataset [24], we interpolate the rainfall point data into a uniform grid. We
use Inverse Distance Weight [25] (IDW) to interpolate the rainfall data of 13,655 automatic
weather stations in the forecasting area into a 240 × 240 grid. With such high-density data
interpolation, the actual rainfall distribution is restored as much as possible. Figure 1b,c
shows the effect of interpolation. IDW takes the distance between the interpolation point
and the sample point as the weight for the weighted average. The closer the sample point
is to the interpolation point, the greater the weight. The critical equation is as follows:

dij =
√
(xj − xi)2 + (yj − yi)2 (1)

λij =

1
dij

∑n
i=1

1
dij

(2)

Z(xj, yj) =
n

∑
i=1

λijZ(xi, yi) (3)

where n is the number of selected sampling points closest to the interpolation point, which
is set to 16 in the experiment. (xi, yi) represents the coordinates of the sample point,
and (xj, yj) denotes the coordinates of the interpolation point. Z(·, ·) is the value of this
coordinate, and dij is the distance between the sample point and the interpolation point.
λij is the weight of the sample point to the interpolation point. Finally, we convert the
interpolated rainfall data into pixel data.

Figure 1. (a) Distribution map of automatic weather stations; automatic weather station rainfall data
of 9:00 a.m.–9:30 a.m. on 23 May 2017; (b) and data after interpolation (c).
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In addition, the WRF model is used to compare the 0–2 h rainfall nowcasting effect of
RN-Net. The WRF model [26] is configured with a one-domain nested grid system. The hor-
izontal resolution of the domain is 5 km, with the grid points 240 × 240. The domain has
35 vertical layers, with the model top at 50 hPa. The boundary conditions are updated every
6 h from the 0.25◦ × 0.25◦ National Centers for Environmental Prediction (NCEP) Final
Operational Model Global Tropospheric Analysis. The main physical parameterization
schemes are shown in Table 1. The model is integrated every 6 h, the forecast time is 12 h,
and the results are output every 30 min.

Table 1. Physical parameterization schemes.

Name Scheme

Microphysics Thompson scheme
Cumulus parameterization Kain–Fritsch (new Eta) scheme
Planetary boundary layer Mellor–Yamada–Janjic TKE scheme

Surface layer Revised MM5 Monin–Obukhov scheme
Longwave radiation Rapid Radiative Transfer Model for GCMs
Shortwave radiation Rapid Radiative Transfer Model for GCMs

2.2. Problem Definition

Our goal is to forecast future automatic weather station rainfall interpolation data by
past radar echo data and rainfall data. We formally define this problem as follows: suppose
the current moment is t = 0. We have access to the radar echo data [REt]0t=−n and the
recent rainfall data [RFt]0t=−m. Our task is to predict [R̂Ft]st=1, and make them as close as
possible to [RFt]st=1, which is the real rainfall data for next time. Specifically, our goal is to
find a mapping f such that

min
f

loss([R̂Ft]
s
t=1, [RFt]

s
t=1)

s.t. [R̂Ft]
s
t=1 = f ([REt]

0
t=−n, [RFt]

0
t=−m))

(4)

3. Method
3.1. Network Structure

In order to achieve high spatiotemporal resolution rainfall nowcasting, our model
needs to obtain sufficient meteorological spatiotemporal features to support the forecast.
Meanwhile, its RNN unit also needs to have stronger feature extraction and transmission
capabilities. The network structure of RN-Net is shown in Figure 2.

Inspired by LightNet [27], RN-Net contains two encoders, a fusion module and a
predictor. The time resolution of rainfall data from automatic weather stations is 30 min and
the time resolution of radar echo data are 6 min. The time resolution difference between
the two data are too large. Therefore, the two types of data cannot be encoded by the same
encoder. RN-Net uses radar echo encoder and rainfall encoder to respectively encode the
two kinds of data to generate spatiotemporal features. The fusion module composed of
CNN is used to fuse the spatiotemporal features of the two data. Finally, the spatiotemporal
features are input to the predictor, and the forecasting of future rainfall is output. We detail
each component as follows.
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Figure 2. RN-Net consists of four parts: Radar Echo Encoder, Rainfall Encoder, Fusion module, and Rainfall Predictor.
The Radar Echo Encoder and the Rainfall Encoder encode spatiotemporal features of radar echo data [REt]

0
t=−n and recent

rainfall data [RFt]
0
t=−m, respectively. Then, the fusion module combines the radar echo feature and rainfall feature so as to

provide more spatiotemporal feature support for nowcasting. Finally, the rainfall predictor receives the fused feature and
makes forecasts [R̂Ft]

s
t=1.

Radar Echo Encoder or Rainfall Encoder: Both of these two encoders have the same
network structure and parameters. The encoder has a three-layer structure, and each layer
is composed of a layer of RNN and downsample unit. The downsample unit helps the
model understand the high-level spatial features of the input data, so as to better extract
the spatiotemporal features. The input of the first layer is radar echo data or rainfall data
([REt]0t=−n or [RFt]0t=−m). Then, the hidden features of each time point of this layer are
input into the downsample unit of the next layer, and the hidden state of the last time point
(hRE

1 or hRF
1 ) is used as the output of the encoder in this layer. The second and third layers

continue the same process. The final output of the encoder is the hidden state of each layer,
and the formula is expressed as follows: hRE

3
hRE

2
hRE

1

 = Radar-Echo-Encoder([REt]
0
t=−n) (5)

 hRF
3

hRF
2

hRF
1

 = Rain f all-Encoder([RFt]
0
t=−m) (6)

Fusion Module: The radar echo data contain rich meteorological features. Due to its
various noises, it cannot accurately reflect the real-world rainfall distribution. The rainfall
data of the automatic weather station reflect the actual rainfall distribution. To obtain
accurate rainfall nowcasting, the hidden features of the two data are combined. The fusion
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module superimposes the hidden features of the two, and then deep fusion through CNN.
Its formula is expressed as follows: h f usion

3
h f usion

2
h f usion

1

 = Fusion(
[

hRF
1

hRE
1

]
,
[

hRF
2

hRE
2

]
,
[

hRF
3

hRE
3

]
) (7)

Rainfall Predictor: The structure of rainfall predictor is similar to an encoder. It is
also a three-layer structure, and each layer is composed of a layer of RNN and upsample
units. The difference is that two layers of CNN are added to the output part, which is
more conducive to generating forecasting data [R̂Ft]st=1 by spatiotemporal features. When
forecasting, the input data of the predictor are the fused spatiotemporal hidden features.
The third layer expands the corresponding fused hidden state in the future period. Then,
the hidden state at each time is input to the upsample unit to generate the lower-level
spatial hidden state, which is input into the next layer of the predictor. The second and first
layers continue the same process. Finally, two layers of CNN output rainfall nowcasting
based on low-level spatiotemporal features. The formula is as follows:

[R̂Ft]
s
t=1 = Predictor(

 h f usion
3

h f usion
2

h f usion
1

) (8)

TrajGRU is the RNN unit used in RN-Net. It is improved based on ConvGRU and
overcomes the problem that the connection structure between the memory states in other
convRNNs is fixed. For input data, TrajGRU and ConvGRU both use convolution as the
connection structure, which makes it possible to obtain the spatial features of the input data.
For memory state, TrajGRU uses a structure generation network to dynamically generate
the optical flow between states as the connection structure. Such a flexible connection
structure can more efficiently learn complex motion patterns such as rotation and zooming
in spatiotemporal features. The settings (the kernel size, channels and stride) of each
component of RN-Net are detailed in Table 2.

Table 2. Various settings in RN-Net, including channels, kernel, and stride.

Module Name CH I/O Kernel Stride

Radar Echo Encode or Rainfall Encode

Econv1
ETrajGRU1

Econv2
ETrajGRU2

Econv3
ETrajGRU3

1/8
8/64

64/192
192/192
192/192
192/192

5 × 5
3 × 3
4 × 4
3 × 3
3 × 3
3 × 3

3
1
2
1
3
1

Fusion Module
Fconv1
Fconv2
Fconv3

128/64
384/192
384/192

3 × 3
3 × 3
3 × 3

1
1
1

Rainfall Predictor

PTrajGRU3
Pdeconv3

PTrajGRU2
Pdeconv2

PTrajGRU1
Pdeconv1
Oconv1
Oconv2

192/192
192/192
192/192
192/64
64/64
64/8
8/8
8/1

3 × 3
3 × 3
3 × 3
4 × 4
3 × 3
5 × 5
3 × 3
1 × 1

1
3
1
2
1
3
1
1
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In addition to RN-Net, we also try two other dual-input dual-encoder methods. When
ConvLSTM is used as the RNN unit of RN-Net, the radar echo encoder/rainfall encoder and
predictor need to transmit cells and hidden states simultaneously, and the fusion module
needs to fuse the two features separately. When using PredRNN as the backbone network
of RN-Net, the radar echo encoder/rainfall encoder and the predictor need to transmit cell,
hidden state, and spatiotemporal memory at the same time, and spatiotemporal memory
needs to be interspersed with zigzags in the network. The fusion module needs to fuse the
three features separately.

3.2. Implementation Details

The proposed neural networks are implemented with Pytorch [28] and are trained
end-to-end. All network parameters are initialized with a normal distribution. All models
are optimized with L2 loss, and they are trained using the Adam optimizer [29] with a
starting learning rate of 10−4. The training process is stopped after 40,000 iterations, and the
batch size of each iteration is set to 4. The rainfall data and radar echo data normalized to
the range of [0, 1] are used as network input data.

4. Experiment

In this part, we evaluate the proposed models on the Southeastern China dataset.
In Section 4.1, we introduce the details of the dataset. In Section 4.2, we introduce a new
rainfall nowcasting performance metric, which combines multiple evaluation metrics in the
meteorological field and the spatiotemporal prediction field. Section 4.3 compares RN-Net
with other methods, including eight deep learning methods and the WRF model. We
visualize two representative examples for further analysis in Section 4.4. Our experimental
platform uses Ubuntu16.04, 32 GB memory, and two Nvidia RTX 2080 GPUs.

4.1. Dataset

Radar Echo Data: We use the data from the southeast coast of China. The data are
stored in a 240 × 240 grid, and its spatial resolution is 5 km. The time resolution is 6 min,
and the time range includes May to September in 2018 and 2019.

Rainfall Data: The spatial range, spatial resolution, and time resolution of rainfall
data from automatic weather stations are the same as those of radar echo data. Its original
time resolution is 10 min; due to the small value and sparse spatial distribution after
interpolation, its time resolution is converted to 30 min.

In the dataset, 207 days for training, 29 days for validation, and 57 days for testing.
The data on some days were incomplete due to equipment failure or other reasons. Our
task can be defined as nowcasting the rainfall data of the next 2 h, based on the rainfall
data of the past 2 h and the radar echo data of the past 1 h.

4.2. Performance Metric

In our methods, the rainfall nowcasting with the high spatiotemporal resolution is
formulated as a spatiotemporal prediction problem to solve. The forecast result is the
cumulative rainfall interpolation data of four frames within 0.5 h in the next 2 h, which is
compared with the actual automatic weather station rainfall interpolation data to evaluate
the forecast effect. To make a reasonable evaluation, we define a new performance metric
by combining various evaluation metrics in the field of meteorology and spatiotempo-
ral prediction.

Commonly used metrics for rainfall nowcasting in the meteorological field include TS,
probability of detection (POD) and false alarm rate (FAR). In the experiment, we choose to
use the thresholds 0.25 mm, 1 mm, and 2.5 mm to calculate these metrics. The threshold
setting refers to the rainfall level, and the corresponding relationship is shown in Table 3.
In order to show the effect of rainfall nowcasting in the next 2 h, we take three time periods
within 0.5 h, 1 h, and 2 h for evaluation. The forecast rainfall and actual rainfall in these
three periods are accumulated and used as evaluation data. In the field of spatiotemporal
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prediction, the forecasting results are evaluated frame by frame. The evaluation result in a
period of time is the average of the evaluation results of each frame in the period. Applying
this idea to our method evaluation, and the multi-frame evaluation results within 1 h and
2 h are averaged, including the Critical Success Index (CSI), POD, and FAR.

Table 3. Correspondence between threshold and rainfall level.

Half-Hour of Rainfall (mm) Rainfall Level

r < 0.25 No or hardly noticeable
0.25 ≤ r < 1 Light

1 ≤ r < 2.5 Light to moderate
2.5 ≤ r Moderate or greater

In addition, since the data are all two-dimensional grid data and are saved in the
image format, we introduce two metrics, MAE and MSE, which respectively calculate the
L1 distance and L2 distance between the truth data and the forecast data.

CSI and TS have the same calculation formula. TS evaluates accumulated rainfall
in the period, and CSI is the average value of multiple frame evaluations in the period.
The following are the calculation equations for these six evaluation metrics:

MSE =
w

∑
x=1

h

∑
y=1

(R̂Fxy − RFxy)
2 (9)

MAE =
w

∑
x=1

h

∑
y=1
|R̂Fxy − RFxy| (10)

CSI/TS = NA/(NA + NB + NC) (11)

POD = NA/(NA + NC) (12)

FAR = NB/(NA + NB) (13)

Here, w and h are the width and height of the rainfall data, respectively. R̂Fxy and
RFxy are the forecast rainfall and truth rainfall in the coordinates (x, y). NA, NB, NC, and
ND represent the number of true-positive, false-positive, false-negative, and true-negative
grid points.

Finally, the performance metric includes five evaluation results of cumulative rainfall
within 0.5 h, 1 h and 2 h, and average values of the first two frames within 1 h and four
frames within 2 h. Such performance metric not only reflect the forecasting effect of the
method on rainfall with different time resolutions, but also reflect the spatiotemporal
prediction capabilities of the method.

4.3. Experimental Results and Analysis

We try three deep learning model input methods: rainfall data single input, radar
echo data single input, and rainfall data and radar echo data dual input. The single
input method of rainfall data is similar to the radar echo extrapolation method, which
forecasts its future development by past data. The single input method of radar echo
data are used to detect whether the radar echo data are effective for rainfall nowcasting.
The dual-input model can simultaneously obtain the meteorological spatiotemporal feature
of radar echo data and rainfall data. Three deep learning models are tried for each input
method, including ConvLSTM, TrajGRU, and PredRNN. The experiment contains nine
deep learning methods, and the best method is dual-input dual-encoder RNN which uses
TrajGRU, namely RN-Net.

In addition, to compare with the traditional method, the WRF model is run to get the
rainfall nowcasting. Its spatial scope is the same as the dataset, and its time scope covers
the testing set of the dataset. The WRF model is integrated every 6 h and forecasts the next
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12 h with a time resolution of 0.5 h of rainfall. Our deep learning methods forecast the
rainfall for the next 2 h every 0.5 h. In order to compare the two types of rainfall nowcasting
methods, we designed a special comparison method, as shown in Figure 3. First, we extract
2 h of data every 0.5 h from the 12 h WRF model rainfall forecast, and a total of 21 sets of
data. Then, we compare each set of data with the corresponding real rainfall. However, the
WRF model has a spin-up period whose duration cannot be determined, and the forecast
in this period is usually not used. In order to avoid the spin-up period, the best evaluation
results among the 21 sets of data are used as the WRF model evaluation result within 12-h.
Meanwhile, we also compared our deep learning methods rainfall forecast of these 21 time
periods with the corresponding real rainfall. The average of the 21 evaluation results is
used as our deep learning methods evaluation result within 12-h. We compare all the 12-h
WRF model forecasts integrated every 6 h in the testing set with the deep learning methods
forecasts through the above method. This comparison method not only solves the problem
of the different forecasting frequencies of the two methods, but also avoids the spin-up
period of the WRF model.

Figure 3. Schematic diagram of comparison method between our deep learning methods and the
WRF model.

The evaluation results of cumulative rainfall nowcasting within 0.5 h, 1 h, and 2 h are
shown in Tables 4–6, respectively. The average values of multi-frame 0.5 h rainfall forecast
evaluation results within 1 h and 2 h are shown in Tables 7 and 8, respectively. When
comparing the performance of rainfall nowcasting methods, TS and CSI is the main basis.
RN-Net has the highest TS and CSI in Tables 4–8 among all rainfall nowcasting methods.
Next, we mainly compare the evaluation results of different methods from the following
three aspects.

Comparison between Deep Learning Methods and WRF Model: As shown in
Tables 4–8, the deep learning methods are better than the WRF model. Compared with
WRF model rainfall nowcasting, RN-Net’s TS within 0.5 h, 1 h, and 2 h of 0.25 mm as
the threshold are increased by nearly four times, three times, and three times, respectively,
and RN-Net’s CSI within 1 h and 2 h of 0.25 mm as the threshold are increased by nearly four
times and three times, respectively. The rainfall nowcasting in the WRF model is not effective
and the FAR is extremely high. This result is caused by two factors. First, it does not use the
latest truth data, but is completely dependent on WRF simulations, and WRF simulations
usually have deviations in the time domain and geographical area. Second, these methods are
manually designed by meteorological experts and can hardly benefit from a large amount of
historical data. In addition, the effect of WRF model at low time resolution is better than that
at high time resolution, while the deep learning methods are the opposite. This is because the
deep learning methods use high time resolution data as training data.
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Table 4. Evaluation results of 0.5 h cumulative rainfall nowcasting. The best performance is reported using red, and the second best
is reported using blue. ‘↑’ means that the higher the score the better, while ‘↓’ means that the lower score the better. ‘r ≥ γ’ means
the skill score at the γ mm rainfall threshold in 0.5 h. RE, RF, and RE-RF, respectively, indicate that the method uses radar echo data,
rainfall data, or both as input data. PredRNN, ConvLSTM, and PredRNN are RNN units or backbone networks used in this method.

Method MSE↓ MAE↓ r ≥ 0.25 mm
TS↑ POD↑ FAR↓

r ≥ 1 mm
TS↑ POD↑ FAR↓

r ≥ 2.5 mm
TS↑ POD↑ FAR↓

WRF 1.077 26.602 0.131 0.359 0.763 0.094 0.278 0.830 0.066 0.190 0.868
RF-PredRNN 0.965 19.793 0.404 0.495 0.311 0.303 0.348 0.298 0.216 0.243 0.336

RF-ConvLSTM 0.890 18.889 0.425 0.506 0.272 0.348 0.409 0.299 0.268 0.310 0.337
RF-TrajGRU 0.929 19.024 0.427 0.516 0.287 0.326 0.378 0.293 0.235 0.265 0.324

RE-PredRNN 1.106 22.750 0.380 0.380 0.344 0.344 0.361 0.389 0.189 0.228 0.475
RE-ConvLSTM 0.932 20.550 0.428 0.501 0.254 0.354 0.412 0.285 0.261 0.301 0.334

RE-TrajGRU 0.872 20.514 0.455 0.546 0.268 0.400 0.492 0.318 0.315 0.392 0.383
RE-RF-PredRNN 0.841 18.517 0.474 0.585 0.285 0.393 0.478 0.310 0.296 0.356 0.360

RE-RF-ConvLSTM 0.674 16.531 0.507 0.577 0.193 0.452 0.519 0.221 0.323 0.446 0.266
RN-Net 0.698 16.484 0.523 0.611 0.214 0.464 0.551 0.252 0.371 0.433 0.278

Table 5. Evaluation results of 1 h cumulative rainfall nowcasting. ‘r ≥ γ’ means the skill score at the γ mm rainfall threshold in 1 h.

Method MSE↓ MAE↓ r ≥ 0.25 mm
TS↑ POD↑ FAR↓

r ≥ 1 mm
TS↑ POD↑ FAR↓

r ≥ 2.5 mm
TS↑ POD↑ FAR↓

WRF 3.635 53.311 0.153 0.419 0.736 0.129 0.363 0.759 0.098 0.294 0.818
RF-PredRNN 3.104 40.523 0.395 0.454 0.245 0.327 0.295 0.280 0.249 0.278 0.261

RF-ConvLSTM 2.963 39.124 0.424 0.491 0.244 0.335 0.374 0.237 0.274 0.304 0.262
RF-TrajGRU 3.066 39.811 0.428 0.503 0.255 0.331 0.380 0.276 0.258 0.291 0.302

RE-PredRNN 3.515 46.225 0.352 0.411 0.287 0.325 0.398 0.358 0.247 0.297 0.407
RE-ConvLSTM 3.083 42.151 0.365 0.395 0.170 0.362 0.407 0.235 0.235 0.320 0.261

RE-TrajGRU 2.818 41.777 0.423 0.508 0.283 0.411 0.486 0.272 0.356 0.430 0.324
RE-RF-PredRNN 2.713 38.258 0.454 0.525 0.227 0.411 0.494 0.290 0.340 0.407 0.325

RE-RF-ConvLSTM 2.260 34.573 0.465 0.508 0.154 0.442 0.489 0.177 0.392 0.439 0.214
RN-Net 2.358 34.959 0.503 0.585 0.217 0.461 0.533 0.226 0.399 0.467 0.266

Table 6. Evaluation results of 2 h cumulative rainfall nowcasting. ‘r ≥ γ’ means the skill score at the γ mm rainfall threshold in 2 h.

Method MSE↓ MAE↓ r ≥ 0.25 mm
TS↑ POD↑ FAR↓

r ≥ 1 mm
TS↑ POD↑ FAR↓

r ≥ 2.5 mm
TS↑ POD↑ FAR↓

WRF 12.467 130.027 0.168 0.466 0.742 0.160 0.422 0.758 0.132 0.384 0.780
RF-PredRNN 10.196 87.180 0.341 0.380 0.230 0.295 0.333 0.278 0.235 0.261 0.295

RF-ConvLSTM 10.018 84.924 0.352 0.391 0.217 0.277 0.297 0.194 0.227 0.241 0.202
RF-TrajGRU 10.262 87.172 0.360 0.409 0.247 0.285 0.319 0.275 0.228 0.254 0.310

RE-PredRNN 11.308 97.919 0.315 0.368 0.313 0.297 0.361 0.373 0.244 0.293 0.407
RE-ConvLSTM 10.635 91.343 0.293 0.309 0.148 0.289 0.310 0.193 0.239 0.256 0.219

RE-TrajGRU 9.655 90.043 0.378 0.441 0.274 0.359 0.413 0.266 0.318 0.372 0.313
RE-RF-PredRNN 9.167 83.913 0.399 0.461 0.250 0.368 0.440 0.307 0.314 0.373 0.337

RE-RF-ConvLSTM 8.282 77.884 0.393 0.421 0.144 0.368 0.394 0.154 0.325 0.351 0.183
RN-Net 8.465 79.188 0.435 0.495 0.218 0.396 0.453 0.242 0.350 0.406 0.283
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Table 7. Average evaluation results of two frames of rainfall nowcasting in 1 h. ‘r ≥ γ’ means the skill score at the γ mm rainfall
threshold in 0.5 h.

Method MSE↓ MAE↓ r ≥ 0.25 mm
CSI↑ POD↑ FAR↓

r ≥ 1 mm
CSI↑ POD↑ FAR↓

r ≥ 2.5 mm
CSI↑ POD↑ FAR↓

WRF 1.223 27.484 0.129 0.355 0.784 0.092 0.285 0.846 0.065 0.190 0.883
RF-PredRNN 1.091 21.201 0.349 0.424 0.339 0.244 0.280 0.349 0.163 0.183 0.405

RF-ConvLSTM 0.890 20.424 0.347 0.404 0.276 0.264 0.303 0.311 0.189 0.214 0.365
RF-TrajGRU 1.076 20.785 0.354 0.425 0.322 0.257 0.297 0.353 0.176 0.198 0.405

RE-PredRNN 1.217 24.064 0.337 0.428 0.390 0.241 0.298 0.447 0.144 0.173 0.540
RE-ConvLSTM 1.086 21.913 0.371 0.431 0.273 0.281 0.322 0.309 0.189 0.214 0.371

RE-TrajGRU 1.013 22.023 0.407 0.490 0.295 0.342 0.423 0.361 0.257 0.318 0.435
RE-RF-PredRNN 0.986 20.351 0.416 0.522 0.331 0.326 0.401 0.372 0.232 0.280 0.433

RE-RF-ConvLSTM 0.840 18.321 0.446 0.508 0.219 0.377 0.433 0.259 0.303 0.350 0.308
RN-Net 0.867 18.599 0.456 0.539 0.254 0.385 0.462 0.312 0.289 0.340 0.356

Table 8. Average evaluation results of four frames of rainfall nowcasting in 2 h. ‘r ≥ γ’ means the skill score at the γ mm rainfall
threshold in 0.5 h.

Method MSE↓ MAE↓ r ≥ 0.25 mm
CSI↑ POD↑ FAR↓

r ≥ 1 mm
CSI↑ POD↑ FAR↓

r ≥ 2.5 mm
CSI↑ POD↑ FAR↓

WRF 1.514 35.190 0.124 0.357 0.809 0.084 0.296 0.873 0.062 0.190 0.898
RF-PredRNN 1.270 23.446 0.273 0.331 0.398 0.174 0.199 0.441 0.107 0.119 0.519

RF-ConvLSTM 1.246 22.634 0.249 0.282 0.286 0.175 0.197 0.343 0.113 0.126 0.447
RF-TrajGRU 1.271 23.345 0.263 0.313 0.367 0.180 0.208 0.459 0.115 0.129 0.533

RE-PredRNN 1.384 26.327 0.268 0.347 0.475 0.171 0.211 0.549 0.092 0.109 0.650
RE-ConvLSTM 1.303 24.053 0.269 0.307 0.302 0.180 0.202 0.348 0.109 0.122 0.431

RE-TrajGRU 1.239 24.555 0.320 0.385 0.359 0.250 0.307 0.448 0.171 0.210 0.537
RE-RF-PredRNN 1.198 23.227 0.331 0.423 0.415 0.239 0.295 0.472 0.152 0.182 0.547

RE-RF-ConvLSTM 1.093 21.132 0.342 0.387 0.262 0.270 0.307 0.323 0.201 0.230 0.391
RN-Net 1.118 21.859 0.355 0.422 0.333 0.277 0.335 0.418 0.190 0.223 0.489

Comparison of Different Input Methods: The rainfall extrapolation method that is
similar to the radar echo extrapolation method is not good, and even worse than methods
that use radar echo data as input. This is due to the fact that spatiotemporal features of the
rainfall data are too small to support their forecasts. The dual-input methods are better
than the single-input methods.

Comparison of Different Network Components: PredRNN, which has the best
performance in the three radar echo extrapolation models, has the worst effect in rainfall
nowcasting. This is because the scale and quality of the dataset are not enough to support
the training of complex deep learning models. The method that uses PredRNN will be more
prone to overfitting during the training. Moreover, although the method using TrajGRU is
superior to the method using ConvLSTM on TS/CSI and POD, it is slightly inferior to the
latter on MSE, MAE, and FAR. This is due to the mechanism of TrajGRU to generate the
state connection structure, and this needs further improvement.

4.4. Visualization Results

Figure 4 visualizes two representative cases for RN-Net, RE-RF-ConvLSTM, RE-RF-
PredRNN, RE-TrajGRU, RF-TrajGRU, and WRF model. From this figure, we observe that
all of the deep learning methods except RF-TrajGRU can make accurate forecasting in the
first hour, which is consistent with the performance of evaluation metrics. The rainfall
data which is input data of RF-TrajGRU are not enough to provide enough meteorological
spatiotemporal features to support rainfall nowcasting. Even in the first half-hour, there are
some deviations. Moreover, the forecast results of the deep learning methods will gradually
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disappear after one hour. Among the three dual-input methods, the disappearance problem
of the method including ConvLSTM is the most serious. This is due to the structure of
RNN [30] and the distance loss function [31]. However, there is no identical situation with
the WRF model. WRF model forecast results often have large-scale false alarms, which is
identical to the performance in evaluation metrics.

Figure 4. Visualize two representative rainfall nowcasting cases. In (a,b), from left to right, are the actual rainfall data of the
past two hours [RFt]

0
t=−3, the actual rainfall data of the next two hours [RFt]

4
t=1 and rainfall nowcasting [R̂Ft]

4
t=1 made by

RN-Net, RE-RF-ConvLSTM, RE-RF-PredRNN, RE-TrajGR , RF-TrajGRU, and WRF models. The value in each forecast frame
is the CSI with 0.25 mm as the threshold for this frame.
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5. Conclusions

In this paper, we propose a model (namely RN-Net) for rainfall nowcasting. RN-Net
is a deep neural network with dual-input and dual-encoder. RN-Net provides a more suffi-
cient basis for forecasting by fusing the spatiotemporal features of rainfall data and radar
data. On the one hand, it overcomes the drawback of conventional forecasting methods
that cannot mine knowledge from historical data. On the other hand, it provides high
spatiotemporal resolution forecasting that other deep learning methods cannot achieve.
We conduct experiments on the Southeastern China dataset. In the experiment, RN-Net is
much better than the WRF model. However, compared with the accuracy of precipitation
intensity nowcasting [14,15,17,18,20], RN-Net’s rainfall nowcasting still has room for im-
provement. Moreover, the generalization ability of RN-Net may be poor. This is because
rainfall is affected by topography, climate, season, and other factors, and our dataset only
contains summer and autumn data of Southeast China.

In order to further improve the accuracy and generalization of rainfall nowcasting,
we will extend our current work to three aspects. Firstly, we will increase the scale of the
dataset and expand the area included in the dataset. Secondly, we will add more input
data to provide more meteorological spatiotemporal features for forecast. Finally, we look
forward to future work trying other novel deep learning networks.
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