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Abstract: Currently, effective options are needed to fight vancomycin-resistant Enterococcus faecalis
(VRE). The present study shows that combinations of phage and vancomycin are highly efficient
against VRE, despite being resistant to the antibiotic. Vancomycin-phage EFLK1 (anti-E. faecalis
phage) synergy was assessed against VRE planktonic and biofilm cultures. The effect of the combined
treatment on VRE biofilms was determined by evaluating the viable counts and biomass and then
visualized using scanning electron microscopy (SEM). The cell wall peptidoglycan was stained after
phage treatment, visualized by confocal microscopy and quantified by fluorescence activated cell
sorting (FACS) analysis. The combined treatment was synergistically effective compared to treatment
with phage or antibiotic alone, both in planktonic and biofilm cultures. Confocal microscopy and
FACS analysis showed that fluorescence intensity of phage-treated bacteria increased eight-fold,
suggesting a change in the peptidoglycan of the cell wall. Our results indicate that with combined
treatment, VRE strains are not more problematic than sensitive strains and thus give hope in the
continuous struggle against the current emergence of multidrug resistant pathogens.

Keywords: phage therapy; Enterococcus faecalis (VRE); vancomycin; phage EFLK1; phage-antibiotic
synergy (PAS)

1. Introduction

Antibiotic resistance became a major problem soon after penicillin and sulfonamides were
introduced to the world of medicine. In the last few decades, the prevalence of pathogens resistant
to antimicrobial agents has increased alarmingly. In the USA, 50–60% of nosocomial infections are
caused by antibiotic-resistant bacteria [1]. Gram-positive enterococci are an example of bacteria with
extreme resistance. Although enterococci are considered part of the normal microbiota of the human
gastrointestinal and genitourinary tracts, they often cause infections that are difficult to eradicate
and may lead to mortality rates of 19–48% [2]. Most human enterococcal infections are caused by
Enterococcus faecalis (E. faecalis) and Enterococcus faecium [3]. These pathogens are the third and fourth
most prevalent nosocomial pathogens worldwide, respectively [1]. Among enterococci, E. faecalis
causes 80–90% of infections [1]. Vancomycin-resistant enterococci (VRE) first appeared in Europe in
1986 [4] and are considered major causes of nosocomial infections [4]. The problematic nature of these
infections is due to enterococci being intrinsically resistant to many antimicrobial agents with only
a few antibiotics active against them [5].
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A possible solution for targeting resistant bacteria is to use bacterial viruses, known as
bacteriophages (phages). Billions of years of evolution [6] have shaped lytic phages to become
efficient bacterial killers [7] by causing the infected bacteria to lyse. The number of phage variants for
each bacterial species is extremely high because phages tend to readily mutate [6,8], thereby offering
many treatment possibilities and combinations. Some phages have advantages over antibiotics in
various aspects. Phages can efficiently destroy some biofilms and coevolve with their host, and their
specificity leaves the normal microbiota of patients intact [9,10]. Phages multiply at the sites of infection
and disappear after their target bacteria lyse, in which case they no longer have the ability to propagate
and are removed by the reticuloendothelial host defense system [11]. Furthermore, most phages
are nontoxic [12,13], while some induce a limited immune response [14,15]; Therefore, these varied
properties may be advantageous when targeting multidrug-resistant bacteria and biofilm inhabitants.

Phage EFLK1, a phage capable of infecting E. faecalis (named after its founder Leron Khalifa),
was previously isolated and reported, showing a potent effect against VRE [10,16], even in cases of
resistance to another E. faecalis phage such as EFDG1 [10]. Specifically, phage EFLK1 DNA was found
to have a circular genome of 130,952 bp, assembled from 209 putative coding sequences, lacking tRNA
genes [16]. A cluster of DNA replication components, including DNA helicases, DNA polymerases,
DNA maturase, DNA exonucleases, resolvase, primase and transcription genes, RNA polymerase and
sigma factors, were reported [16]. Integrases and ParA/B (genes for plasmid inheritance in prophages),
lysogenic marker genes [17], were not present. Phage EFLK1 was found to be a member of the
Spounavirinae family, which is a Myoviridae phage subfamily [16]. Myoviridae phages are predominantly
recognized as lytic phages [18].

In most recent cases of phage therapy, including one run by our group [19], phages were given in
conjugation with antibiotics. The combined treatment increases the number of possibilities to treat
resistant bacteria [20] based on the evolutionary understanding that two selective pressures may be
more effective than either alone. Phages have the potential to be a successful complement to antibiotics
due to the differences in their mechanisms of action [21]. When the effect of an interaction between
stressors that are working in the same direction is greater than the sum, it is called synergistic [22].
Phage-antibiotic synergy (PAS) has been previously described in several species, including E. faecalis [23]
Escherichia coli [24,25], Klebsiella pneumonia [26], Burkholderia cenocepacia [27], Staphylococcus [28–30]
and Pseudomonas aeruginosa [30–32]. Moreover, the PAS effect was reported in the Burkholderia cepacia
complex, which possesses high levels of innate antimicrobial resistance [27]. Kamal et al. suggested
that antibiotics can be combined with phages to stimulate increased phage production and/or activity
and thus improve the efficacy of bacterial killing [27]. Gelman et al. showed that a dual treatment of
phage cocktail and antibiotics had the best clinical effect on severe septic peritonitis caused by E. faecalis
in a mouse model [23]. Consequently, combined treatment with phage and antibiotic increases the
possibilities for combatting resistant pathogens.

In this study, we tested the combined effect of a phage and an antibiotic to which the bacteria are
resistant. We simulated a situation where a sensitive E. faecalis was treated by vancomycin, and a VRE
mutant emerged. The question we asked was whether vancomycin treatment should be topped or
continued in such cases. Intriguingly, we found that vancomycin synergizes the effect of the phage even
on the VRE strain. Combined treatment with phages and vancomycin had an antibacterial synergistic
effect against vancomycin-resistant E. faecalis (VRE) with a greater impact than each treatment alone.
Such combinations may determine the future evolution of antibiotic-resistant pathogen treatment.

2. Materials and Methods

2.1. Bacterial and Phage Strains

Vancomycin-resistant E. faecalis V583 (ATCC 700802, GenBank AE016830.1), clinically isolated
from human blood [33,34], served as the test organism.
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For each experiment, an aliquot of frozen bacteria was thawed and transferred to a test tube
containing brain heart infusion (BHI) medium (Difco Laboratories, Detroit, MI, USA) and grown for
24 h at 37 ◦C under aerobic conditions. Then, the cultures were diluted 1:1000 into a new tube with fresh
BHI medium and grown for 2 h to mid-log phase (optical density OD600 nm = 0.5). Additional bacterial
strains used for screening were vancomycin-sensitive E. faecalis Aef01, E. faecalis Aef03 and E. faecalis
Aef05, clinical isolates from The Hadassah Medical Center, Jerusalem, Israel. The phage that was tested
here was EFLK1, a member of the Spounavirinae subfamily that was previously isolated by our lab
and showed a potent effect against E. faecalis V583 [10,16]. The phage was purified by picking a single
plaque, removing it from the agar plate, and growing it with the bacteria.

2.2. Materials

Unless otherwise stated, all materials were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Vancomycin hydrochloride (Streptomyces orientalis, CAS: 1404-93-9, Sigma-Aldrich) was purchased
from Sigma-Aldrich, Israel (Rehovot).

2.3. Determination of Vancomycin Minimal Inhibitory Concentration (MIC)

A stock solution of 2 mg/mL vancomycin hydrochloride was prepared in BHI broth. Serial dilutions
were made in 96-well microtiter plate (Thermo Fisher Scientific, Roskilde, Denmark) ranged from
0–0.25 mg/mL: 0.25, 0.125, 0.062, 0.031, 0.015, 0.007, 0.003 and 0.001 mg/mL, in a final volume of 100 µL.
Exponential phase bacteria (105 colony forming units (CFU)/mL) were added to the wells in a final
volume of 200 µL, and the culture growth kinetics were recorded immediately after treatment for 24 h
at 37 ◦C shaking for 5 s every 20 min in a 96-well plate reader (Synergy; BioTek, Winooski, VT, USA)
at optical density OD600 nm. The MIC was defined as the lowest concentration of antimicrobial that
inhibited the bacterial growth.

2.4. Host-Range Specificity Tests

The activities of phage EFLK1, vancomycin and combined treatment of phage EFLK1 and
vancomycin were screened against clinical isolates of vancomycin-sensitive E. faecalis; E. faecalis Aef01,
E. faecalis Aef03 and E. faecalis Aef05, from the infectious disease unit of Hadassah Hospital (Table 1).
Bacterial growth kinetics were monitored using a 96-well plate reader.

Table 1. Bacterial strains and their sensitivities to phage EFLK1, vancomycin and combined treatment.

Bacterial
Strain Origin a Antibiotic

Resistance b Phage EFLK1 c Vancomycin MIC
(mg/mL) d

Phage EFLK1 +
Vancomycin MIC

(mg/mL) e

Enterococcus
faecalis V583 ATCC 700802 Vancomycin

Gentamicin S >0.25 0.015

Enterococcus
faecalis Aef01

Clinically isolated
from urine - S 0.003 <0.001

Enterococcus
faecalis Aef03

Clinically isolated
from urine - S 0.007 <0.001

Enterococcus
faecalis Aef05

Clinically isolated
from venal blood

flow

Erythromycin
Gentamicin S 0.003 <0.001

a The clinical isolates were performed at the Hadassah Medical Center, Jerusalem, Israel. b Bacterial resistance of the
clinical isolates to antibiotics was determined by the infectious disease unit of Hadassah Hospital, Jerusalem, Israel.
c Bacterial sensitivity of the clinical isolates to phage EFLK1 (1 × 109 plaque forming units (PFU)/mL): S, sensitive.
d Strains were grown in a 96-well plate reader for 24 h. Vancomycin hydrochloride (0.25 mg/mL to 0.001 mg/mL)
was added at time zero, and the optical density was recorded every 20 min. e Strains were grown in a 96-well plate
reader for 24 h. Phage EFLK1 (multiplicity of infection (MOI) of 103) and vancomycin hydrochloride (0.25 mg/mL to
0.001 mg/mL) were added at time zero, and the optical density was recorded every 20 min.
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2.5. Assessment of Phage and Antibiotic Lytic Activity in Planktonic Cultures

To investigate whether PAS occurs between phage EFLK1 [16] and vancomycin hydrochloride,
a series of concentrations of each of the two antimicrobials were prepared and tested alone or
in combination in 96-well microtiter plates. Phage EFLK1 ranged from 0–109 plaque forming
units (PFU)/well: 1 × 109 PFU/well, 5 × 108 PFU/well, 2.5 × 108 PFU/well, 1.2 × 108 PFU/well,
6.2 × 107 PFU/well, 3.1 × 107 PFU/well, and vancomycin hydrochloride ranged from 0–0.25 mg/mL:
0.25, 0.125, 0.062, 0.031, 0.015, 0.007, 0.003 and 0.001 mg/mL (for a schematic presentation, see Figure S1).
Exponential phase E. faecalis V583 (105 colony forming units (CFU)/mL) were added to each plate,
and the culture growth kinetics were recorded immediately after treatment for 24 h at 37 ◦C shaking
for 5 s every 20 min in a 96-well plate reader (Synergy; BioTek, Winooski, VT, USA) at optical density
OD600. Viable counts (CFU/mL) were evaluated after 24 h. Ten microliters of serial dilutions of the
samples were plated on BHI. Colonies were counted after 24 h at 37 ◦C.

2.6. Assessment of Phage Lytic Activity in a Biofilm

E. faecalis V583 static biofilms were grown in BHI broth for 72 h in a 96-well microtiter plate at 37 ◦C,
as previously described [35]. To produce a 72-h biofilm, the medium was replaced every 24 h with fresh
medium. Phage EFLK1 (109 PFU/well) and vancomycin were serially diluted (in rows and columns,
see Figure S1) as described above for the planktonic bacteria and added to the biofilm. After 96 h of
incubation at 37 ◦C, the wells were washed with phosphate-buffered saline (PBS), and the biomass was
quantified after crystal violet staining as previously described [36]. Briefly, 200 µL of methanol was
added to each well, followed by incubation for 20 min. The methanol was then aspirated, and the
wells were air-dried. The biofilms were stained with 200 µL of crystal violet (1%) for 20 min at 20 ◦C
and then washed with water. A 200 µL volume of ethanol was added, the biomass was determined
at OD538, and the CFU/mL were evaluated. Wells were scraped thoroughly, paying attention to the
well edges. Each well content was transferred to 1.5 mL tubes and placed in a sonicating water bath
(Bandelin Sonopuls HD 2200, Berlin, Germany) for 5 min to disrupt the biofilm, and 10µL of serial
dilutions of each sample were plated on BHI. Colonies were counted after 24 h at 37 ◦C.

2.7. Scanning Electron Microscopy (SEM)

The biofilm was grown as described above on glass coverslips. Samples were fixed in Karnovsky’s
fixative (2% paraformaldehyde, 2.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4) for 4 h at 20 ◦C,
followed by 50% diluted Karnovsky’s fixative (diluted in 0.1 M cacodylate buffer) overnight at 4 ◦C.
The samples were then postfixed in 1% OsO4 in 0.1 M cacodylate buffer for 2 h, dehydrated through
a graded alcohol series, and placed in a critical point drier (Quorum Technologies, K850 Critical Point
Drier Ashford, Kent, UK). After sputtering (Quorum Technologies, SC7620 Spatter coater) with Au/Pd,
samples were viewed under SEM (Quanta 200, FEI, Brno, Czech Republic).

2.8. Detection of N-Acetylglucosamine in Cell-Wall

To investigate the mechanism of synergistic effect between vancomycin and phage EFLK1,
N-acetylglucosamine (GlcNAc) was chosen as a target, because of its relativity to vancomycin
target d-Ala-d-Ala terminus of peptidoglycan. Wheat germ agglutinin (WGA)-Alexa Fluor 647
conjugate (Invitrogen, Basel, Switzerland) was used for detection of GlcNAc on E. faecalis cell wall [37].
Phage EFLK1 was added to planktonic E. faecalis V583. After 48 h at 37 ◦C incubation, the culture
was plated on BHI agar plates and incubated for 24 h at 37 ◦C. A single colony was inserted into
a fresh BHI medium and grown for 24 h at 37 ◦C, the culture was named EFLK1 survivor (EFLK1s).
Untreated E. faecalis V583 served as control. The cultures were diluted 1:1000 into a new tube with
fresh BHI medium and grown for 2 h to mid log phase (optical density OD600nm = 0.5). Bacterial cells
were harvested by centrifugation and resuspended in phosphate-buffered saline tween (PBST) in a 1:10
ratio (120 mM NaCl, 50 mM phosphate, 0.1% Tween 20, pH 8.0). 100 µL cells and 50 µL of Alexa Fluor
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647 WGA solution (0.1 mg/mL) were mixed and incubated for 10 min at 25 ◦C. E. faecalis V583 and
EFLK1s cells were removed from labeling solution by centrifugation (12,000× g, 1 min) and washed
twice with PBST buffer. After washing the cells, they were examined by confocal scanning fluorescence
microscope (Olympus FV300, Tokyo, Japan) with a ×60 lens. Additionally, a quantification of the
stained cells was conducted by using fluorescence activated cell sorting (FACS) analysis. The cells were
filtered through a cell strainer (70 µm) and analyzed with Accuri C6 flow cytometry (BD Biosciences,
San Jose, CA, USA).

2.9. Statistical Analysis

The results were analyzed as the mean ± standard deviation (STDEV.P function in Excel) in each
experimental group. Statistical significance was calculated by a Student’s t-test two-tailed unpaired
p values (significance level: p < 0.05, p < 0.01).

3. Results

3.1. Combined Treatment with Vancomycin and Phage EFLK1 Reduced VRE Planktonic Growth

The vancomycin minimal inhibitory concentration (MIC) tested in planktonic VRE cells
(MIC > 0.25 mg/mL) showed that the highly resistant bacteria exhibited a dose-dependent growth
reduction as the antimicrobial effect of the drug was proportional to the given drug dose (Figure 1),
as can be seen by the long duration of the lag phase and the decreased final OD after treatments by higher
vancomycin concentration. Cells plated on BHI agar showed bacterial growth at all concentrations.
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Figure 1. Representative depiction of vancomycin minimal inhibitory concentration (MIC) for
E. faecalis V583 (VRE) by serial dilutions. The results are mean ± SD based on three independent
biological replicates.

After examining all the combinations of phage EFLK1 and vancomycin (Figure S2), we decided
to focus on the mixture of the lowest treatment concentrations that yielded the best synergistic
effect on both planktonic and biofilm bacteria and was within the therapeutic range of vancomycin
(<0.031 mg/mL): 0.015 mg/mL vancomycin and 1.2 × 108 PFU/well phage EFLK1. Maximal bacterial
growth was observed in the untreated VRE controls, and minimal growth was observed in the
combination of 0.015 mg/mL vancomycin and 1.2 × 108 PFU/well phage EFLK1. Treatment with
vancomycin alone caused slightly reduced bacterial growth. Phage EFLK1 alone reduced the culture’s
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turbidity, as reflected in its optical density at 600 nm (OD600), although the inhibition was less efficient
than when combined with vancomycin (Figure 2).
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Figure 2. Treatment of planktonic bacteria with 1.2 × 108 plaque forming units (PFU)/well phage EFLK1
(anti-E. faecalis phage) combined with 0.015 mg/mL vancomycin reduced VRE growth. Total growth
was inhibited in the combination of 0.015 mg vancomycin/mL and 1.2 × 108 PFU/well phage EFLK1
(red). VRE control depicts untreated bacteria showing maximal growth (blue). A longer lag phase was
observed after treatment with 0.015 mg/mL vancomycin (green) or phage EFLK1 (1.2 × 108 PFU/well)
alone (purple). The combined treatment reduced the bacterial maximum optical density (OD) with
better effect than that of the phages or vancomycin alone. The results are mean ± SD based on
3 independent biological replicates.

To validate these results, viable cells were counted (Figure 3). Bacterial inhibition (seven logs
reduction) was observed after treatment with the combination of phage EFLK1 and vancomycin,
an effect that was not observed by vancomycin treatment. Phage EFLK1 treatment reduced two logs of
the viable counts.
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phage EFLK1 and vancomycin. The colony forming units (CFU)/mL of VRE treated with 0.015 mg/mL
vancomycin combined with phage EFLK1 1.2 × 108 PFU/well is presented. Bacteria were below the
limit of detection after treating the cells by combining phage EFLK1 and vancomycin. Bacteria treated
only with vancomycin showed survival scores like those of the untreated bacteria; cells treated with
phage EFLK1 showed medium survival rates. Combining vancomycin and phage EFLK1 caused
seven log reductions in CFU/mL. Light gray = vancomycin-treated bacteria, dark gray = phage EFLK1
treatment, black = phage EFLK1 + vancomycin. Statistically significant (p < 0.01) compared to the
untreated control. The results are mean ± SD based on three independent biological replicates.

The infectivity of phage EFLK1, vancomycin and their combined treatment were assessed on
several clinically isolated bacteria. Table 1 denotes the details of the tested bacteria, including their
antibiotic resistance. Phage EFLK1 was found to be host-specific, infecting E. faecalis strains. In E. faecalis
strains (E. faecalis V583, E. faecalis Aef01, E. faecalis Aef03, E. faecalis Aef05), adding phage EFLK1 with
vancomycin showed better results than vancomycin alone, reducing the vancomycin MIC.

3.2. Combined Treatment of Vancomycin and Phage EFLK1 Reduced 72 h Biofilms

Biofilms are one of the most challenging infection modalities to treat [38]. Thus, a combined
treatment of phage EFLK1 and vancomycin against E. faecalis biofilm was investigated. After examining
all the combinations of phage EFLK1 and vancomycin (Figure S3), we decided to focus on the mixture
of the lowest concentrations that yielded the best synergistic effect both in planktonic bacteria and
in biofilm: 0.015 mg/mL vancomycin and 1.2 × 108 PFU/well phage EFLK1. Consistent with the
results for the planktonic cultures, combinations of phage EFLK1 and vancomycin increased killing
in the vancomycin-resistant E. faecalis biofilm (Figures 4–6). Biofilm biomass was assessed by crystal
violet staining (Figure 4). Following combined treatment of phage EFLK1 (1.2 × 108 PFU/well) and
vancomycin (0.015 mg/mL), the biomass decreased by 87%. Biofilm treated with vancomycin alone
showed high biomass levels with only an 8% decrease. Treatment of biofilm with phage EFLK1 alone
reduced the biofilm biomass by 81% (Figure 4). There was no high difference between phage treatment
alone and phage combined with vancomycin, so we further tested the viable counts in order to eliminate
the presence of non-viable debris and matrix remanences. Viable counts of E. faecalis biofilm treated
with vancomycin combined with phage EFLK1 showed growth reduction to an undetectable level,
whereas treatment with vancomycin alone showed less than one log growth reduction, and phage
EFLK1 treatment alone caused four log growth reduction (Figure 5).



Viruses 2019, 11, 954 8 of 15

Viruses 2019, 11, x FOR PEER REVIEW 7 of 15 

 

Figure 3. Viable counts of planktonic vancomycin-resistant E. faecalis following a combined treatment 
of phage EFLK1 and vancomycin. The colony forming units (CFU)/mL of VRE treated with 0.015 
mg/mL vancomycin combined with phage EFLK1 1.2 × 108 PFU/well is presented. Bacteria were below 
the limit of detection after treating the cells by combining phage EFLK1 and vancomycin. Bacteria 
treated only with vancomycin showed survival scores like those of the untreated bacteria; cells treated 
with phage EFLK1 showed medium survival rates. Combining vancomycin and phage EFLK1 caused 
seven log reductions in CFU/mL. Light gray = vancomycin-treated bacteria, dark gray = phage EFLK1 
treatment, black = phage EFLK1 + vancomycin. Statistically significant (p < 0.01) compared to the 
untreated control. The results are mean ± SD based on three independent biological replicates. 

The infectivity of phage EFLK1, vancomycin and their combined treatment were assessed on 
several clinically isolated bacteria. Table 1 denotes the details of the tested bacteria, including their 
antibiotic resistance. Phage EFLK1 was found to be host-specific, infecting E. faecalis strains. In E. 
faecalis strains (E. faecalis V583, E. faecalis Aef01, E. faecalis Aef03, E. faecalis Aef05), adding phage 
EFLK1 with vancomycin showed better results than vancomycin alone, reducing the vancomycin 
MIC. 

3.2. Combined Treatment of Vancomycin and Phage EFLK1 Reduced 72 h Biofilms 

Biofilms are one of the most challenging infection modalities to treat [38]. Thus, a combined 
treatment of phage EFLK1 and vancomycin against E. faecalis biofilm was investigated. After 
examining all the combinations of phage EFLK1 and vancomycin (Figure S3), we decided to focus on 
the mixture of the lowest concentrations that yielded the best synergistic effect both in planktonic 
bacteria and in biofilm: 0.015 mg/mL vancomycin and 1.2 × 108 PFU/well phage EFLK1. Consistent 
with the results for the planktonic cultures, combinations of phage EFLK1 and vancomycin increased 
killing in the vancomycin-resistant E. faecalis biofilm (Figures 4–6). Biofilm biomass was assessed by 
crystal violet staining (Figure 4). Following combined treatment of phage EFLK1 (1.2 × 108 PFU/well) 
and vancomycin (0.015 mg/mL), the biomass decreased by 87%. Biofilm treated with vancomycin 
alone showed high biomass levels with only an 8% decrease. Treatment of biofilm with phage EFLK1 
alone reduced the biofilm biomass by 81% (Figure 4). There was no high difference between phage 
treatment alone and phage combined with vancomycin, so we further tested the viable counts in 
order to eliminate the presence of non-viable debris and matrix remanences. Viable counts of E. 
faecalis biofilm treated with vancomycin combined with phage EFLK1 showed growth reduction to 
an undetectable level, whereas treatment with vancomycin alone showed less than one log growth 
reduction, and phage EFLK1 treatment alone caused four log growth reduction (Figure 5). 

 
Figure 4. E. faecalis biofilm biomass following treatment with phage EFLK1 (1.2 × 108 PFU/well) and 
vancomycin (0.015 mg/mL). Treatment with combinations of phage EFLK1 and vancomycin 

Figure 4. E. faecalis biofilm biomass following treatment with phage EFLK1 (1.2 × 108 PFU/well) and
vancomycin (0.015 mg/mL). Treatment with combinations of phage EFLK1 and vancomycin significantly
decreased bacterial biomass (87% reduction) as evaluated by crystal violet staining. The results are
presented as percentages, normalized to the biofilm biomass controls. Light gray = vancomycin-treated
bacteria, dark gray = phage EFLK1 treatment served as the control, black = phage EFLK1 + vancomycin
treatment. Statistically significant (p < 0.05) compared to the untreated control. The results are
mean ± SD based on three independent biological replicates.
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Figure 5. VRE 72-h biofilm viable counts following a combined treatment of phage EFLK1
(1.2 × 108 PFU/well) and vancomycin (0.015 mg/mL). Combining vancomycin and phage EFLK1
caused an eight logs reduction in the CFU/mL of the bacterial biofilm, bacteria were below the limit of
detection. Phage EFLK1 caused four log reductions, and vancomycin caused less than a log reduction.
Light gray = vancomycin treatment alone, dark gray = phage EFLK1 treatment alone, served as the
control, black = phage EFLK1 + vancomycin treatment. Statistically significant (p < 0.05) compared to
the untreated control. The results are mean ± SD based on three independent biological replicates.
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Figure 6. Combinations of phage EFLK1 and vancomycin target VRE. Scanning electron microscopy
images (MAG: A–C: 20,000, D: 2000): (A) E. faecalis 72-h biofilm. (B) Biofilm exposed to vancomycin
alone, showing no effect. (C) E. faecalis biofilm exposed to phage EFLK1 showing bacterial lysis,
leaving mainly the extracellular matrix. (D) E. faecalis biofilm exposed to vancomycin and phage
EFLK1 showing massive bacterial lysis, degradation and biofilm deformation, leaving almost no trace
of biofilm.

Finally, SEM was used to visualize the effect of phage EFLK1 and vancomycin on a 72-h VRE
biofilm (Figure 6). Exposure to vancomycin alone had little effect on the bacterial cells, reducing the
size of the bacteria (Figure 6, panel B), while biofilm exposed only to phage EFLK1 revealed extensive
bacterial lysis (Figure 6, panel C), leaving a large amount of cellular debris. As in the planktonic
culture, E. faecalis biofilm exposed to vancomycin and phage EFLK1 showed massive bacterial lysis
and degradation, leaving almost no trace of the biofilm (Figure 6, panel D).

3.3. Identifying Cell Wall Changes Followed Phage Treatment

Since both phages and vancomycin target bacterial cell wall we decided to further explore their
synergistic mechanism by detecting N-acetylglucosamine after EFLK1 phage treatment. We found
that the ability of the lectin to bind cell wall was changed after phage treatment, as can be seen in
Figure 7. The fluorescence staining of Alexa Fluor 647 WGA increased 8-fold following phage treatment
(EFLK1s), suggesting a change in the peptidoglycan of the cell wall (Figure 8).
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Figure 7. Alexa Fluor 647 wheat germ agglutinin (WGA) stains EFLK1 survivors. Confocal microscopy
images (MAG: 60): (A–B) vancomycin resistant E. faecalis V583 show low fluorescence level, indicating no
conjugation to N-acetylglucosamine. (C–D) EFLK1 survivors show high fluorescence levels followed
the conjugation of Alexa Fluor 647 WGA to N-acetylglucosamine.
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followed phage treatment. Red = EFLK1 survivors, black = untreated control of E. faecalis V583.
Statistically significant (p < 0.01) compared to the untreated control. The results are mean ± SD based
on six independent biological replicates.

4. Discussion

This study addresses two key healthcare concerns: the lack of effective biofilm treatment options
and the issue of antibiotic-resistant pathogens. Specifically, we tested whether phage-antibiotic synergy
(PAS) also occurs when bacteria are considered resistant to the antibiotic. We demonstrated that in
a model of VRE faecalis treated with a combination of vancomycin and an E. faecalis-specific phage,
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the antibiotic that alone had almost no effect induced phage lethality. The combined treatment effectively
targeted planktonic and biofilm associated VRE. As expected, when used alone, only extremely high
concentrations (>0.25 mg/mL) of the antibiotic eradicated the infection. However, when the phage was
combined with the antibiotic, much lower (0.015 mg/mL) antibiotic concentrations demonstrated
significant antibacterial effects.

Vancomycin, a last-resort antibiotic, is used mainly in serious Gram-positive bacterial infections that
do not respond to other antibiotics. This effective antibiotic inhibits cell wall synthesis in Gram-positive
bacteria but is ineffective against VRE. The present study showed that for the same amount of E. faecalis
killing, less vancomycin was required in the presence of phage. Moreover, VRE growth and viability
were reduced not only in planktonic cultures but also in biofilm cultures following exposure to
combinations of the two. Combining vancomycin with phage EFLK1 produced a synergistic effect,
resulting in almost no resistant bacteria surviving in some of the treatment combinations (Figures 3–5).
Although the phage was previously shown to be effective against VRE [10,35], especially as a phage
cocktail [10], this effect was intensified when the treatment modality included vancomycin, an antibiotic
to which the target bacteria are resistant. Although this effect was present in other E. faecalis strains
(Table 1), it was highly efficacious when targeting E. faecalis V583.

Treatments involving combinations of phages and antibiotics were successfully practiced in the
1950s and 1960s in Soviet medicine [39–42]. Several mechanisms were previously suggested for the
PAS effect. The most studied is phage λ induction by SOS-inducing agents [43]. In the case of β-lactam
antibiotics against E. coli, PAS is suggested to be a consequence of cellular filamentation unrelated to
the SOS system, which inhibits bacterial cell division in response to DNA damage [24]. This effect
has been achieved with various phages against different pathogens; thus, the presence of antibiotic is
thought to render an advantage to phages [24]. Similarly, here, exposing VRE to both phage EFLK1
and vancomycin resulted in a greater killing effect, whereas vancomycin alone only minimally affected
the bacteria. However, our case appears to be unique, as vancomycin is the antibiotic to which
these bacteria are resistant. Phage EFLK1 exerted broad antibacterial activity against clinical isolates,
making it a valuable treatment option for E. faecalis-related infections (Table 1).

Biofilm-based infections are extremely difficult to target [38]. Nevertheless, combining phage
EFLK1 with vancomycin also reduced viable counts by nearly eight log and the biomass by 87% in
a well-established biofilm (Figures 4 and 5), whereas vancomycin alone failed entirely. Treating biofilm
with an efficient phage, such as phage EFLK1, showed good results (four log growth reduction),
and combining phage EFLK1 with an antibiotic led to much better results. Surprisingly, the lower
vancomycin dose showed a better antibacterial effect when vancomycin was combined with the
phage. A possible explanation may be found in the previously described information that sublethal
concentrations of certain antibiotics stimulate the host bacteria to produce virulent phages by increasing
the bacterial cell biomass and accelerating lysis of the infected host cells, inducing the phages to spread
faster [24]. Ryan et al. found that combining T4 bacteriophages and cefotaxime significantly enhanced
the eradication of bacterial biofilms compared with cefotaxime treatment alone [25], reducing the
minimum biofilm eradication concentration of cefotaxime against E. coli biofilms. Another study
showed synergism between ciprofloxacin, meropenem, tetracycline, and KS12 and KS14 phages
in B. cenocepacia, strains C6433 and K56-2, which was reflected in their enlarged plaque size [27].
Phages and penicillin have also been successfully combined against Staphylococcus [28,29]. Huff et al.
observed a similar phenomenon using E. coli phages with ciprofloxacin [44]. Hagens et al. [45] suggested
that the bacterial outer membrane was ineffective as a barrier against antibiotic penetration into the
bacterial cell during filamentous phage progeny extrusion regarding phages released from the bacteria
by extrusion rather than by cell lysis [29]. We found that the combined effect of phages and antibiotics
can be useful for treating bacteria within the biofilm matrix and that the combination synergistically
enhanced biofilm eradication. In vivo studies in mice explored combining phages and antibiotics such
as dichlortetracycline, erythromycin, pasomycin and oxacillin. The best results for these combinations
were achieved when the antibiotic was administered 24 h before phage treatment [42].
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Interestingly, when phage EFLK1 was inoculated with VRE at higher multiplicity of infection
(MOI), the viable counts (CFU/mL) of the treated biofilm increased. This phenomenon was previously
reported by Cheng et al. [46], speculating that when phage EF-P29 is incubated with a VRE faecalis
strain at a higher MOI, phage-resistance mutations in E. faecalis occur quickly. It has been suggested
that a high MOI enhances the selection towards phage resistance, while a low MOI allows the
phage-sensitive bacteria to persist and outcompete the phage-resistant bacteria [46,47]. This phage
resistance development is one of the therapeutic concerns of phage therapy [48]. However, the positive
anti-VRE effect of phages and antibiotics shown here indicates that the combined approach may
be an optional solution to delay the appearance of phage-resistant variants and enhance treatment
efficacy [47]. Moreover, for resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA),
the recent guidelines include the use of 0.015–0.020 mg/mL of vancomycin [49]. Our results show
that although vancomycin-resistant bacteria can be targeted only at > 0.25 mg/mL, the combination
of vancomycin at a concentration of 0.015 mg/mL and low phage EFLK1 MOI resulted in efficient
antibacterial effects against VRE. This combination may suggest an optional solution to overcome both
phage resistance and antibiotic resistance concerns.

Consistent with previous findings, SEM micrographs of biofilms exposed to phage EFLK1 revealed
extensive bacterial lysis, leaving mainly the extracellular matrix. This effect was amplified when
the VRE biofilm was exposed to vancomycin and phage EFLK1, showing massive bacterial lysis,
degradation and biofilm deformation, leaving almost no trace of the biofilm (Figure 6).

The exact mechanism of the synergistic effect between phage EFLK1 and vancomycin is being
intensively investigated in our lab. Since the presence of bacteriophages may increase bacterial
sensitivity to antibiotics, the mechanism behind the PAS phenomenon observed here may be related to
the phage and antibiotic binding sites. Vancomycin inhibits cell wall synthesis in Gram-positive bacteria
by targeting the D-alanyl-D-alanine (D-Ala-D-Ala) terminus of the intermediates in peptidoglycan
synthesis. Thus, vancomycin inhibits the transglycosylation and transpeptidation reactions in
peptidoglycan assembly [50]. Binding of fluorescently labelled wheat germ agglutinin (WGA),
a lectin that specifically binds terminal GlcNAc residues in wall teichoic acids may indicate changes in
cell wall glycosylation [37]. Alexa Fluor 647 WGA was able to stain phage treated bacteria, but this lectin
almost failed to bind the untreated bacteria (Figures 7 and 8), pointing at a lack of GlcNAc residues in
wall teichoic acids. This may increase the bacterial sensitivity to vancomycin and may explain the lower
vancomycin MIC of the phage treated bacteria. The E. faecalis mechanism of vancomycin resistance
is due to an alternative cell wall precursor production pathway that poorly binds vancomycin [51].
We suggest that binding of the phage to the cell wall is likely related to enzymes that alter the terminal
peptidoglycan residue so that when the bacteria are exposed to the phage, their enzymatic action is
blocked, which induces bacterial sensitivity to vancomycin.

Another possible explanation is based on the phage endolysins. Endolysins were shown to have
a direct activity against enzymes that are responsible for covalent linkages in the bacterial cell wall,
such as glycosylase, trans-glycosylase, amidase and endopeptidase [52]. The synergistic activity may
be a result of a simultaneous anti enzymatic activity. (Lipo)teichoic acids embedded in peptidoglycan
are an example of essential component of Gram-positive bacteria that are often a primary phage
receptor. Polysaccharide depolymerases and virion-associated lysins (VALs) are carbohydrate active
enzymes that recognize, bind and degrade bacterial polysaccharide to gain access to a secondary
receptor on the bacterial cell surface [53]. The primary receptor within the peptidoglycan to which the
phage or its enzymes bind may be related to vancomycin target. Further study is needed to investigate
the presence and function of enzymes such as VALs in order to establish the mechanism of action by
which vancomycin sensitivity is reversed. Additionally, using different antibiotics combined with our
phage against VRE has potential and merits further investigation.

In conclusion, a synergistic antibacterial effect was obtained using phage EFLK1 with antibiotics,
even in cases of resistance to certain antibiotics such as vancomycin. Our results support the idea
that antibiotic resistance can be attenuated, and potentially, when combined with phage therapy,
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we may again successfully use the antibiotics to which pathogens have developed resistance. This may
significantly impact future development of treatment modalities against antibiotic-resistant pathogens.
Further study of the PAS mechanism of vancomycin and phages against VRE is required.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/10/954/s1,
Figure S1: Scheme of the experimental setup in a 96-well microtiter plate, Figure S2: Viable counts of all the
combined treatments of phage EFLK1 and vancomycin against VRE planktonic cells and Figure S3: Viable counts
of all the combined treatments of phage EFLK1 and vancomycin against VRE 72 h biofilm.
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