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Topological quantum computation is a promising technique to achieve large-scale, error-corrected
computation. Quantum hardware is used to create a large, 3-dimensional lattice of entangled qubits while
performing computation requires strategic measurement in accordance with a topological circuit
specification. The specification is a geometric structure that defines encoded information and fault-tolerant
operations. The compilation of a topological circuit is one important aspect of programming a quantum
computer, another is the mapping of the topological circuit into the operations performed by the hardware.
Each qubit has to be controlled, and measurement results are needed to propagate encoded quantum
information from input to output. In this work, we introduce an algorithm for mapping an topological
circuit to the operations needed by the physical hardware. We determine the control commands for each
qubit in the computer and the relevant measurements that are needed to track information as it moves
through the circuit.

Q
uantum computing is at a pivotal point in development. The major enabling factor is the greatly
enhanced understanding of highly efficient quantum error-correcting codes which allow reliable opera-
tion of a quantum computer even when its individual qubits have very large error-rate. This paper

focuses on the generic class of measurement-based topological quantum computers1–4 (TQC), which combine
several advantages that make them one of the most promising paradigms to build scalable quantum computers in
the near future5–13. TQC is based on advanced topological quantum error-correcting codes, where the quantum
hardware produces a well defined array of qubits that are arranged and connected using quantum entanglement
links in a regular 3D lattice.

TQC allows, in principle, a reliable realisation of large quantum algorithms, such as the Shor algorithm to factor
numbers in polynomial time14,15, a task that is not efficiently possible on a classical computer. However, imple-
menting complex functionality requires specific design flows based on clear abstraction levels and automated
synthesis steps. In case of classical circuits, the design stack typically includes algorithmic level, register-transfer
level, gate level, transistor level, and mask level (sometimes, more levels are defined). In over 50 years of classical
circuit design, a large variety of automated and semi-automated methods to translate a design from a higher level
to a lower level have been developed.

For quantum algorithms based on the TQC paradigm, a design stack can also be defined (Figure 1). A quantum
algorithm, such as the Shor algorithm, is first transformed into a quantum circuit consisting of quantum gates
(each gate is a manipulation of typically 1, 2 or 3 qubits that can be described by a unitary matrix). This step is
required for TQC and all other quantum architectures, and substantial body of work on gate-level design and
optimisation has been published both in Quantum Physics and in Computer Engineering communities16–22.

TQC circuits allow for a generic geometric description that abstracts from details, in particular the underlying
error correction, which is sufficient to capture relevant algorithmic interactions. The geometric structures in the
TQC circuit, representing encoded qubits and encoded gates are embedded (via physical qubit measurements)
within the physical 3-dimensional lattice. The model provides direct support for only a restricted subset of
quantum operations, due to symmetries necessary for error correction to function, and if the high level circuit
contains arbitrary gates, they must first be mapped to the supported operations using a series of well-known
steps15,23,24. After that, the circuit can be translated into its canonical geometric representation where each gate has
a corresponding region of the 3D lattice where it is implemented. The first automated optimisation method for a
restricted case of two-dimensional descriptions was presented in25.

This paper focuses on the next synthesis step: mapping of the geometric description to the physical level. The
output of the mapping consists of two parts: A direct instruction set for the quantum hardware and a classical
instruction set for data processing. The geometric description of the TQC circuit specifies a layout of how logical

OPEN

SUBJECT AREAS:
QUANTUM

INFORMATION

QUBITS

COMPUTER SCIENCE

INFORMATION TECHNOLOGY

Received
26 September 2013

Accepted
18 March 2014

Published
11 April 2014

Correspondence and
requests for materials

should be addressed to
A.P. (alexandru.

paler@uni-passau.de)

SCIENTIFIC REPORTS | 4 : 4657 | DOI: 10.1038/srep04657 1



qubits should be arranged within the lattice of physical qubits. The
physical size and separation of these structures is proportional to the
error correction strength needed for computation. TQC operates by
performing measurements on physical qubits within the lattice. The
type of measurement depends on whether a given physical qubits is
inside or outside the geometric region defining a logical qubit. The
instruction set for the quantum hardware consists of translating the
geometric structure to a specific set of individual measurement
instructions for the physical qubits in the lattice.

The classical data processing information is also required for
byproduct calculation. Within a TQC circuit, large sets of physical
qubits form what is known as a correlation surface. These sets con-
nect the inputs of a quantum circuit to the outputs. The overall parity
of these correlation surfaces (when they are measured) tells us how
the logical information must be corrected in order to successfully
propagate from input to output. The classical control software of a
TQC must know these structures in order to successfully operate.
Therefore, for a TQC circuit specification, the determination of the
physical qubit sets that define correlation surfaces and how they
interact is non-trivial and constitutes the by far most complex part
of the mapping algorithm.

The result of the mapping algorithm is a 3D lattice of qubits along
with instructions how to use it. This is vaguely related to the general-
purpose hardware and the customised software of a classical
microprocessor. Note that TQC is technology-independent: any
implementation where qubits can be arranged in two or three dimen-
sions can be used to realise this model6,8,9. Therefore, our work closes
the gap between the high-level synthesis (which reaches up the geo-
metric description level) and technology-oriented physical imple-
mentation approaches. It is the foundation for the first complete
automated flow from the quantum algorithm to the implementation.

The physical qubits are arranged in a large three-dimensional
lattice and are entangled to form a single, massive, universal
quantum state. A universal state is a specific quantum state that
can be used to implement any fault-tolerant quantum algorithm
via measurement of each qubit in the state26. The unit cell of the
lattice is illustrated in Fig. 2a). Prior to actual computation, each
qubit is initialised in the superposition state, zj i~ 0j iz 1j ið Þ� ffiffiffi

2
p

. Once all qubits are initialised, a two-qubit gate is used to
entangle any two qubits that are connected in the lattice with an
edge. The unit cell is the building block of the lattice, and its structure
is repeated along three dimensions, which are denoted by w (width),
h (height) and t (time). TQC is implemented via sequential measure-

ment of a 2D cross section of the full 3D lattice. Information is
propagated along the third axis of the lattice via the entanglement
links, with processing occurring during these teleportation steps.
Hence the third dimension of the physical lattice is identified with
the temporal axis (t-axis).

One general unit cell of the lattice has 27 (3 3 3 3 3) vertex
positions, 18 of which are occupied by physical qubits, denoted by
gray and black circles in Figure 2a). A lattice with mcw 3 mch 3 mct

unit cells has a total of (2mcw 1 2)?(2mch 1 2)?(2mct 1 2) positions,
because neighboring cells share a side. All physical qubits in the
complete lattice form the set TQCC. The positions not occupied by
qubits form the set CEL. A position (cw, ct, ch) g CEL must be the
center of a unit cell. The physical qubits at the faces of such a cell (six
gray circles in Figure 2a) are denoted by Fcw,ch,ct, and the qubits at the
sides (12 black circles in Figure 2a) are denoted by Scw,ch,ct. The set of
all qubits of a cell is Ccw,ch,ct : ~Fcw,ch,ct|Scw,ch,ct . Note that TQCC is
the union of these sets for all the cells in the lattice.

The topological lattice contains two self-similar lattices that are
interlaced (see Figure 2b)). The primal lattice (with corresponding
Cp, Fp, Sp) contains all the cells having odd coordinates, and the dual
lattice (with corresponding Cd, Fd, Sd) contains all the cells having
even coordinates. If eight dual cells of the lattice are arranged into a
cube, then a primal cell exists at the intersection point, and therefore
the set of all physical qubit coordinates in the lattice can be expressed
as TQCC~Fp|Fd .

Physical qubits (organised in cells arranged in a 3D-lattice, as
described above) are used to encode logical qubits. The underlying
lattice is a computational resource for the logical layer, similar to how
the hardware is a computational resource for the physical layer.
However, at the logical layer, all operations are error-corrected,
implying that logical qubits are initialised, operated on and measured
using logical operations. It should be noted that the logical informa-
tion is not decoded prior to any logical operation and afterwards re-
encoded; operations are applied directly on encoded physical qubit
states. Valid operations within the logical space are designed specif-
ically such that physical errors do not cascade to cause uncorrectable
faults. Therefore, the TQC model is known as a fault-tolerant model
of quantum computation.

The geometric structures, which define encoded qubits, are cre-
ated by measuring relevant physical qubits in the Z basis (j0, 1æ
states). This effectively creates a hole in the lattice, known as a defect.
It is the defects that encode information. Two types of logical qubits
can be defined depending in which of the lattices the Z measurements
of physical qubits are performed and consequently where defects are
created. The physical qubits sets Dp , Fp and Dd , Fd represent the
physical qubits that are internal to defects which are measured in the
Z basis, with Dp\Sp~� and Dd\Sd~�. Primal defects are created
by measuring qubits in the set Dp and Dual defects are created by
measuring qubits in the set Dd.

Figures 3a) and b) illustrates the structure of two defects which
encode a single logical qubit (the unit cells that are not relevant for

Figure 1 | The TCQC design stack. At the lattice and Hardware levels,

there are two elements to the design stack; one classical and one quantum.

The quantum component is the instruction sets that tells each qubit in the

computer how it is measured. The classical component is keeping track of

measured data in order to successfully propagate information from input

to output in the topological circuit.

Figure 2 | Structure of the Topological lattice. (a) Complete 3D lattice

cell. For the cell (at lattice coordinates cc g CEL) qubits marked black are

Scc, and gray qubits are Fcc; (b) A primal cell (marked gray) and eight dual

cells (physical qubits and entanglement are not represented).
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the defects are not shown). In this structure a temporal axis is defined
running from the front of the structure to the rear and this encoded
qubit is undergoing a simple identity operation. i.e. the input of this
topological circuit starts on the 2D layer at the front of the image and
via measurement is teleported to the 2D layer at the rear. There are
three sets of physical qubits that are relevant for the mapping. One is
the sets Dp,(d) , Fp,(d) that are used to define primal (dual) defects.
These qubits are illustrated in Figures 3a) and b) as green circles and

are measured in the j0, 1æ basis to simply remove them from the lattice.
The second set are known as logic operators. Logic operators are sets of
physical qubits whose parity determine the logic state of the encoded
information. Two types of logic operators exist, one is a loop operator
that completely encircle an encoded defect. The second is a chain that
connects both defects (illustrated by orange squares in Figure 3b).

For primal (dual) defects, the loop operators correspond to the
logical X (Z) operator while the chain corresponds to the logical Z (X)

Figure 3 | Qubit sets used for information processing. Figure (a) is for loop operators (The X (Z)-eigenstate information for primal (dual)

defects) and Figure (b) is for chain operators (The Z (X)-eigenstate information for primal (dual) defects). These sets define defects (green circles), logical

operators (orange squares) and correlation surfaces (blue triangles) for a single logical qubit undergoing the identity operation. A shorthand notation is

illustrated in the inserts. This figure illustrates for minimum sized defects (and hence the smallest distance quantum code). Figure (c) illustrates

initialisation in the Z, X basis and state injection. State injection is where in individual qubit is measured in a rotated Z basis (the vertex of the pyramids)

and then expanded to form an encoded defect, this allows us to achieve universality. The superimposed black vertices and lines are used to illustrate graph

edges and vertices in the mapping algorithm.

www.nature.com/scientificreports
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operator. The final set of relevant qubits are illustrated as blue trian-
gles in Figures 3a) and b). These sets are known as correlation sur-
faces. The correlation surface connects logic operators from an input
layer in the cluster to an output layer. The ring and chain operators
need to be connected from the input layer (front of the image) to the
output (rear of the image). The qubits illustrated in blue perform this
operation. If each qubit in blue is measured in the j1, 2æ state (X
basis) we connect the chain (ring) operators from the input side to
the chain (ring) operators on the output side. If we wished to measure
the logical state, by measuring and calculating the parity of the logical
operator we would measure each physical qubit in the Z basis. By
measuring these qubits in the X basis instead, the logical information
is teleported to the next layer in the lattice, with a correction that is
determined by the parity of the X basis measurements. The correla-
tion surfaces form either sheets or tubes. For primal (dual) defects,
sheets are the logical Zp (Xd) surfaces and tubes are the logical Xp (Zd)
surfaces. In order to track information as it moves through the lattice,
we need to know which qubits are associated with these surfaces, as
the parity of these measurements will dictate the correction that
needs to be applied to encoded information as it moves through
the lattice.

The primary goal of this work is, given a geometric definition of a
TQC circuit, to determine the information needed by the (classical)
control software of a quantum computer in order to operate TQC
hardware that implements a circuit. This information includes the
measurement basis of the physical qubits. In Figures 3a) and b), the
solid circle qubits (defect-internal) are measured in Z basis whereas
the triangle qubits (correlation surfaces), square qubits (input/out-
put) and white qubits (qubits for error correction) are measured in X
basis. Moreover, the measurement outcomes for qubits in correlation
surfaces are needed to calculate corrections to encoded data as they
propagate through more complicated topological structures that are
not considered here. Therefore, the mapping procedure must
identify the physical qubits for each correlation surface (Xp,d , Fp

and Zp,d , Sp).
Other geometric structures, corresponding to specific logic opera-

tions, are shown in Figure 3c). For a primal pair of defects, the
horseshoe structure corresponds to initialising a qubit in the j0æ state,
the pair of parallel defects correspond to initialisation in the j1æ state
and the third structure corresponds to state injection. State injection
allows us to introduce an arbitrary state into the TQC lattice by
measuring a single physical qubit that exists at the vertices of the
pyramid structure. State injection is instrumental in the TQC model
to achieve universal computation3,23. In Figure 3c) the temporal axis
runs from left to right. In order to perform logical measurement, we
use the exactly same structures, but in the reverse temporal direction
(this allows for measurement in the j0, 1æ and j1, 2æ basis, i.e. Z and
X bases). The regions that are marked as grey and green correspond
to the sets of physical qubits whose parity defines the parity of the
initial encoded qubits.

The concept of state injection in the topological model is instru-
mental for achieving universality. The power of quantum computa-

tion is intricately related to the introduction of these injected states
and their consumption to realise non-Clifford gates through tele-
portation. However, in the context of this mapping algorithm, there
is essentially no difference in the classical computation associated
with the geometric structures in Figure 3c). While the right most
structure in Figure 3c) represents the injection of a non-trivial
encoded state, the sets of physical qubits that define byproduct
operators for this newly created state are no more complex to cal-
culate than the sets associated with standard Clifford initialisation.
Therefore, the introduction of injected logical states and the realisa-
tion of non-Clifford gates in a topological circuit poses no complexity
problem for the mapping algorithm.

The mapping problem of a TQC circuit is the accurate determina-
tion of physical qubits in the topological lattice corresponding to
relevant correlation surfaces that define the operation of the circuit.
The input to this algorithm is a suitably optimised topological circuit
that is compatible with the error-corrected model and hence the
underlying computational hardware. Algorithmic constraints at
both the physical and logical level have already been taken into
account via the construction and optimisation of the input circuit.
Before formally introducing the problem, we illustrate it through the
example of a CNOT operation implemented via a braid operation
between two encoded defects (Figure 4). A correlation surface that
begins on primal defects cannot terminate on dual defects and vice
versa. Therefore, as defects are braided, a correlation surface extends
around the qubit involved in the braid. It is this interaction that
entangles the logical qubits.

Figure 4 illustrates how correlation surfaces are defined, using the
shorthand notation that is illustrated in the inserts of Figures 3a) and
b). In Figure 4b) we show the Xd correlation surface (sheet) on the
control qubit (a dual type defect). Due to a braid with a primal defect,
this correlation surface must extrude around the second defect and
forms a tube. This correlates the outputs of the two qubits when the
control qubit is in an X-basis eigenstate. Figure 4c) shows the Zd

correlation surface (tube) on the control qubit. Here, the surface is
not perturbed by the braid. Therefore the output remains uncorre-
lated when the control is in a Z-basis eigenstate. This circuit corre-
lates output qubits in precisely the way needed to realise a CNOT
operation4,27.

These surfaces are not specified with the TQC circuit, and there-
fore the mapping procedure must derive them from the geometric
structure and map them to the actual set of qubits that are used in the
lattice such that they can be tracked as the circuit is implemented.

Results
Problem formalism. The mapping procedure takes a geometric
description G of a TQC computation as input and calculates a data
structureQ which contains the required information of each logical
qubit. Each logical qubit in G is specified by a set, s, of directed
segments, given by their end points (begin, end) g CEL2. Recall
that CEL is the set of lattice coordinates that are not occupied by
qubits and can be centres of unit cells. Each segment has one of six

Figure 4 | Evolution of correlation surfaces during a braided CNOT gate. (a) The geometry of a CNOT gate where the dark (dual) qubit acts as a control.

(b) Xd correlation surface on the control (black lines) is intersected by the target defect (green line) creating a correlation surface, Xp in accordance with the

properties of the CNOT. (c) illustrated that the Zd surface of the control does not become correlated, as required.

www.nature.com/scientificreports
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possible directions {6w, 6h, 6t}. To convertG toQ, an intermediate
representation Y where each logical qubit is described by a directed,
cyclical graph, is calculated first and then used to derive Q.

Geometric description and representation by graphs. For each logical
qubit s, a directed cyclical graph Gs 5 (Ks, Vs) is defined. The set K
of possible graph vertices contains representations of unit cells from
set CEL. There is a bijective mapping coord between K and CEL:
coord(k) yields the three (w/h/t) lattice coordinates of the cell cor-
responding to k. Ks5K represents the end points of the segments in
s, and Vs represents the connections between the end points. A
graphical example for this construction is offered in Figure 3c).

Mapping algorithm. Representation of Logical Qubits by Set Tuples:
The tuple representation qs~ l,Dl

s,Il
s,Ol

s,J l
s,Xl

s,Zl
s

� �
of a logical

qubit s contains all the information which is needed to implement
it and its interactions with other qubits on a quantum computer. The
ultimate outcome of the mapping procedure described next is the set
Q which contains tuples qs for all logical qubits s.

The specifics of the mapping algorithm can be found in the
Methods section. The edges in Vs form a Hamiltonian path, contain-
ing all vertices from Ks. During the mapping, the path can be either
modified by remove(a); a g K that removes vertex k and its incident
edges, and creates a new edge between its neighbours, or the insert(a,
b, c); a, b, c g K function that deletes the (a, c) edge, and creates the
new edges (a, b) and (b, c).

Within qs, l stands for the type of the logical qubit (primal or dual).
Dl

s includes all defect-internal physical qubits (i.e., those to be mea-
sured in the Z basis, whereas all other qubits will be measured in the X
basis). Il

s and Ol
s are physical qubits that define inputs and outputs,

respectively. In Fig. 3, the qubits in Dl
s were shown in green and the

qubits in Il
s and Ol

s in orange. Sets Xl
s and Zl

s include all physical
qubits that are part of the X and Z correlation surface, respectively.
Finally, J l

s is the set of injection points. Note that the primal (dual)
qubits are defined using coordinates on primal (dual) cells.

As mentioned earlier, the Z correlation surface is a sheet for a
primal logical qubit and a tube for a dual logical qubit. The X cor-
relation surface is a tube for a primal logical qubit and a sheet for a
dual logical qubit. For convenience, we introduce functions sheet:
Q?TQCC which returns Zp

s for primal logical qubits and Xd
s for

dual logical qubits and tube: Q?TQCC which returns the corres-
ponding tube in a similar way.

Mapping examples. The presented algorithms were implemented
and their execution will be illustrated by examples. The example
from Figure 5 illustrates how a complete sheet is computed. A
more complex example, for the computation of tubes and sheets, is
presented in Figure 6, and procedure starts from the TQC
computation described by the geometry presented in subfigure a).
The circuit consists of 3 logical CNOTs performed between 4 logical
qubits: 3 primals (the qubits 1, 2, 4) and a dual (qubit 4). The circuit
will implement the following sequence: CNOT(3, 2), CNOT(3, 4),
CNOT(3, 1).

The quantum circuit in Figure 6a) is converted to a geometric form
appropriate for the TQC model (Figure 6b)). The mapping will first
determine the tube surfaces of each logical qubit and the results
shown in Figure 6c) will be obtained. Figure 6d) contains the result
of the physical qubit sets forming sheet surfaces. For the same dual
logical qubit (the third qubit in Figure 6a)) all the intermediate steps
of the sheet computation are graphically presented in Figure 6e).

Algorithmic complexity. The algorithmic complexity of the map-
ping procedure is analysed in the following. For the computation of
all the qubit sets, computed by the algorithm in Eqn. 1, the mapping
procedure requires a single qubit-cycle traversal, while the compu-
tation of the coordinates is straightforward (see the illustration
presented in Figure 3a and the corresponding legend). Therefore,
for a given logical qubit qs, the runtime complexity is linear in the
number of vertices (jKsj) of the graph-cycle representing the
geometry.

For the runtime complexity analysis of the sheet mapping proced-
ure a worst-case geometry has to be defined. Such a geometry, when
mapped in the 3D, will have to require a maximum number of
reshape-rule applications in order to be able to compute the corres-
ponding sub-sheets. The search of a geometry will consider that the
algorithm from Eqn. 4 randomly selects a vertex from the cycle-
graph (Line 1), and that the vertex is used as a pivot for the
reshape-operation. These assumptions imply, that even after a
sequence of reshape operations is applied, there is no possibility to
find a sub-sheet and to reduce the number of vertices, and thus a
further reshape is necessary. For a graph with jKsj vertices, a worst-
case situation arises when jKsj2 3 vertices are arranged in a pattern
similar to the one in Figure 7, where the red cube indicates the start
vertex and the cycle is traversed clockwise. The graph vertices (where
edges are joined) are not represented.

After a first traversal of the graph, the reduce operation could not
have been applied, and a reshape followed by corresponding remove
operations will transform the graph like in the right panel of Figure 7.
It can be noticed, that until the step-like construction is not reshaped,
no reduce can be applied. However, after each reshape, co-linear
vertices can be removed, thus minimising jKsj. Overall, the complex-
ity of the sheet-finding procedure is bounded by O(jKsj2).

While the mapping algorithm itself scales polynomially with the
size of the cycle graph, we cannot make any claims regarding the size
of the cycle graph given an optimised topological circuit. The size of
the cycle graph is essentially related to the number of 90u ‘‘pivots’’
made by defects in the topological circuit we do not know yet how
big, in general, this set is for a given circuit specification. Current
methods in systematic optimisation for topological circuits are still in
their infancy28 and determining the scaling of the number of these
pivots for a given number of logical qubits is unknown. However, the
physical size of the topological circuit (in terms of the physical
volume of cluster needed to implement the circuit at a fixed error
correction strength) has marginal influence on the scaling of the
mapping algorithm itself. Instead, the scaling of the mapping algo-
rithm will be dominated by the total number of pivots made by the
input circuit specification.

Correctness. Checking the correctness of the algorithms, implies
verifying their termination and the fact that the correct physical

Figure 5 | Example of the algorithm illustrated in Eqn. 4. The above

illustrates for the graph Gs 5 ({A, …, J}, {(A, B), (B, C), … (J, A)}). For

example, starting from the vertex start 5 A, the first possible operation is

reduce(E, F) and a first sub-sheet is found SUBS 5 {(E, G)}. Furthermore,

because C, D, G, H are co-linear will result in remove(D) and remove(G).

The cycle is traversed until the start is reached again, and the first traversal

completes. After the second traversal neither reduce nor remove were

applied. Therefore, the reshape(A, B, C) is applied, and a second sub-sheet

is found SUBS 5 {(A, C), (E, G)}. Finally the last two sub-sheets are

inferred leading to SUBS 5 {(A, I), (C, I), (A, C), (E, G)}. The complete

sheet is found by combining all the sub-sheets according to the algorithm

in Eqn. 3.

www.nature.com/scientificreports
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Figure 6 | Defining tubes and sheets. (a) A standard circuit identity to perform a CNOT between two primal defects3, mediated by a single dual defect that

acts as control for the three braiding operations. (b) The geometric description of the circuit employed. The gray areas indicate the braiding of the logical

qubits; (c) The sets of qubits forming tube correlation surfaces for the topological structure: red qubits form the set of the dual surfaces, while the primal

tube surfaces are formed by the blue qubits; (d) The sets of qubits forming sheet correlation surfaces: the surface of the dual logical qubit is represented as

the set of red physical qubits, while the sheets for the primal logical qubits are only illustrated. (e) Intermediate steps in finding the sheet correlation

surface for the dual logical qubit with the algorithm detailed in the methods section. The edges of the graph used for computing the surface are indicated

with thick lines. This figure is slightly rotated from Figure (c).

www.nature.com/scientificreports
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qubit coordinates are computed. Again, for the algorithm in Eqn. 1,
the termination is guaranteed because a single traversal of the cycle-
graph is necessary. The correctness of the computed coordinates is
shown by comparing the algorithm instructions with Figure 3. The
direction d (Line 4) is associated with the green line in the figure,
where b and e are the CEL coordinates of the edge vertices. For
example, let us consider that the two cells from the lower defect
are b and e. This implies, that by selecting the two neighbouring
coordinates (Line 7), the co-ordinates of the green marked qubits
(the defect set D) is computed. The remaining 4 qubits (Line 8) that
do not belong to D are the light blue marked qubits, which are
associated with the tube correlation surface that surrounds the
defect region. One has to note, that for defects with a cross-section
larger than a cluster-cell, the set union operations on Line 10 and
Line 12 are to be interpreted as A\ af gð Þ| af g\Að Þ\ af gð Þ, meaning
that if element a existed in the set A it will be removed, otherwise it
will be included.

The termination of the sheet-finding algorithm (Eqn. 4) can be
illustrated by starting from the fact that the geometric description is
mapped into a 3D representation where only 6 segment directions
are possible (see the discussion of the reshape and reduce rules). A
geometrically described defect configuration of a logical qubit (in the

absence of any possibility to apply reduce or remove) will have an
even number of edges in its associated graph. Considering all the
worst-case geometries (an example is Figure 7), it can be seen that
after a graph-traversal, either reshape or reduce (followed by remove)
can be be applied. The number of maximum consecutive reshapes is
bounded by jKsj. Thus, the number of graph-vertices is continuously
reduced, and the termination of the algorithm is guaranteed.

The correctness of the coordinates computed from the sub-sheets
is shown by comparing the Lines 3 and 4 of Eqn. with Figure 3b). For
a logical qubit qs of type l, the set of all possible side qubits (depicted
gray in Figure 2 for a single cell) is Sl. For the two defects from
Figure 3b) the instruction on Line 3 will return the coordinates of
both the orange and the blue marked qubits, which intersected with Sl

will return only the blue qubits. These are the ones necessary for the
computation of a sub-sheet. If two sub-sheets overlap (which is pos-
sible, given the way the algorithm in Eqn. functions), then the inter-
section set is not part of the set of qubits defining the complete sheet
of a logical qubit (Line 4).

A final detail that needs explanation is that the approach, by find-
ing sub-sheets, is correct. Initially, one has to consider that for TQC,
by deforming the defect geometries, does not change the computa-
tion, because the topology of the description is relevant, and not its
geometry. For this reason, for each individual logical qubit described
as a graph, the reshape operation is valid, because the sheets of two
topologically equivalent geometries will differ only in sub-sheet. For
example, in the last panel of Figure 8b), the subsheet BD is the
difference between the equivalent geometries: before and after apply-
ing the reshape operation.

Another fact about the correctness of sub-sheet-finding appears
when one considers the example presented in Figure 8a). Let us
consider, the three qubits A, B, C g Sl. Deforming the defect implies,
that the qubits U, V are not part of the defect anymore, and that D, E
g Sl are parts of the new boundary. This is equivalent to stating that
the sub-sheet containing the qubits D, E was created, and that after
the change the complete sheet will contain A,B,Cf g| D,Ef g5Sl

� �
.

Figure 8 | Using defect geometries to define correlation surfaces. (a) Changing the geometry of a defect. The trajectory of the defect (indicated by the

dashed line) modifies the boundary of the sheet from the initial boundary A, B, C, extending the boundary A, B, C involving the qubits U, V, W and the

resulting boundary A, D, E. (b) Three types of graph operations to define a surface. The first, applying reduce(C, D) results in | Ks | being decreased by 2,

because C, D are removed. After the operation, because A, B, E, F correspond to co-linear lattice coordinates, remove(B); remove(E) can be further applied,

and | Ks | again decreased by 2. In the second case, the reduce(C, D) is applied. The mirrored vertices Vred 5 {C9, D9} are computed, with coord(D9) 5

coord(B), thus Vred 5 {C9, B}. The vertices from Vred
ins ~ C0,Bf g\ B,Ef g~ C0f g will be inserted, and the vertices from Vred

del ~ Bf g will be deleted. In the last

case, the effect of the reshape(B, C, D) operation is that vertex C is replaced by vertex C9. Afterwards reduce(A, B) and reduce(D, E) can be applied.

Figure 7 | Worse-case geometric structure for algorithmic efficiency. The

above is an example of defect structures that require a maximum number

of reshape-rule applications to calculate the corresponding sub-sheets.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4657 | DOI: 10.1038/srep04657 7



It should be noted that the correctness of the mapping algorithm
already assumes that the given topological circuit has been verified
with respect to the initial circuit specification. In general, a com-
pressed topological circuit may bare little resemblance to the original
un-optimised circuit. Before a topological circuit is input to the map-
ping algorithm, we assume that it has been verified against the initial
specification and consequently the qubits sets generated from the
mapping algorithm will faithfully realise the original circuit when
implemented in hardware. Optimisation of topological circuits may
employ a technique known as bridge compression29 which connects
closed loop topological structures together. The algorithm detailed in
this work is not currently designed to handle circuits containing
bridged components, however modifying the algorithm to process
arbitrary structures will be possible as arbitrary geometric shapes can
still be decomposed into simple cycle-graphs. These modifications
are the subject of future work.

Discussion
In this paper we presented the first mapping algorithm that translates
a topological quantum circuit into the specific measurement patterns
required by the quantum hardware. We have also illustrated the
necessary algorithm for the construction of correlation surface
needed to appropriately track information as it propagates through
the circuit. The mapping of a topological circuit specification to the
physical measurements in the lattice is one of many classical compo-
nents necessary for realisation of quantum circuits. This classical
library consists of both office and online components. Offline soft-
ware processing consists of the compilation and optimisation of a
topological quantum circuit15,28,29 and the mapping of this structure
to the physical lattice. Online classical processing relates to the real-
time decoding and processing of error correction data using algo-
rithms such as minimum weight perfect matching30 and renormali-
sation group techniques31. Ultimately, all classical processing will
need to be integrated together to form a complete software package
for controlling topological quantum computers.

This work is not only a necessity for the future operation of topo-
logically protected quantum computation, but it is also a require-
ment for appropriate verification packages for topological circuit
synthesis. The accurate construction of correlation surfaces allow
us to compare the operation of a topological circuit against the
abstract quantum circuit it is derived from. This is important as
optimisation techniques for topological quantum circuits often result
in structures that bare little resemblance to the original circuit spe-
cification. The further development of verification protocols is the
focus of future work.

Methods
The mapping procedure. The algorithms to compute the classical control
information are presented in detail in this section. For this purpose, we first describe
several functions to translate information between the geometric description, the
cycle-graphs and the tuple representation of logical qubits.

Function type: V R {init, measure, inject, defect} returns the type of a geometric
segment that was translated into a graph edge. The segment type is used after physical
qubits associated with the segment have been calculated in order to decide which set
from qs they belong to.

Function set takes qs and the segment type as inputs and returns the corresponding
coordinate set of physical qubits that belongs to segments of qs with the specified type.
For example, physical qubits from a segment of type inject it will be added to the set J l

s ,
and for init segments the Il

s is returned.
Function dir: V R {6w, 6h, 6t} yields the lattice-direction of the segment

represented by the given edge. A further function nghn(k), k g K, n[Z is used to
indicate the n-th neighbour of vertex k in the direction of the Hamiltonian path.

Function coord: K R CEL returns the vector representing the lattice coordinates of
a graph vertex k g K. The inverse function coord21 is used to infer the vertex given the
lattice coordinates.

The function mirr: K R K; mirr(a) 5 coord21 (coord(ngh21(a)) 1 coord(ngh(a)) 2

coord(a)) returns vertex a mirrored at the line through its predecessor and successor
in the cycle-graph, while the clst: K3 R K; clst(a, b, c) returns either b or c depending
which is closer to vertex a.

The mapping starts by constructing for each geometrical description of a logical
qubit s from G the cycle-graph Gs[Y. Then, the corresponding tuple qs[Q is initi-
alised by setting l to primal or dual according to the desired type and
Dl

s~Il
s~Ol

s~J l
s~Xl

s~Zl
s~�).

Sets Dl
s , Il

s, Ol
s, Jl

s , tube(qs) are constructed by the algorithm shown in Eqn. 1.
Recall that tube(qs) is either Xp

s or Zd
s , depending on whether qs is primal (l 5 p) or

dual (l 5 d). The algorithm traverses the cycle-graph Gs. The lattice-direction d
associated with each edge of the graph is computed. For each cell cc of a segment, Fcc is
its complete set of physical face qubits (see Section). Two face qubits along the
segment are defect-internal and added to Dcc. The remaining four qubits are part of
the tube correlation surface and added to set Tcc that is then added to tube(qs).
Coordinates of injection points are always found at the middle of the (b, e) segment
(Line 15). The coordinates of the qubits on init/measure segments are added to the
corresponding sets Is and Os as given by set(qs, type) at Line 12;

Require : qs~ l, D, I, O, J, X, Zð Þ; qs[ Q; s[ G

Require : Gs~ Ks, Vsð Þ, Gs [ Y

1 : start/random k[ Ks

2 : ck/start

3 : repeat

4 : d/dir ck, ngh ckð Þð Þð Þ

5 : b/coord ckð Þ; e/coord ngh ckð Þð Þ;

6 : for all cc [ b, eð Þ along d

7 : Dcc/ p pj ~cc+1 along d, p [ Fccf g

8 : Tcc/Fcc\Dcc

9 : if type ck, ngh ckð Þð Þð Þ~defect

10 : tube qsð Þ/tube qsð Þ|Tcc

11 : end if

12 : set qs, typeð Þ/set qs, typeð Þ|Dcc

13 : end for

14 : if type ck, ngh ckð Þð Þð Þ~inject

15 : J/J| bzeð Þ=2f g

16 : end if

17 : ck/ngh ckð Þ

18 : until start~ck

19 : return qs

ð1Þ

The sheet surfaces of each Gs are found by a procedure that iteratively reduces the
graph until it consists of just two vertices. The procedure constructs a sheet by finding
one sub-sheet in each iteration, where a sub-sheet contains physical qubits bounded
by a rectangle in either wh, wt or ht plane. Each sub-sheet is specified by two points
(ss1, ss2); ssi g CEL; where ssi define the diagonal of the rectangle and have one equal
component. Sub-sheets found by the procedure in different steps are disjoint, and the
union of all found sub-sheets is the complete sheet. Figure 6d) illustrates a complete
sheet composed of sub-sheets, and Figure 6e) shows the progressive calculation of
sub-sheets (both figures will be discussed in more detail later).

The procedure transforms the graph by eliminating or moving vertices, while sub-
sheets are calculated. Without giving a full formal proof for correctness of these
transformations (such a proof will require advanced quantum computing concepts
which are out of this paper’s scope), we illustrate the modification of a sheet boundary
in Figure 8. The dashed line in the figure is indicating the direction of one defect
involved in generating the sheet surface SHEET. By changing the direction of the
defect, the boundary A, B, C g SHEET is transformed into A, D, E g SHEET9;
SHEET9 5 SHEET < {D, E}. In terms of sub-sheets, the sub-sheet (B, E) is added after
the change of defect direction.

The algorithm illustrated in Eqn. 4, used to compute the SUBS set of sub-sheets for
each logical qubit, will remove vertices of the graph, by constantly traversing it (Lines
3, 20), until only 2 vertices are left (Line 2). Eqn. 3 takes each SUBS set and constructs
sheet(s) of each logical qubit tuple s. For the subsheet (ss1, ss2) the function
boundingboxss~|i [ w, h, tf g min ss1

i

� �
,max ss2

i

� �� �
\TQCC constructs the set of

coordinates able to represent physical qubits.
Considering the structure of the lattice and the way the geometrical descriptions

are constructed, it can be noticed that the cycle-graphs have an even number of
vertices. It should be also noted that the insert operation is not directly applied by the
algorithm, and the number of vertices is modified only during the reduce operation, or
after the reshape operations is applied.

The reduce operation. The algorithm illustrated in Eqn. 4 modifies the graph by
applying the the reduce operation. The path is reduced if for 3 consecutive edges, the
first and the second edge represent opposite associated directions into the lattice (Line

www.nature.com/scientificreports
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10). For example, in Figure 8b) this is the case for the edges (B, C), (C, D), (D, E), where
(B, C) and (D, E) have opposite directions.

The reduce(a, b); a, b g K operation is defined as the sequential application of:

Rm~ a,bf g;
na~ngh{1 að Þ; nb~ngh1 bð Þ; Ng~ na,nbf g

Vred~ clst a, mirr bð Þ, nað Þ,clst b, mirr að Þ, nbð Þf g
Vred

ins ~Vred
\Ng;

Vred
del ~Ng\Vred ;

remove vð Þ; for all v[Rm

insert na, vi, nbð Þ; for all vi [Vred
ins ;

remove vdð Þ; for all vd [Vred
del ;

ð2Þ

We illustrate the reduce operation by applying it to vertices C and D of Figure 8b). The
sets Rm 5 {C, D}, Ng 5 {B, E}, Vr 5 {clst(C, mirr(D), B), clst(D, mirr(C), E)} are
constructed. Because mirr(C) 5 E and mirr(D) 5 B, the set Vred 5 {B, E} is equal to Ng
and Vred

del ~Vred
ins ~�. After the vertices from Rm are removed, no further vertices are

inserted or removed because the corresponding sets are empty. However, for the
example in Figure 8b) this is not the case as Vred

del

�� ��~ Vred
ins

�� ��~1, thus effectively
removing the vertex B and inserting vertex C9.

The reshape operation. In order for the graph to be reduced, it may be required to
represent an equivalent geometrical description. Thus, vertices are not removed or
deleted, but moved (jKsj remains constant). The reshape(a, b, c); a, b, c g K operation
is the sequential application of:

remove bð Þ; insert a, mirr bð Þ, cð Þ;

In the context of the algorithm in Eqn. 4, the function is called if during a complete
graph traversal the reduce operations could not be applied. For the example of
Figure 8b), where reshape(B, C, D) is called, the resulting graph will be obtained by
removing C and inserting C9 5 mirr(C). Applying reshape for a second time at the
same position would undo the initial application, thus reduce(B, C9, D) is the inverse
of reduce(B, C, D). Therefore, the start pivot (Line 3), used for checking if a traversal
completed (Line 20), is updated (Line 24).

The maximum number of cycle traversals is O(jKsj2), when after each traversal a
reshape operation is required, while the number of consecutive reshape operations is
bounded by jKj 2 3.

The number of vertices of the cycle-graph is initially even due to the shape prop-
erties of the geometrical descriptions. Moreover, it remains even during the execution
of the algorithm. Operation reduce eliminates exactly two vertices from the graph (set
Rm), while the sets of further added and deleted vertices (Vred

ins and Vred
del , respectively)

are always of the same size. Operation reshape does not add or delete vertices.
However, three consecutive vertices may represent a straight line after a reshape
operation, in which case they are replaced by two vertices (Line 14). It can be shown
that one further vertex elimination must follow, keeping the overall number of ver-
tices even.

Require :SUBS

Require :qs~ l, D, I, O, X, Zð Þ; qs [Q

1 : sheet qsð Þ/

2 : for all ss [UBS do

3 : SSQ/ q coord qð Þ [ boundingbox ssð Þ\Sl
��	 


4 : sheet qsð Þ/ sheet qsð Þ|SSQð Þ\ sheet qsð Þ\SSQð Þð Þ

5 : end for

6 : return s

ð3Þ

Require :Gs~ K,Vð Þ for s [G

1 : SUBS/

2 : while Kj j§2 do

3 : start/random k [K

4 : ck/start

5 : compact/false

6 : a/ngh1 ckð Þ; b/ngh2 ckð Þ
�

7 : repeat

8 : if dir ck, að Þð Þ~{dir b, ngh bð Þð Þð Þ then

9 : compact/true

10 : reduce a,bð Þ

ð4Þ

11 : SUBS/SUBS| ngh ckð Þ,að Þ| ngh ckð Þ,bð Þ

12 : else

13 : if dir ck,að Þð Þ~+dir a,bð Þð Þ then

14 : remove að Þ

15 : compact/true

16 : else

17 : ck/a

18 : end if

19 : end if

20 : until stark~ck

21 : if compact~false then

22 : reshape start,ngh startð Þ,ngh2 startð Þ
� �

23 : SUBS/SUBS| start,ngh2 startð Þ
� �

24 : start/ngh startð Þ

25 : end if

26 : end while

27 : return SUBS

ð4Þ
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