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Abstract: Many neurological and musculoskeletal disorders are associated with problems related
to postural movement. Noninvasive tracking devices are used to record, analyze, measure, and
detect the postural control of the body, which may indicate health problems in real time. A total
of 35 young adults without any health problems were recruited for this study to participate in a
walking experiment. An iso-block postural identity method was used to quantitatively analyze
posture control and walking behavior. The participants who exhibited straightforward walking and
skewed walking were defined as the control and experimental groups, respectively. Fusion deep
learning was applied to generate dynamic joint node plots by using OpenPose-based methods, and
skewness was qualitatively analyzed using convolutional neural networks. The maximum specificity
and sensitivity achieved using a combination of ResNet101 and the naïve Bayes classifier were 0.84
and 0.87, respectively. The proposed approach successfully combines cell phone camera recordings,
cloud storage, and fusion deep learning for posture estimation and classification.

Keywords: iso-block postural identity; OpenPose; fusion deep learning

1. Introduction

The OpenPose algorithm is a deep learning method in which part affinity fields (PAFs)
are used to detect the two-dimensional (2D) postures of humans in images [1]. The relation-
ship between posture stability, motor function, and quality of life has been determined [2,3].
Moreover, the OpenPose algorithm has been used for checking the medication situations of
patients and for their physical monitoring [4,5]. The evaluation of the cardinal symptoms
of resting tremor and bradykinesia for Parkinson's disease has been conducted using an
OpenPose-based deep learning method [6,7]. Furthermore, in [8], the OpenPose framework
was used to create a human behavior recognition system for skeleton posture estimation.
Quantitative gait (motor) variables can be estimated and recorded using pose tracking
systems (e.g., OpenPose, AlphaPose, and Detectron) [9]. These factors are useful for mea-
suring the quality of life of older adults [10–12]. Moreover, parkinsonian motion features
have been created using deep-learning-based 2D OpenPose models [13,14]. For people
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with autism spectrum disorder, skeleton posture characteristics are correlated with long-
term memory in the field of action recognition [15–17]. The physical function of a patient
should be assessed according to their health data obtained using a skeleton pose tracking
device and gait analysis [18–21]. Many neurological and musculoskeletal disorders are
associated with problems related to postural movement, which can be estimated using a
pose-capturing device [22]. Therefore, noninvasive tracking devices are used to record,
analyze, measure, and detect the postural control of the body, which may indicate health
problems in real time. In this study, fusion deep learning was used to generate dynamic
joint node plots (DJNPs) by using OpenPose-based methods, and skewness in walking was
qualitatively analyzed using convolutional neural networks (CNNs) [23]. An iso-block pos-
tural identity (IPI) method was used to perform the quantified analysis of postural control
and walking behavior. This proposed approach combines cell phone camera recordings,
cloud storage, and fusion deep learning for postural estimation and classification.

2. Materials and Methods
2.1. Research Ethics

All the experimental procedures were approved by the Institutional Review Board of
E-DA Hospital [with approval number EMRP52110N (04/11/2021)]. Verbal and written
information on all the experimental details was provided to all the participants before they
provided informed consent. Written informed consent was obtained from the participants
prior to experimental data collection.

2.2. Flow of Research

In this study, videos walking toward and away from a cell phone camera were recorded
using the camera (Step 1 in Figure 1). The videos were recorded at 24-bit (RGB), 1080p
resolution, and 30 frames per second. The videos were uploaded to Google Cloud through
5G mobile Internet or Wi-Fi (Step 2 in Figure 1). The workstation used in this study
downloaded a video, extracted a single frame from the video, and then applied a fusion
artificial intelligence (AI) method to this frame (Step 3 in Figure 1). In the aforementioned
step, single frames were extracted from an input video (Step 3A), frames with static walking
were identified using an OpenPose-based deep learning method (Step 3B), and the joint
nodes of the input video were merged into a plot (Step 3C). The obtained DJNP was
categorized as representing straight or skewed walking (Step 3D). CNNs were used to
classify DJNPs into one of the aforementioned two groups. Two types of deep learning
methods were used in the fusion AI method adopted in this study: an OpenPose-based
deep learning method and CNN-based methods. The OpenPose-based method is useful
for estimating the coordinates of joint nodes from an input image [1]. The adopted CNNs
are suitable for the classification of images with high accuracy and robustness.

2.3. Participants

A total of 35 young adults without any health problems were recruited to participate
in a walking experiment. The age range was 20.20 ± 1.08 years. The inclusion criteria were
healthy adults who were willing to participate and could walk more than 5 m. People with
musculoskeletal pain (such as muscle soreness), those who had drunk alcohol or taken
sleeping pills within 24 h before the commencement of the experiment, and individuals
with limited vision (such as nearsighted people without glasses) were excluded from
this study.
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2.4. Experimental Design

The experimental setup is depicted in Figure 2. The total length of the experimental
space was greater than 7 m. The ground was level, free of debris, and smooth to ensure
a straight and smooth walking path. The cell phone was placed 1 m above the ground
(approximately equal to the height of a medium-sized adult holding a cell phone) and
2 m from the endpoint of the walking path. The entire body of a participant was recorded
during the walk. The participants were required to wear walking shoes and not slippers
while walking. Participants walked away from the cell phone and then turned back and
walked toward the cell phone. The participants walked for 5 m toward and away from the
camera three times each. One video was captured for each 5-m walk; thus, six videos were
recorded for each participant. A series of single (static) frames was extracted from a video
every 0.3 s. For example, for a 3-s input video, 10 frames were extracted to estimate the
coordinates of joint nodes. A static frame of one DJNP was extracted per 0.3 s for one video.
For example, a 10 s walking video with frame rate 30 (frames/second), the total static frame
in one DJNP are 90 frames (i.e., 90 = 10 (second) × 30 (frames/second) × 0.3 (second)).
Hence, the DJNP was a variety of frames according to the length of a walking video. The
filmmakers are not medical experts but are trained in motion assessment. The video is
analyzed by an expert in image analysis and an occupational therapist specializing in
rehabilitation Table 1 lists the number of participants and the mean and standard deviation
(STD) of velocity (m/s) and time (s) for each group.

Table 1. Information on the number of participants and the mean and standard deviation (STD) of
velocity (m/s) and time (s) for each group.

Group N Mean Velocity (m/s) STD Velocity (m/s) Mean Time (s) STD Time (s)

Skew 102 0.68 0.08 7.48 0.84
Straight 108 0.69 0.08 7.39 0.91
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Figure 2. Experimental setup (the cell phone was placed 1 m above the floor and 2 m from
the participant).

2.5. Measurement of Joint Nodes through Openpose-Based Deep Learning

OpenPose is a well-known system that uses a bottom-up approach for real-time
multiperson body pose estimation. In the proposed OpenPose-based method, PAFs are
used to obtain a nonparametric representation for associating body parts with individuals
in an image [1]. This bottom-up method achieves high accuracy in real time, regardless
of the number of people in the image. It can be used to detect the 2D poses of multiple
people in an image and to perform single-person pose estimation for each detection. In
this study, the OpenPose algorithm was mainly used to output a heat map of joint nodes
(Figure 3). The center coordinates of joint nodes were estimated by using the geometric
centroid formula.
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Figure 3. Dynamic joint node plot (DJNP) (right) obtained by merging the heat maps of joint nodes
from t1 to t5 by using the OpenPose algorithm.

2.6. Definition of the Control and Experimental Groups

The data for the control group comprised DJNPs that indicated straightforward walk-
ing toward and away from the camera. The experimental group comprised DJNPs that
indicated skewed walking. The data for the control and experimental groups comprised
102 and 108 DJNPs, respectively, which were classified using different CNNs.

2.7. Classification Using Pretrained CNNs and Machine Learning Classifiers

Pretrained CNNs were used to extract the features of DJNPs, and machine learning
classifiers were used to construct classification models. The eight pre-trained CNNs used
in this study were AlexNet, DenseNet201, GoogleNet, MobileNetV2, ResNet101, ResNet50,
VGG16, and VGG19. Moreover, the three machine learning classifiers used in this study
were logistic regression (LR), naïve Bayes (NB), and support vector machine (SVM).
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CNNs have a high learning capacity, which makes them suitable for image classifica-
tion. They extract features and learn data according to variations in the breadth and depth
of features. Table 2 lists the features that were extracted by CNNs and served as the inputs
for the LR, NB, and SVM. A deep CNN network comprises five types of primary layers:
a convolutional layer, a pooling layer, a rectified linear unit layer, fully connected layers,
and a softmax layer. Information on the pretrained CNNs used in this study is provided
in Table 2. The fully connected layers of the CNNs extracted and stored the features of
the input image. In the present study, eight CNNs and three classifiers with four batch
sizes and 20 random splits were adopted. The four batch sizes selected in this study for
the CNNs were 5, 8, 11, and 14. The total number of investigated models was 8 (CNNs)
× 3 (machine learning techniques) × 4 (batch size settings) × 20 (instances of random
splitting) = 1920. Therefore, the 1920 models represent the 1920 possible combinations of
one CNN, classifier, batch size, and random data split. CNNs have demonstrated utility
and efficiency in image feature extraction in the fields of biomedicine and biology [23–27].

Table 2. Information on the adopted convolutional neural networks.

CNN Image Size Layers Parametric Size (MB) Layer of Features

AlexNet 227 × 227 25 227 17th (4096 × 9216)
DenseNet201 224 × 224 709 77 706th (1000 × 1920)

GoogleNet 224 × 224 144 27 142nd (1000 × 1024)
MobileNetV2 224 × 224 154 13 152nd (1000 × 1280)

ResNet101 224 × 224 347 167 345th (1000 × 2048)
ResNet50 224 × 224 177 96 175th (1000 × 2048)
VGG16 224 × 224 41 27 33rd (4096 × 25,088)
VGG19 224 × 224 47 535 39th (4096 × 25,088)

LR is a process of modeling the probability of a discrete outcome when an input
variable is given. This process is often used to analyze associations between two or more
predictors or variables. LR does not require the existence of a linear relationship between
inputs and output variables. This method is useful when the response variable is binary,
but the explanatory variables are continuous. LR is also an effective analysis method for
classification problems. The LR method is used for the development of classification models
in the field of machine learning because of its capacity to provide hierarchical or tree-like
structures. Many fields have adopted LR for prediction and classification. LR is suitable
for classification problems related to health issues, such as whether a person has a specific
ailment or disease when a set of symptoms are given.

NB classifiers are based on Bayes’ theorem with a naïve independence hypothesis
between the adopted predictors or features. These classifiers are the most suitable ones
for solving classification problems in which no dependency exists between a particular
feature and other features of a certain class. NB classifiers offer high flexibility for linear or
nonlinear relations among variables (features or predictors) in classification problems and
provide increased accuracy when combined with kernel density estimation. NB classifiers
exhibit higher performance for categorical input data than for numerical input data. These
classifiers are easy to implement and computationally inexpensive, perform well on large
datasets with high dimensionality, and are extremely sensitive to feature selection.

SVM classifiers are highly powerful classifiers that can be used to solve two-class
pattern recognition problems. They transform the original nonlinear data into a higher-
dimensional space and then create a separating hyperplane defined by various support
vectors in this space to maximize the margin between two datasets. Data can be linearly
separated in the higher-dimensional space by using a kernel function. Many useful kernels
are available to improve the classification performance and reduce the false rate. SVM
is a supervised learning method for the classification of linear and nonlinear data and is
generally used for the classification of high-dimensional or nonlinear data.
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The computing time of using SVM is in linear time, rather than by expensive iterative
approximation, which is performed by many other types of classifiers. The LR, NB, and
SVM methods were applied as deep and machine learning methods to extract features of
DJNPs and classify the postural control of the straight and skewed walking groups.

2.8. Validation of Classification Performance

The data for the control and experimental groups comprised 102 and 108 DJNPs,
respectively. A random splitting schema was employed to separate the training (70%)
and testing (30%) sets; 71 and 31 samples from the control group were used for training
and testing, respectively, and 76 and 32 samples from the experimental group were used
for training and testing, respectively. Testing sets and confusion matrices were used to
evaluate the models with respect to the kappa value, accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV). These indices were
sorted in the ascending order of the corresponding kappa value, and a radar plot was then
generated to present the aforementioned indices of the adopted models.

3. Results

In this study, 70% of the samples of each group were randomly used to train the
adopted classifiers, and the remaining 30% of samples were used to perform validation.
Figure 4 shows a scatter plot for the specificity and sensitivity of the 1920 models for the
validation dataset. The maximum specificity and sensitivity of 0.84 and 0.87, respectively,
were achieved by the ResNet101 and NB classifiers, respectively.
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In Figure 5, a radar plot was constructed for six performance indices with the results
sorted by the maximum kappa value for 96 models (the abbreviations of the investigated
models are written in Appendix A). The best performing model was M53, which is a com-
bination of ResNet101 and naïve Bayes. The kappa, accuracy, sensitivity (Sen), specificity
(Spe), PPV, and NPV values were 0.71, 0.86, 0.87, 0.84, 0.84, and 0.87, respectively. All of the
performance indices are over 0.7. The optimized model, ResNet101 with naïve Bayes, had
acceptable agreement results and the highest accuracy.
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Table 3 lists the 13 models with kappa values greater than 0.59. These models com-
prised four (30.8%) AlexNet models, three DenseNet201 models (23.1%), three ResNet101
models (23.1%), two VGG16 models (15.4%), and one VGG19 model (7.7%). AlexNet,
DenseNet201, and ResNet101 accounted for 10 of the aforementioned 13 models (76.9%).
SVM and NB were the main machine learning classifiers that performed well in this study.
The numbers of the aforementioned 13 models with SVM and NB classifiers were 3 and 10,
respectively. Thus, NB performed well. Finally, the batch sizes of the 13 models were 5, 8,
11, and 14 useable in this work.
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Table 3. Models with kappa values greater than 0.59.

CNN Classifier Batch Size Model Kappa Accuracy Sen Spe PPV NPV

ResNet101 NB 5 M53 0.71 0.86 0.87 0.84 0.84 0.87
AlexNet NB 11 M7 0.65 0.83 0.81 0.84 0.83 0.82

ResNet101 NB 14 M56 0.65 0.83 0.81 0.84 0.83 0.82
AlexNet NB 5 M5 0.62 0.81 0.77 0.84 0.83 0.79
VGG16 NB 14 M80 0.62 0.81 0.77 0.84 0.83 0.79

DenseNet201 SVM 11 M23 0.62 0.81 0.68 0.94 0.91 0.75
ResNet101 NB 8 M54 0.59 0.79 0.90 0.69 0.74 0.88

VGG19 NB 11 M91 0.59 0.79 0.84 0.75 0.77 0.83
AlexNet NB 14 M8 0.59 0.79 0.81 0.78 0.78 0.81

DenseNet201 SVM 5 M21 0.59 0.79 0.74 0.84 0.82 0.77
DenseNet201 SVM 14 M24 0.59 0.79 0.77 0.81 0.80 0.79

VGG16 NB 8 M78 0.59 0.79 0.77 0.81 0.80 0.79
AlexNet NB 8 M6 0.59 0.79 0.71 0.88 0.85 0.76

4. Discussion
4.1. Measurement of Postural Control

IPIs were used to measure the skewness or displacement. Figure 6 illustrates the
fusion of a DJNP with the IPI generated for a series of time points. In this study, an IPI was
created every 0.3 s, and all the IPIs were fused with DJNPs.
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Figure 6. Iso-block postural identity (IPI) generated for a series of times and fusion of the IPI with a
DJNP (right).

Figure 7 presents the skewness or displacement for a walking video at three time
points (i.e., t0, t1, and t2). Figure 7A,C,D,F depict DJNPs and IPIs for skewed walking.
Figure 7B,E depict DJNPs and IPIs for straight walking. These DJNPs can be used to
measure skewness and horizontal postural movement.

The parameters Θr and Θl represent the angles of the right and left sides of the body
during captured images, respectively (Figure 7E). The ratio of two angles (i.e., SR = Θl/Θr)
was used to measure the skewness tendency. When this ratio is >1, the body tends to
skew to the right. When SR = 1, the body is almost straight. When SR is <1, the body
tends to skew to the left. The displacement of the body between two time points was
quantified by estimating the distance covered between these time points. For example, in
Figure 7B,E, Dr,0,1 and Dl,0,1 represent the displacements of the right and left sides of the
body, respectively between t0 and t1. Similarly, Dr,1,2 and Dl,1,2 represent the displacements
of the right and left sides of the body, respectively, between t1 and t2. Therefore, the ratio of
Dr,i-1,i to Dl,i-1,i (i.e., MD = Dr,i-1,i/Dl,i-1,i, i = 0, 1, 2) could be used to determine the dominant
side of body displacement. When MD was >1, the right side was the dominant side of
displacement. When MD was 1, the walking posture was almost straight. Moreover, when
MD was <1, the left side was the dominant displacement side.
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4.2. Literature for Health Issues and Postural Control during Walking

Poor postural control during walking may indicate health problems. An individual’s
postural control considerably influences their quality of life [2,3]. Equipping participants
with wearable devices that assess their posture can be challenging [4]. Nevertheless, this
problem can be overcome by incorporating deep learning into Internet of things monitoring
systems to effectively detect motion and posture [5]. Resting tremors and finger tapping
have been detected using OpenPose-based deep learning methods [6,7]. Moreover, skeleton
normality has been determined through the measurement of angles and velocities by using
the aforementioned methods [8–10]. Such methods are useful for not only generating
three-dimensional poses [11,12] but also for identifying the relationship between postural
behavior and functional diseases, such as Parkinson’s disease [6,13,14], autism spectrum
disorder [15], and metatarsophalangeal joint flexions [16]. OpenPose-based deep learning
methods can be used for skeleton, ankle, and foot motion [8,17] detection; physical function
assessment [18,19]; and poststroke study [20].

Thus, noninvasive tracking devices play crucial roles in the recording [21], analysis,
measurement, and detection of body posture, which may indicate health issues in real time.

5. Conclusions

In this study, fusion deep learning was applied to generate DJNPs by using an
OpenPose-based method and quantify skewness by using CNNs. The adopted approach
successfully incorporates cell phone camera recording, cloud storage, and fusion deep
learning for posture estimation and classification. Moreover, the adopted IPI method can
be used to perform a quantified analysis of postural control and walking behavior.

The research conducted in the present study can be considered preliminary. We
developed the IPI method and attempted a quantified analysis of postural control and
walking behavior to identify factors indicative of possible clinical gait disorders. However,
at the time of writing, the research is in the preliminary phase and will remain as such
until the automated analysis is completed through the IPI method. The highlights of our
proposed method include its suitability for use with computer vision for identifying signs
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of gait problems for clinical application, as well as its replacement of a dynamic joint node
plot. In addition, the IPI method is straightforward and allows for real-time monitoring.
A video of walking behavior can be conveniently recorded in real-time by using a mobile
device. A user can easily remove the background from the video and generate dynamic
joint node coordinates through fusion AI methods. The developed IPI method allows for
use with computer vision to identify postural characteristics for clinical applications.

Future studies can apply the proposed approach to individuals with health problems
to validate this approach.
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Appendix A

Table A1. The 96 combinations of investigated models with abbreviation are listed below.

CNN Classifier Batch
Size Model CNN Classifier Batch

Size Model CNN Classifier Batch
Size Model

AlexNet LR 5 M1 GoogleNet SVM 5 M33 ResNet50 NB 5 M65
AlexNet LR 8 M2 GoogleNet SVM 8 M34 ResNet50 NB 8 M66
AlexNet LR 11 M3 GoogleNet SVM 11 M35 ResNet50 NB 11 M67
AlexNet LR 14 M4 GoogleNet SVM 14 M36 ResNet50 NB 14 M68
AlexNet NB 5 M5 MobileNetV2 LR 5 M37 ResNet50 SVM 5 M69
AlexNet NB 8 M6 MobileNetV2 LR 8 M38 ResNet50 SVM 8 M70
AlexNet NB 11 M7 MobileNetV2 LR 11 M39 ResNet50 SVM 11 M71
AlexNet NB 14 M8 MobileNetV2 LR 14 M40 ResNet50 SVM 14 M72
AlexNet SVM 5 M9 MobileNetV2 NB 5 M41 VGG16 LR 5 M73
AlexNet SVM 8 M10 MobileNetV2 NB 8 M42 VGG16 LR 8 M74
AlexNet SVM 11 M11 MobileNetV2 NB 11 M43 VGG16 LR 11 M75
AlexNet SVM 14 M12 MobileNetV2 NB 14 M44 VGG16 LR 14 M76

DenseNet201 LR 5 M13 MobileNetV2 SVM 5 M45 VGG16 NB 5 M77
DenseNet201 LR 8 M14 MobileNetV2 SVM 8 M46 VGG16 NB 8 M78
DenseNet201 LR 11 M15 MobileNetV2 SVM 11 M47 VGG16 NB 11 M79
DenseNet201 LR 14 M16 MobileNetV2 SVM 14 M48 VGG16 NB 14 M80
DenseNet201 NB 5 M17 ResNet101 LR 5 M49 VGG16 SVM 5 M81
DenseNet201 NB 8 M18 ResNet101 LR 8 M50 VGG16 SVM 8 M82
DenseNet201 NB 11 M19 ResNet101 LR 11 M51 VGG16 SVM 11 M83
DenseNet201 NB 14 M20 ResNet101 LR 14 M52 VGG16 SVM 14 M84
DenseNet201 SVM 5 M21 ResNet101 NB 5 M53 VGG19 LR 5 M85
DenseNet201 SVM 8 M22 ResNet101 NB 8 M54 VGG19 LR 8 M86
DenseNet201 SVM 11 M23 ResNet101 NB 11 M55 VGG19 LR 11 M87
DenseNet201 SVM 14 M24 ResNet101 NB 14 M56 VGG19 LR 14 M88
GoogleNet LR 5 M25 ResNet101 SVM 5 M57 VGG19 NB 5 M89
GoogleNet LR 8 M26 ResNet101 SVM 8 M58 VGG19 NB 8 M90
GoogleNet LR 11 M27 ResNet101 SVM 11 M59 VGG19 NB 11 M91
GoogleNet LR 14 M28 ResNet101 SVM 14 M60 VGG19 NB 14 M92
GoogleNet NB 5 M29 ResNet50 LR 5 M61 VGG19 SVM 5 M93
GoogleNet NB 8 M30 ResNet50 LR 8 M62 VGG19 SVM 8 M94
GoogleNet NB 11 M31 ResNet50 LR 11 M63 VGG19 SVM 11 M95
GoogleNet NB 14 M32 ResNet50 LR 14 M64 VGG19 SVM 14 M96
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