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Abstract
Cdkn1c, a member of the Cip/Kip cyclin-dependent kinase inhibitor family, is critically involved in regulating cell cycle 
and cellular differentiation during development in mammals. However, the functional role of Cdkn1c and the underlying 
mechanisms by which Cdkn1c affects odontogenesis remain largely unknown. In our study, we found that Cdkn1c expres-
sion dynamically changes from embryonic day 11.5 (E11.5) to postnatal day 3 (P3), and exhibits tissue-specific expres-
sion profiles. Evaluation of CDKN1C protein by immunohistochemistry and western blot, revealed that CDKN1C protein 
expression peaks at P3 and then is reduced at P5 and P7. Interestingly, we observed that CDKN1C expression is higher in 
immature odontoblasts than preodontoblasts, is lower in mature odontoblasts, and is practically absent from ameloblasts. 
We evaluated cell cycle progression to further investigate the mechanisms underlying CDKN1C-mediated regulation of 
odontogenesis, and found that pRB, cyclin D1 and CDK2 expression decreased from P1 to P3, and reduced at P5 and P7. 
In addition, we observed increased methylation of KvDMR1 at P1 and P3, and reduced KvDMR1 methylation at P5 and P7. 
However, the methylation levels of Cdkn1c-sDMR were relatively low from P1 to P7. In summary, we demonstrated that 
Cdkn1c expression and methylation status may be involved in early postnatal tooth development through regulating the cell 
cycle inhibition activity of Cdkn1c. Notably, Cdkn1c expression and methylation may associate with cell cycle exit and dif-
ferentiation of odontoblasts.
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Introduction

Tooth development involves a continuous and reciprocal 
series of interactions between dental epithelium and mes-
enchyme (Soukup et al. 2008; Lee et al. 2016); this cycle 
depends on the tightly regulated spatiotemporal expression 
of specific genes (Zhang et al. 2009; Zhou et al. 2017; Du 
et al. 2016). Cell-cycle-associated genes, including genes of 
the Cip/Kip family of cyclin-dependent kinase inhibitors, are 
critical mediators and regulators of odontogenesis (Kuma-
moto et al. 2001). Cip/Kip family genes are known to be 
important in differentiation of odontoblasts and ameloblasts 

(Lee et al. 2009; Iwamoto et al. 2017) and facilitate dental 
mineralization (Yin et al. 2014). However, little is known 
about the role of Cdkn1c, a recently discovered Cip/Kip fam-
ily member, in odontogenesis.

p57KIP2, encoded by the Cdkn1c gene, is a major regulator 
of cell cycle progression (Hildebrand et al. 2012), and is vital 
in cell proliferation and differentiation (Pateras et al. 2009). 
p57KIP2 inhibits cyclin/cyclin-dependent kinase (CDK) com-
plexes in the G1 phase, leading to the inhibition of phospho-
rylation of the retinoblastoma (Rb) protein, and resulting in 
suppression of E2F family members in the mid-G1 phase 
(Tury et al. 2012). In addition to its effect on growth arrest, 
p57 plays distinct functions in the development of several 
organs (Chung and Park 2016; Mademtzoglou et al. 2017; 
Stantzou et al. 2017), especially hair follicles (Purba et al. 
2017), which share a similar formation process as teeth. 
Mice deficient for Cdkn1c expression display hyperpla-
sia in several organs, and are not viable (Yan et al. 1997). 
In humans, abnormal expression of the CDKN1C gene is 
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primarily associated with growth disorder syndromes, 
including Beckwith–Wiedemann syndrome (Bastaki et al. 
2016) and Silver–Russell syndrome (Nakashima et al. 2015). 
Notably, these diseases are always accompanied by dental 
abnormalities, such as enamel defects, delayed dental age, 
and diminished mandibular development (Abeleira et al. 
2011; Bergman et al. 2003).

In addition to genetic factors, epigenetics may also affect 
odontogenesis, as suggested by differences in tooth mor-
phology seen in monozygotic twins (Townsend et al. 2009; 
Hughes et al. 2014). DNA methylation of gene loci is an 
epigenetic modification (Deaton and Bird 2011) that has 
profound and widespread effects on cellular differentia-
tion, genomic imprinting, and tissue-specific gene expres-
sion (Suelves et al. 2016; Wu et al. 2016). Su et al. (2016) 
reported that DNA methylation participates in odontogen-
esis; they identified 2469 genes that are differentially meth-
ylated during pig tooth development from embryonic day 
50–60 (E50–E60). Treatment of human dental pulp cells 
with 5-Aza-2′-deoxycytidine, an inhibitor of DNA meth-
yltransferase activity, decreased cell proliferation and 
enhanced odontogenic differentiation (Zhang et al. 2015). 
Moreover, Liu et al. reported that DNA methylation facili-
tates the osteogenic differentiation of human periodontal lig-
ament stem cells (Liu et al. 2016). The expression of Cdkn1c 
is also regulated by methylation, and is mainly associated 
with two differentially methylated regions (DMR) in mice: 
Cdkn1c-sDMR and KvDMR1 (Beatty et al. 2006; Bhogal 
et al. 2004). Therefore, investigating the methylation levels 
of Cdkn1c during odontogenesis may elucidate mechanisms 
of tooth development.

Cdkn1c gene is a maternally expressed imprinted gene 
(Matsuoka et al. 1996) and is essential for normal develop-
ment (Bhogal et al. 2004). The spatiotemporal expression 
of the imprinted genes Dlk1 and Igf2 coincide with their 
methylation levels during tooth development (Khan et al. 
2012). This suggests that imprinted genes and their methyla-
tion levels may be closely involved in odontogenesis. How-
ever, the expression and methylation status of Cdkn1c during 
odontogenesis remain virtually unexplored.

In this study, we characterize the expression of Cdkn1c 
gene during the early postnatal stages of the mouse first man-
dibular molar, and we investigate the underlying mechanisms 
connecting Cdkn1c expression with tooth development.

Materials and methods

Gene expression omnibus (GEO) data acquisition 
and processing

Cdkn1c gene expression data during tooth development was 
obtained from datasets available in the NCBI GEO database: 

GSE32321 (O’Connell et al. 2012), GDS4453 (Lachke et al. 
2012), GSE76316 (Pantalacci et al. 2017) and GSE19488 
(Sasaki et al. 2010) (http://www.ncbi.nlm.nih.gov/geo/). 
Cdkn1c mRNA expression z-Score was used for statistical 
analysis of differential gene expression (Sun et al. 2014).

Animals

Young postnatal (P1, P3, P5, and P7) BALB/c mice were 
obtained from Hunan SJA Laboratory Animal Co. The Ani-
mal Ethics Committee of the Central South University pro-
vided the approval for all experimental procedures. Animals 
were humanely euthanized by cervical dislocation. Mandi-
bles were isolated and immediately fixed overnight in 4% 
paraformaldehyde (Biosharp, China) buffered with 0.1 M 
PBS (Zhongshan Goldenbridge Biotechnology, China), pH 
7.4, at 4 °C. The first mandibular molar tooth germ was dis-
sected using a stereomicroscope.

Histological and immunohistochemical analysis

After fixation for 24 h, the mandibles were decalcified in 
10%, pH 7.4 EDTA for 5–7 days. Mandibles were placed 
into in a graded ethanol series to dehydrate, and were then 
embedded in paraffin. Finally, serial sagittal sections were 
obtained at 4 µm thickness; standard hematoxylin and eosin 
staining (HE) was employed to examine tissue morphology.

The process of immunohistochemical staining was previ-
ously described (Guo et al. 2016). In brief, antigen retrieval 
was performed by deparaffinizing the sections and incubat-
ing the sections with sodium citrate buffer (pH 6.0). Sections 
were blocked with 3% hydrogen peroxide and subsequently 
with 5% (v/v) bovine serum albumin (BSA) for 30 min, 
respectively. Sections were then incubated overnight at 4 °C 
with a monoclonal antibody to p57KIP2 (#ab75974, 1:1000, 
Abcam, USA). Sections were then incubated sequentially 
with agent 1 and agent 2 (#PV-9000-D, Zhongshan Golden-
bridge Biotechnology, China). Finally, sections were visu-
alized using a DAB staining kit (#ZLI-9018, Zhongshan 
Goldenbridge Biotechnology, China). Photomicrographs 
were obtained for further analysis. PBS was used as a nega-
tive control.

Western blot analysis

We isolated 4–20 first mandibular molar tooth germs from 
each postnatal stage (P1, P3, P5, P7). Total protein was iso-
lated as previously described (Guo et al. 2017; Liu et al. 
2018). In brief, total protein lysates were obtained using a 
lysis buffer composed of 180 µl of RIPA Buffer (Thermo 
Scientific, USA), 20 µl protease inhibitor cocktail (Bimake, 
USA), and 2 µl phosphatase inhibitor cocktail (Bimake, 
USA). Protein concentration was detected using the BCA 
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method. Total protein lysates from each postnatal stage 
were resolved by SDS-polyacrylamide gel electrophoresis 
on an 8% w/v gel (Amresco, USA), and were then trans-
ferred onto PVDF membranes (Millipore, USA). After 
transfer, membranes were blocked in 5% fresh skim milk 
(Yili, China) and incubated overnight at 4 °C in TBST + 5% 
BSA supplemented with primary antibodies against p57KIP2 
(#ab75974, 1:1000, Abcam, USA), Rb (#ab181616, 1:2000, 
Abcam, USA), Phospho-Rb (Ser780) (#D59B7, 1:1000, Cell 
Signaling Technology, USA), CDK2 (#78B2, 1:1000, Cell 
Signaling Technology, USA), Cyclin D1 (#92G2, 1:1000, 
Cell Signaling Technology, USA), or α-tubulin (#sc-23948, 
1: 2000, Santa Cruz, USA). Membranes were then incubated 
for 1 h at 37 °C with an anti-rabbit peroxidase-conjugated 
secondary. Protein bands were visualized using an Immo-
bilon western chemiluminescent HRP substrate (Millipore, 
USA).

Quantification of global DNA methylation

Genomic DNA was extracted from tooth germ (n = 4–10 
from each stage) using a DNeasy Blood and Tissue Kit 
(#69504, Qiagen, Germany). Global methylation levels were 
evaluated using a MethylFlash™ Methylated DNA Quan-
tification Kit (Colorimetric) (#P-1034, Epigentek, USA). 
Unmethylated (negative) control DNA (20 ng), a graded 
series of methylated (positive) control DNA, and purified 
sample DNA (about 100 ng) were incubated with a bonding 
solution in strip wells in duplicate. The methylated fraction 
of DNA was measured with dilute 5-mC capture and detec-
tion antibodies. A color developing solution was added and 
the absorbance at 450 nm was measured using a microplate 
spectrophotometer. The average of the duplicate measures 
was used for analyses. A standard curve was using the posi-
tive control series and optimal slope was calculated. The 
amount of methylated DNA was calculated according to the 
formula provided by the kit manufacturer.

Bisulfite sequencing PCR

Bisulfite conversion of DNA was carried out with the 
EpiTect Fast DNA Bisulfite Kit (Qiagen, Germany). The 
methylation status of two differentially methylated regions 
(Cdkn1c-sDMR and KvDMR1) associated with Cdkn1c 
imprinting in mice was analyzed in this study. These meth-
ylated regions were amplified using the following specific 
primer pairs, as previously reported (Van de Pette et al. 
2017): sDMR-F: 5′-GAT​TAG​TAT​AAT​GTA​GTA​TTT​TTA​
GTTT-3′; sDMR-R: 5′-AAC​TAT​ACC​CAA​CTC​CAT​AATC-
3′; KvDMR1-F: 5′-TTA​AGG​TGA​GTG​GTT​TAG​GATA-3′; 
KvDMR1-R: 5′-AAA​CCA​CTA​TAA​ACC​CAC​ ACA-3′. 
PCR products were separated by electrophoresis on a 1.5% 
agarose gel; bands were recovered with a gel extraction kit 

(Sangon, China). Extracted fragments were cloned it into 
T-vectors (Tiangen, China), and transformed into competent 
bacteria (DH-5a Escherichia coli). DNA from single bacte-
rial colonies was amplified by PCR using vector-specific 
primers; DNA methylation was analyzed by sequencing the 
PCR products.

Statistical analysis

All statistical analyses were performed using SPSS 20.0 soft-
ware (IBM SPSS; Armonk, NY, USA). Data are expressed 
as means ± standard deviation (SD). Significant differences 
between two groups were analyzed using an independent 
t-test; multiple comparisons were performed using the least-
significant difference (LSD) test. A p-value of P < 0.05 indi-
cated a statistically significant result.

Results

Cdkn1c expression changes dynamically 
during molar tooth development

To investigate whether the Cdkn1c gene is involved in tooth 
development, we analyzed four GEO datasets: GSE32321 
(O’Connell et al. 2012), GDS4453 (Lachke et al. 2012), 
GSE76316 (Pantalacci et al. 2017) and GSE19488 (Sasaki 
et al. 2010) (Fig. 1). Mouse tooth formation starts morpho-
logically at embryonic day 11.5 (E11.5), and involves an 
interaction between dental epithelium and mesenchyme at 
the site of the future tooth; the region progresses through 
the bud stage, cap stage, bell stage, and secretory stage 
(O’Connell et al. 2012). The expression levels of Cdkn1c in 
dental epithelial and mesenchymal tissue began to increase 
at E11.5–E13.5, and were found to differ from each other at 
specific stages (Fig. 1a). However, Cdkn1c expression was 
still significantly lower than that of the whole embryo body 
without tooth germ at E13.5 (Fig. 1b). To further explore 
the existence of spatiotemporal expression of Cdkn1c in 
tooth development, we found the expression levels of molar 
Cdkn1c constantly changed during E14–E18, and were dif-
ferent between the upper and lower molars (Fig. 1c). After 
birth, Cdkn1c expression increased (Fig. 1d). These data 
indicate that Cdkn1c gene may be involved in odontogenesis.

Involvement of p57 in early postnatal tooth 
development

From the HE staining (Fig. 2a–d) we can know that the tooth 
germ was in the late bell stage at P1 and P3, and paved the 
way for the morphogenesis of the entire dental structure. 
At P5 and P7, the first molar entered the secretory stage, 
and began to produce a large amount of hard tooth tissue. 
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The p57 expression was highly expressed at P1 and P3, and 
was reduced at P5 and P7 (Fig. 2a1–d1). Almost no posi-
tive staining for p57 was observed in ameloblasts from P1 
to P7, except for some undifferentiated inner enamel epi-
thelial cells at P1 (Fig. 2a5). p57 was primarily expressed 
in odontoblasts. Odontoblasts can be classified in three 
subtypes (Quispe-Salcedo et al. 2012): preodontoblasts, 
immature odontoblasts, and mature odontoblasts. p57 was 
intensely expressed in immature odontoblasts (Fig. 2a4–c4, 
d3), although other pulpal cells also showed weak positive 
staining. In contrast, p57 expression was greatly reduced 
in mature odontoblasts (Fig. 2b5, c5, d4), and was almost 
absent from the mature odontoblasts of the pulp horn at 

P7 (Fig. 2d5). However, p57 was nearly negative in preo-
dontoblasts (Fig. 2a3–c3). These data suggest that p57 func-
tion might be critically required during the early phases of 
odontoblast differentiation.

p57 participates in tooth development via its 
activity as a cell cycle inhibitor

To explore the mechanisms underlying the involvement 
of p57 in tooth development, we performed western blot 
analysis to evaluate the activation of signaling pathways 
related to the cell cycle at P1, P3, P5, and P7 (Fig. 3). 
The expression of p57 was consistent with the results 

Fig. 1   Analysis of Cdkn1c expression in tooth germ from the gene 
expression omnibus (GEO) database. a Expression levels of Cdkn1c 
in dental epithelial and mesenchymal tissue at embryonic day 
11.5–13.5 from C57BL/6 mice (GSE32321). b Expression levels of 
Cdkn1c in tooth germ tissue from ICR mice at embryonic day 13.5 
and matched whole embryo body without tooth germ (GDS4453). 

c Expression levels of Cdkn1c in CD1 mouse lower and upper 
first molar for eight consecutive stages (embryonic day 14.5–18) 
(GSE76316). d Expression levels of Cdkn1c in ICR mice at pre- and 
post-natal stages (embryonic day 16 to postnatal day 3) from dental 
papillae of mandibular first molar tooth germs (GSE19488). E embry-
onic day, P postnatal day, *P < 0.05



463Journal of Molecular Histology (2018) 49:459–469	

1 3

from the IHC staining, increasing from P1 to P3, peak-
ing at P3, then sharply falling at P5 and P7 (Fig. 3a). In 
a similar fashion to p57, expression levels of cyclin D1, 
CDK2, and pRB were the lowest at P5 and P7. How-
ever, expression patterns of cyclin D1, CDK2, and pRB 
decreased from P1 to P3 (Fig. 3b–d), suggesting that p57 

negatively regulates the expression of CDK2, cyclin D1, 
and RB phosphorylation from P1 to P3, and is no longer 
effective from P5 to P7.

Fig. 2   Developmental localization of p57 during mouse molar devel-
opment. Immunohistochemistry for p57 in the lower first molar at 
postnatal day 1–7 (P1–P7). a–d HE staining, a1–d5 Immunohis-
tochemistry staining. a2–d2 higher magnified views of boxed areas 
indicated as 2 in a1–d1; the column at the right side is higher mag-
nified views of boxed areas indicated as 2, 3, and 4 in a1–d1 and 
a2–d2, respectively. The tooth germ was in the late bell stage at P1 
and P3, and entered the secretory stage at P5 and P7. p57 protein is 
intensely expressed in odontoblasts, although other pulpal cells also 
show weak positive reactions a1–d1. There was almost no positive 

p57 expression in ameloblasts a2–d2 and preodontoblasts a3–c3. p57 
expression was highest in immature odontoblasts a4–c4, d3, and was 
lowest in mature odontoblasts b5, c5, d4; p57 expression may have 
already been down-regulated in the mature odontoblasts of the pulp 
horn at P7 when primary dentin formation is almost completed d5. 
Note the positive expression in inner enamel epithelium at P1 a5. IEE 
inner enamel epithelium, DP dental pulp, AB ameloblast, pAB prea-
meloblast, pOB preodontoblast, iOB immature odontoblast, mOB 
mature odontoblast, EN enamel, P postnatal day. Scale bars = 200 µm 
in a for a–d, a1–d1, 80 µm in a2 for a2–d2, 10 µm in a3 for a3–d5 



464	 Journal of Molecular Histology (2018) 49:459–469

1 3

Cdkn1c methylation regulate Cdkn1c expression 
during mouse tooth development

To analyze whether the DNA methylation is associated with 
tooth development, we evaluated global DNA methylation 
levels in mouse first molar germ at P1, P3, P5, and P7. The 
overall levels of DNA methylation during tooth develop-
ment were low (Fig. 4a), but there was still a dynamic 
change at each stage, although the average DNA methyla-
tion level showed no significant differences between each 
stage. This suggests that DNA methylation may be involved 
in odontogenesis.

Since global DNA methylation level does not reflect the 
methylation level of a specific gene, we further examined the 
methylation level of two differentially methylated regions 
(DMRs) of the Cdkn1c gene (Fig. 4b, c): Cdkn1c-sDMR and 
KvDMR1. The KvDMR1 region contains 17 CpGs within a 
341-bp sequence. KvDMR1 showed dense methylation at P3, 
but sparse methylation on P5 and P7; this was consistent with 

the p57 expression levels on those days. Maternal methylation 
of KvDMR1 suppresses the expression of Kcnq1ot1 and subse-
quently allows for the expression of Cdkn1c (Fitzpatrick et al. 
2002). Together, the methylation levels of KvDMR1 region 
may play a role in regulating the expression of the Cdkn1c 
gene during odontogenesis. The Cdkn1c sDMR region is a 
361-bp region containing 46 CpGs. The methylation levels 
of the Cdkn1c sDMR region were relatively low in P1, P3, 
and P5, and the region was un-methylated in P7. Since the 
methylation levels at Cdkn1c sDMR are not a precondition for 
the imprinted expression of Cdkn1c (Bhogal et al. 2004), we 
concluded that methylation at this region does not participate 
in tooth development.

Fig. 3   Expression of downstream signaling pathways related to cell 
cycle and p57 during mouse molar development. a Expression lev-
els and relative abundance of p57, cyclin D1, CDK2, RB, and pRB 
in the mandibular first molar germ at postnatal day 1–7. b–e From 
postnatal day 1–3, the expression of p57 was increased, while expres-

sion of cyclin D1, CDK2, and pRB are decreased. Expression of p57, 
cyclin D1, CDK2, RB, and pRB was decreased at postnatal day 5 and 
7. α-tubulin was used as a control. Data were pooled from three inde-
pendent experiments with error bars designating standard deviation of 
the mean. P postnatal day, *P < 0.05
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Discussion

The present study demonstrated a role for p57 in murine 
tooth development at early postnatal stages. Data from the 
GEO database showed that the expression pattern of p57 
changes dynamically during different stages of tooth devel-
opment (Fig. 1). In our experiment, we suggest that p57 and 
the methylation status of the KvDMR1 region might par-
ticipate in tooth development, and especially odontoblast 
differentiation, during the early postnatal stages via the cell 
cycle inhibitory activity of p57 (Figs. 2, 3, 4).

The Cip/Kip family members are regarded as critical reg-
ulators of odontogenesis (Kumamoto et al. 2001), and are 
prominently implicated in cell cycle regulation as inhibitors 
of CDKs (Besson et al. 2008). The Cip/Kip family contains 
three members: p21, p27 and p57. p21 is mainly expressed 
in the inner enamel epithelium during late cap and in the 
initial bell stages (Bloch-Zupan et al. 1998). p21 is also 
regarded as a marker of the early phases of odontoblast dif-
ferentiation (Nakatomi et al. 2013), while p27 was reported 
strongly expressed in highly differentiated odontoblasts in 
humans (Klinz et al. 2013). p57 was reported to play a key 

Fig. 4   Global and Cdkn1c specific DNA methylation analysis during 
mouse tooth development. a Quantification of 5-mC in genomic DNA 
isolated from postnatal day 1–7 mouse first molar tooth germ. The 
data are average values ± standard deviation (SD) from three different 
assays. The LSD test revealed no statistically significant differences 
between the two groups. b Schematic diagram of two differentially 
methylated regions (DMRs) which associate with Cdkn1c imprinting 
in the mouse. The horizontal bars indicate the positions of the two 
DMR; the narrow vertical bars represent the position of CpG dinu-
cleotides. For Cdkn1c sDMR, we analyzed 361  bp containing 46 

CpGs; the KvDMR1 region contains 341 bp and 17 CpGs. c Bisulfite 
sequence analysis showing the methylation status of the two DMRs 
that regulate Cdkn1c imprinted expression (KvDMR1 and Cdkn1c 
sDMR). Each circle indicates an individual CpG dinucleotide. Each 
row of circles corresponds to an individual clone of the bisulfite-PCR 
product. Empty and filled circles indicate unmethylated and methyl-
ated CpGs, respectively. The numbers beside the bisulfite-sequencing 
profiles indicate the percentage of methylated CpG sites. P: postnatal 
day
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role in mammalian development by regulating cell prolif-
eration and differentiation in a number of different tissues 
(Pateras et al. 2009). Nevertheless, the functional role of 
p57 in odontogenesis remains unexplored. The GEO data we 
analyzed showed that the expression of p57 in developing 
tooth germ was spatiotemporal and tissue-specific (Fig. 1). 
This finding indicated that p57 might play a distinct role in 
tooth development.

There are five stages of tooth development: thickening 
stage, bud stage, cap stage, bell stage, and secretory stage 
(Tucker and Sharpe 2004; Zhang et al. 2018). In the Balb/c 
model, first molars at P1 and P3 were at the late bell stage, 
and at P5 and P7 were at the secretory stage (Fig. 2a–d), 
similar to a previous report (Lv et al. 2011; Jiang et al. 
2017). The bell stage is a crucial stage where epithelial-
mesenchymal interactions culminate in dramatic morpho-
logical and functional changes (Liu et al. 2017). During the 
bell stage, undifferentiated mesenchyme and epithelium 
differentiate into dentin-secreting odontoblasts and enamel-
secreting ameloblasts, respectively (Nakasone et al. 2006). 
Odontoblasts are a monolayer of cells at the periphery of 
the dental pulp, and are divided into three types: preodonto-
blasts, immature odontoblastas, and mature odontoblasts 
(Quispe-Salcedo et al. 2012). Preodontoblasts are the polar-
ized cells beginning to stop their proliferation and acquire 
differentiation, while mature odontoblasts are matrix-pro-
ducing cells with their differention almost completed. It is 
generally thought that there exists an inverse relationship 
between cell proliferation and differentiation, and p57 is a 
cell cycle arrest gene and is associated with exit from the 
cell cycle and entry into differentiation (Rossi et al. 2018). 
Thus it is explicable that we observed intensely p57 expres-
sion in immature odontoblasts, and reduced expression in 
mature odontoblasts (Fig. 2), similar to the expression pat-
tern of p21 (Nakatomi et al. 2013). This result indicated that 
p57 could serve as a potential marker of early odontoblast 
differentiation. However, we observed almost no positive 
staining of p57 in ameloblasts at any stage from P1 to P7, 
except for some undifferentiated inner enamel epithelium 
cells at P1 (Fig. 2a5), in contrast to the expression pattern 
of p21 (Bloch-Zupan et al. 1998). This result suggested 
that p57 may not participate in the regulation of ameloblast 
differentiation.

p57 regulates cell differentiation primarily by inhibi-
tion of the cell cycle (Martinez et al. 1999). For example, 
p57 participated in cell cycle exit and differentiation of an 
oligodendrocyte precursor (Dugas et al. 2007). In addi-
tion, during human hair follicle matrix differentiation, p57 
is expressed in post-mitotic keratinocytes, accompanying 
down-regulation of cyclin A and B1 (Purba et al. 2017). 
In our study, we also observed that p57 expression was 
negatively correlated with pRB, cyclin D1, and CDK2 dur-
ing the late bell stage (Fig. 3). However, we discovered 

both p57 and activity of downstream pathways related to 
cell cycle were relatively low at P5 and P7. This indicated 
that p57 might play no significant role in regulating tooth 
development at P5 and P7.

DNA methylation also plays a vital role in tooth devel-
opment (Wan et al. 2018; Yoshioka et al. 2015). Our data, 
however, demonstrate that global methylation levels were 
relatively low in the tooth germ at P1–P7 (Fig. 4a). In con-
cordance with our results, the global methylation levels were 
also quite low in the deciduous tooth germ in miniature 
pigs at the bell stage (E50) and secretory stage (E60); how-
ever, many differentially methylated genes were identified 
(Su et al. 2016). Cdkn1c lies within a complex imprinted 
domain, and is regulated by an imprinting center, KvDMR1, 
in both humans and mice. Methylation at this locus inhib-
its the expression of Kcnq1ot1 but allows the expression of 
Cdkn1c (Eggermann et al. 2014). The absence or loss of 
methylation at this locus results in Beckwith-Wiedemann 
syndrome leading to growth disorders (Bastaki et al. 2016; 
Singh et al. 2017). In addition, Cdkn1c is also regulated by 
the DMR of Cdkn1c in mice, which is located at the pro-
moter and gene body (Bhogal et al. 2004). Methylation at 
this locus leads to inhibition of Cdkn1c expression. In the 
present study, we discovered that differential methylation 
of KvDMR1, not Cdkn1c sDMR, regulates the expression 
of Cdkn1c in tooth development (Fig. 4c). Similar expres-
sion patterns were also found in the liver, spleen, and lung 
of cattle (Wang et al. 2015). Since the methylation levels at 
the Cdkn1c sDMR are not a precondition for its imprinted 
expression, but likely are essential to maintain its imprint-
ing (Bhogal et al. 2004), we suggest that methylation of 
the KvDMR1 region, but not the Cdkn1c sDMR region, is 
involved in tooth development.

In conclusion, the present study sheds light on the role of 
p57 in the early postnatal stage of tooth development. We 
report a detailed observation of the spatiotemporal expres-
sion of p57 in tooth germ, and we explore the potential 
molecular mechanisms by which it governs tooth develop-
ment. We also examine the methylation status of the two 
DMR regions of Cdkn1c, and we demonstrate that Cdkn1c 
plays a crucial role in odontoblast differentiation. However, 
since the direct molecular mechanisms and functional analy-
sis did not investigate in our studies, the elucidation of a 
potential role of Cdkn1c in tooth development, especially in 
odontoblasts, requires further more complex studies.
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