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Simpson’s Paradox in COVID-19 Case Fatality Rates:
A Mediation Analysis of Age-Related Causal Effects

Julius von Kügelgen , Luigi Gresele , and Bernhard Schölkopf

Abstract—We point out an instantiation of Simpson’s paradox in
COVID-19 case fatality rates (CFRs): comparing a large-scale study
from China (February 17) with early reports from Italy (March 9),
we find that CFRs are lower in Italy for every age group, but higher
overall. This phenomenon is explained by a stark difference in case
demographic between the two countries. Using this as a motivating
example, we introduce basic concepts from mediation analysis and
show how these can be used to quantify different direct and indirect
effects when assuming a coarse-grained causal graph involving
country, age, and case fatality. We curate an age-stratified CFR
dataset with >750 k cases and conduct a case study, investigating
total, direct, and indirect (age-mediated) causal effects between
different countries and at different points in time. This allows us
to separate age-related effects from others unrelated to age and
facilitates a more transparent comparison of CFRs across countries
at different stages of the COVID-19 pandemic. Using longitudinal
data from Italy, we discover a sign reversal of the direct causal effect
in mid-March, which temporally aligns with the reported collapse
of the healthcare system in parts of the country. Moreover, we find
that direct and indirect effects across 132 pairs of countries are
only weakly correlated, suggesting that a country’s policy and case
demographic may be largely unrelated. We point out limitations
and extensions for future work, and finally, discuss the role of
causal reasoning in the broader context of using AI to combat the
COVID-19 pandemic.

Impact Statement—During a global pandemic, understanding
the causal effects of risk factors such as age on COVID-19 fatality
is an important scientific question. Since randomised controlled
trials are typically infeasible or unethical in this context, causal
investigations based on observational data—such as the one carried
out in this article—will, therefore, be crucial in guiding our under-
standing of the available data. Causal inference, in particular medi-
ation analysis, can be used to resolve apparent statistical paradoxes;
help educate the public and decision-makers alike; avoid unsound
comparisons; and answer a range of causal questions pertaining to
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the pandemic, subject to transparently stated assumptions. Our
exposition helps clarify how mediation analysis can be used to
investigate direct and indirect effects along different causal paths
and thus serves as a stepping stone for future studies of other
important risk factors for COVID-19 besides age.

Index Terms—Causal inference, COVID-19, mediation analysis,
Simpson’s paradox.

I. INTRODUCTION

THE 2019–20 coronavirus pandemic originates from the
SARS-CoV-2 virus, which causes the associated infec-

tious respiratory disease COVID-19. After an outbreak was
identified in Wuhan, China, in December 2019, cases started
being reported across multiple countries all over the world,
ultimately leading to the World Health Organization declaring it
a pandemic on March 11, 2020 [1]. As of September 28, 2020,
the pandemic led to more than 33 million confirmed cases and
one million fatalities across 188 countries [2]. One of the most
cited indicators regarding COVID-19 is the reported case fatality
rate (CFR), which indicates the proportion of confirmed cases,
which end fatally. In addition to the total CFR, CFRs are often also
reported separately by age since CFRs differ significantly across
different age groups, with older people statistically at higher risk.

In this article, we show how tools from causal inference
and, in particular, mediation analysis can be used to interpret
COVID-19 case fatality data. We motivate our investigation by
pointing out what could be a textbook example of Simpson’s
paradox in comparing CFRs between China and Italy, suggesting
opposite conclusions depending on whether the data are
analyzed in aggregate or age-stratified form, as shown in
Section II. This example illustrates how a traditional statistical
analysis provides insufficient understanding of the data,
and thus needs to be augmented by additional assumptions
about the underlying causal relationships. In Section III, we
therefore postulate a coarse-grained causal model for comparing
age-specific COVID-19 CFR data across different countries. We
then review different types of (direct and indirect) causal effects,
and motivate them in the context of our assumed model as
different questions about COVID-19 case fatality in Section IV.

As one of our contributions, we curated a dataset involv-
ing 756 004 confirmed COVID-19 cases and 68 508 fatalities,
separated into age groups of ten-year intervals (0–9, 10–19,
etc.), reported from 11 different countries from Africa, Asia,
Europe, and South America and the Diamond Princess cruise
ship, which, together with an interactive notebook containing
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Fig. 1. (Left) COVID-19 CFRs in Italy and China by age group and in aggregated form (“Total”), i.e., including all confirmed cases and fatalities up to the time
of reporting (see legend). (Right) Proportion of cases within each age group.

all our analyses, is publicly available. We use this dataset, in
combination with the proposed coarse-grained model, to per-
form a case study, as shown in Section V. Tracing the evolution
of direct and indirect age-mediated effects of country (China
or Italy) on case fatality from early March to late May 2020
allows to discover trends that may otherwise remain hidden
in the data, e.g., a reversal in the sign of the direct effect in
mid-March that temporally aligns with a reported “collapse”
of the healthcare system in parts of Italy [3]. Moreover, we
compute direct and indirect effects for 132 pairs of countries
and, thus, identify countries whose total CFRs are particularly
adversely affected by their case demographic. We further find
that indirect (age-related) effects are strongly correlated with a
country’s population’s median age, but only weakly with direct
effects.

Due to the limited availability of age-stratified fatality data,
our model is relatively simple, and we do not claim novelty in
the causal methodology. However, this article constitutes, to the
best of our knowledge, the first application of causal analysis to
better understand the role of mediators, such as age in the context
of COVID-19. While the use of CFR data may be problematic due
to selection bias from differences in testing (which we discuss in
VI), we emphasize that our causal framework may likewise be
applied to more comprehensive datasets once available. We thus
hope that this article can serve as a stepping stone for further
studies to gain better insight into the mechanisms underlying
COVID-19 fatality using a principled and transparent causal
framework.

II. SIMPSON’S PARADOX IN COMPARING CFRs BETWEEN

CHINA AND ITALY

When comparing COVID-19 CFRs for different age groups
(i.e., the proportion of confirmed COVID-19 cases within a
given age group that end fatal) reported by the Chinese Center
for Disease Control and Prevention [4] with preliminary CFRs
from Italy, as reported on March 9 by the Italian National
Institute of Health [5], a surprising pattern can be observed:
for all age groups, CFRs in Italy are lower than those in China,
but the total CFR in Italy is higher than that in China. This

is illustrated in Fig. 1—see Appendix VIII-D for exact num-
bers. It constitutes a textbook example of a statistical phe-
nomenon known as Simpson’s paradox (or reversal), which
refers to the observation that aggregating data across subpop-
ulations (here, age groups) may yield opposite trends (and, thus,
lead to reversed conclusions) from considering subpopulations
separately [6].

How can such a pattern be explained? The key to under-
standing the phenomenon lies in the fact that we are dealing with
relative frequencies: the CFRs shown in percent in Fig. 1 (left) are
ratios and correspond to the conditional probabilities of fatality
given a case from a particular age group and country. However,
such percentages conceal the absolute numbers of cases within
each age group. Considering these absolute numbers sheds light
on how the phenomenon can arise: the distribution of cases
across age groups differs significantly between the two coun-
tries, i.e., there is a statistical association between the country of
reporting and the case demographic. In particular, Italy recorded
a much higher proportion of confirmed cases in older patients,
as illustrated in Fig. 1 (right).

While most cases in China fell into the age range of 30–59,
the majority of cases reported in Italy were in people aged
60 and over who are generally at higher risk of dying from
COVID-19 , as illustrated by the increase in CFRs with age for
both countries. The observed difference may partly stem from
the fact that the Italian population in general is older than the
Chinese one with median ages of 45.4 and 38.4, respectively,
but additional factors, such as different testing strategies and
patterns, in the social contacts among older and younger gen-
erations, e.g., [7]–[9], may also play a role. In summary, the
larger share of confirmed cases among elderly people in Italy,
combined with the fact that the elderly are generally at higher risk
when contracting COVID-19 explains the mismatch between
total and age-stratified CFRs and, thus, gives rise to Simpson’s
paradox in the data.

We note that other instances of Simpson’s paradox have
already been observed in the context of epidemiological studies.
When recording tuberculosis deaths in New York City and
Richmond, Virginia, in 1910, for example, it was noted that
even though overall tuberculosis mortality was lower in New



20 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2021

Fig. 2. Assumed causal graph: within this view age, A acts as a mediator of
the effect of country C on case fatality F .

York than in Richmond, the opposite was true when populations
where stratified according to ethnicity [10].

III. CAUSAL MODEL FOR COVID-19 CFR DATA

While the previous reasoning provides a perfectly consistent
explanation in a statistical sense, the phenomenon may still
seem puzzling as it defies our causal intuition—similar to how
an optical illusion defies our visual intuition. Humans appear
to naturally extrapolate conditional probabilities to read them
as causal effects, which can lead to inconsistent conclusions
and may leave one wondering: how can the disease in Italy
be less fatal for the young, less fatal for the old, but more
fatal for the people overall? It is for this reason of ascribing
causal meaning to probabilistic statements that the reversal of
(conditional) probabilities in II is perceived as and referred to
as a “paradox” [11]–[13].

The aspiration to extract causal conclusions from data is
particularly strong during a pandemic, when many inherently
causal questions are naturally asked. For example, politicians
and citizens may want to evaluate different strategies to fight the
disease by asking interventional or counterfactual (“what would
have happened if...?”) questions. However, it is a well-known
scientific mantra that correlation does not imply causation,
and observational data (like that in Fig. 1) alone are generally
insufficient to draw causal conclusions. While correlations can
be seen as a result of underlying causal mechanisms [14],
different causal models can explain the same statistical asso-
ciation patterns equally well [15]. Additional assumptions on
the underlying causal structure are therefore necessary to guide
reasoning based on observational data.

A. Included Variables

We consider the following three variables for comparing
COVID-19 CFRs across different countries.

1) The country C in which a confirmed case is reported,
modeled as a categorical variable.

2) The age group A of a positively tested patient, an ordinal
variable with ten-year intervals as values.

3) The medical outcome, or fatality, F , a binary variable
indicating whether a patient has deceased by the time of
reporting (F = 1) or not (F = 0).

B. Data Generating Process and Causal Graph

We assume the causal graph shown in Fig. 2, motivated by
thinking of the following data-generating process.

1) choosing a country C at random;

2) given the selected country C, sampling a positively tested
patient with age group A;

3) conditional on the choice of C and A, sampling the case
fatality F .

This is clearly a very simple and coarse-grained view of what
is known to be a complex underlying phenomenon. As a con-
sequence, we abstract away various influences and mechanisms
within the arrows in Fig. 2.

1) (C → A) captures that the case demographic is country-
dependent. This difference might be due to a general
difference in age demographic between countries, but
other mechanisms, such as inter-generational mixing or
age-targeted social distancing, may also play a role.

2) (A → F ) encodes that COVID-19 is more dangerous for
the elderly: age seems to have a causal effect on fatality.

3) (C → F ) summarizes country-specific influences on case
fatality other than age, e.g., medical infrastructure, such as
availability of hospital beds and ventilators, local expertise
and pandemic-preparedness (e.g., from experience with
SARS), air pollution levels, and other nonpharmaceutical
interventions and policies which may indirectly affect
case fatality via caseload, influencing the capacity of the
healthcare system. We will refer to the combination of all
these effects as a country’s approach.

We emphasize that we do not explicitly model the infection
process, but consider only drivers of fatality conditional on
having tested positive, see VI for further discussion.

A similar causal model to that in Fig. 2 (see [16]) was subse-
quently used to assay another instance of Simpson’s paradox in
COVID-19 CFR data: in that case, ethnicity rather than country
of origin takes the role of a common cause of age group and
fatality, and age that of a mediator [17].1

C. Observational Sample and Causal Sufficiency

We assume that CFRs and case demographic are based on
an observational sample and, thus, constitute estimates of
P (F = 1|A = a,C = c) and P (A = a|C = c), respectively.
In addition, we assume causal sufficiency, meaning that all
common causes of C,A, and F are observed (i.e., there are
no hidden confounders). While this is a strong assumption, it
is necessary to reason about causal effects and also perhaps
not entirely unrealistic in our setting: all unobserved variables
described earlier can be seen as latent mediators.

IV. TOTAL, DIRECT, AND INDIRECT (AGE-MEDIATED) CAUSAL

EFFECTS ON CASE FATALITY

Having clearly stated our assumptions, we can now answer
causal queries within the model postulated in III. In this section,
we review definitions of different causal effects (following the
treatment of Pearl [18]) and provide interpretations thereof
by phrasing them as questions about different aspects of the

1The overall CFR for “White, Non-Hispanic” people in the US was higher
than for other ethnic groups, but, when stratifying by age, the CFR for “White,
Non-Hispanic” was lower in almost all age groups (except 0–4 year olds). As in
our example, this reversal can be explained by a difference in case demographics
across different ethnic groups.
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CFR data in Fig. 1. We defer a discussion of issues, such as
identifiability, under different conditions to Appendix VIII-A.
Example calculations for each defined quantity using the data
from Fig. 1 can be found in Appendix VIII-B. Throughout, we
denote an intervention that externally fixes a variable X to a
particular value x (as opposed to conditioning on it) using the
notation do(X = x) [15].

A. Total Causal Effect (TCE)

First, we may ask about the overall causal effect of the choice
of country on case fatality.

QTCE: “What would be the effect on fatality of changing country from
China to Italy?”

The answer is called the average TCE.
Definition 1 (TCE) The TCE of a binary treatment T on Y is

defined as the interventional contrast

TCE0→1 = EY |do(T=1)[Y |do(T = 1)]

− EY |do(T=0)[Y |do(T = 0)]. (1)

In our setting (i.e., according to the causal graph in Fig. 2), the
country C takes the role of a treatment that affects the medical
outcome F (denoted by T and Y in Definition 1, respectively),
and (subject to causal sufficiency) the TCE is simply given by
the difference in total CFRs.

B. “Why?”: Beyond Total Effects via Mediation Analysis

While computing the TCE is the principled way to quantify the
total causal influence, it does not help us understand what drives
a difference between two countries, i.e., why it exists in the first
place: we may also be interested in the mechanisms that give
rise to different CFRs observed across countries. Since the age
of patients was crucial for explaining the instance of Simpson’s
paradox in II, we now seek to better understand the role of age as
a mediator of the effect of country on fatality. This seems partic-
ularly relevant from the perspective of countries, which—unable
to influence the age distribution of the general population—only
have limited control over the case demographic and, thus, may
wish to factor out age-related effects. However, such potential
mediators are not reflected within the TCE, as evident from the
absence of the age variable A from (1).

The countryC causally influences fatalityF along two differ-
ent paths: a direct pathC → F , giving rise to a direct effect;2 and
an indirect path C → A → F mediated by A, giving rise to an
indirect effect. The TCE ofC onF thus comprises both direct and
indirect effects. Quantifying such direct and indirect effects is
referred to as mediation analysis [18]. The main challenge is that
any changes to the country C propagate along both direct and
indirect paths, making it difficult to isolate the different effects.
The key idea is therefore to let changes propagate only along
one path while controlling or fixing the effect along the other.

2Recall that the direct effect of country on case fatality is likely mediated by
additional variables, which are subsumed in C → F in the current view—see
VI for further discussion.

C. Controlled Direct Effect (CDE)

The simplest way to measure a direct effect is by changing
the treatment (country) while keeping the mediator fixed at a
particular value. For example, we may ask about the causal effect
for a particular age group, such as 50–59 year olds.

QCDE(50−59): “For 50–59 year olds, is it safer to get the disease in
China or in Italy?”

Because it involves actively controlling the value of the me-
diator, the answer to such a query is referred to as the average
CDE. It is defined as follows.

Definition 2 (CDE) The CDE of a binary treatment T on an
outcome Y with mediator X = x is

CDE0→1(x) = E[Y |do(T = 1, X = x)]

− E[Y |do(T = 0, X = x)]. (2)

For our assumed setting, the CDE is given by the difference of
CFRs for a given age group. A practical shortcoming of the CDE

is that it is often difficult or even impossible to control both the
treatment and the mediator.3 Another problem is that the CDE

does not provide a global quantity for comparing baseline and
treatment: in our setting, there is a different CDE for each age
group. However, we may instead want to measure a direct effect
at the population level.

D. Natural Direct Effect (NDE)

Instead of fixing the mediator to a specific value (selecting a
particular age group), we can consider the hypothetical question
of what would happen under a change in treatment (country) if
the mediator (age) kept behaving as it would under the control,
i.e., as if the change only propagated along the direct path.
This corresponds to asking about the effect of switching country
without affecting the age distribution across confirmed cases.

QNDE: “For the Chinese case demographic, would the Italian ap-
proach have been better?”

As it relies on the mediator (age) distribution under the control
(China) to evaluate the treatment (approach), the answer to QNDE

is known as average NDE.
Definition 3 (NDE) The NDE of a binary treatment T on an

outcome Y mediated by X is given by

NDE0→1 = E[YX(0)|do(T = 1)]− E[Y |do(T = 0)] (3)

where X(0) refers to the counterfactual of X had T been 0.

E. Natural Indirect Effect (NIE)

For isolating the indirect effect that a country exhibits on case
fatality only via age, C → A → F , we run into the additional
complication that it is not possible to keep the influence along
C → F constant under a change in country. To overcome this

3In medical settings, for example, one generally cannot easily control indi-
vidual downstream effects of a drug within the body, such as fixing, e.g., blood
glucose levels while changing treatments.
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problem, one can consider a hypothetical change in the distri-
bution of the mediator (age) as if the treatment (country) were
changed, but without actually changing it. E.g., we may ask

QNIE: “How would the overall cfr in China change if the case
demographic had instead been that from Italy while keeping all else
(i.e., CFR’s of each age group) the same?”

Since this considers a change of the mediator (age) to the
natural distribution it would follow under a change treatment
(case demographic from Italy) while keeping the treatment the
same (Chinese CFR’s), the answer to this question is referred to
as the average NIE.

Definition 4 (NIE) The NIE of a binary treatment T on an
outcome Y with mediator X is given by

NIE0→1 = E[YX(1)|do(T = 0)]− E[Y |do(T = 0)]. (4)

F. Mediation Formulas

For causally sufficient systems, the interventional distribu-
tions of each variable given its causal parents equal the cor-
responding observational distributions, reflecting the intuition
that they represent mechanisms rather than mere mathematical
constructs [19]. TCE (1) and CDE (2) then reduce to

TCEobs
0→1 = E[Y |T = 1]− E[Y |T = 0] (5)

CDEobs
0→1(x) = E[Y |T = 1, X = x]− E[Y |T = 0, X = x].

(6)

Moreover, in this case, NDE (3) and NIE (4) are given by the
following mediation formulas [18]:

NDEobs
0→1 =

∑

x
P (X = x|T = 0) (E[Y |T = 1, X = x]

−E[Y |T = 0, X = x]) (7)

NIEobs
0→1 =

∑

x
(P (X = x|T = 1)

−P (X = x|T = 0))E[Y |T = 0, X = x]. (8)

When comparing CFRs across countries, we only have obser-
vational data and, thus, rely on causal sufficiency (see III) to
compute total, direct, and indirect effects via (5)–(8).

G. Relation Between TCE, NDE, and NIE

Can the TCE be decomposed into a sum of direct and indirect
contributions? While such an additive decomposition indeed
exists for linear models, it does not hold in general due to
possible interactions between treatment and mediator, referred
to as moderation.4 Direct and indirect effects are not uniquely
defined in general, but depend on the value of the mediator.
Counterfactual quantities, such as NDE and NIE, are thus useful
tools to measure some average form of direct and indirect effect
with a meaningful interpretation.

4Pearl and Mackenzie[20] give the illustrative example of a drug (treatment)
that works by activating some proteins (mediator) inside the body before jointly
attacking the disease: the drug is useless without the activated proteins (so the
direct effect is zero) and the activated protein is useless without the chemical
compound of the drug (so the indirect effect is also zero), but the total effect is
nonzero because of the interaction between the two.

H. Mediation Analysis in AI: Algorithmic Fairness

While the present work is focused on the study of COVID-19
CFRs, we remark that the ideas and tools of causal mediation
analysis presented in this section also feature prominently in
other areas of AI, e.g., in the field of algorithmic fairness, which
aims to uncover and correct for discriminatory biases of models.
In this context, discrimination is often interpreted as a causal
influence of a protected attribute (such as age, sex, ethnicity,
etc.) on an outcome of interest along paths that are considered
unfair for a setting at hand [21]–[25].

A historic example and a famous instance of Simpson’s
paradox is the case of UC Berkeley graduate admissions [26]:
in 1973, pooled data across all departments showed that a
substantially larger proportion of all male applicants were ad-
mitted (44%) when compared to females (35%), suggesting
gender bias. However, careful mediation analysis subsequently
revealed that this difference was entirely explained by the choice
of department—females generally applied to departments with
lower admission rates—and that when controlling for the medi-
ating variable “department choice,” i.e., considering the direct
effect of sex on admission, there was actually a small bias in favor
of women [26]. Since the indirect path mediated by department
choice was not considered unfair for the admission process, no
wrongdoing on behalf of the school was concluded.

V. CASE STUDY: MEDIATION ANALYSIS OF AGE-RELATED

EFFECTS ON COVID-19 CFRS

A. Dataset

To employ the tools from mediation analysis outlined in IV to
better understand the influence of age on COVID-19 CFRs, we
curated a dataset of confirmed cases and fatalities by age group
(0–9, 10–19, etc.) from 11 countries (Argentina, China, Colom-
bia, Italy, the Netherlands, Portugal, South Africa, Spain, Swe-
den, Switzerland, and South Korea) and the Diamond Princess
cruise ship, on which the disease spread among passengers
forced to quarantine on board [27]. The dataset includes 756 004
cases and 68 508 fatalities (total cumulative CFR of 9.06%), re-
ported either by the different countries’ national health institutes
or in scientific publications. The selection of countries is based
on availability of suitable data at the time of writing.5 Where
available, we included several reports from the same country,
e.g., for Italy and Spain in weekly intervals. The data and our
analysis (in form of an interactive notebook) are provided in
the supplement and will be made publicly available. The exact
sources and several additional figures and tables can be found
in Appendices E and F.

B. Tracing Causal Effects Over Time

First, we investigate the temporal evolution of direct and
indirect (age-mediated) causal effects on fatality by expanding

5Unfortunately, conventions on how to group patients by age vary across
countries: e.g., Belgium, Canada, France, and Germany do not consistently use
ten-year intervals; others, such as the US, use different groupings (0–4, 5–14,
etc.). For some countries (e.g., Brazil, Russia, Turkey, and U.K.), we did not
find demographic data.
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Fig. 3. Evolution of TCE, NDE, and NIE of changing country from China to Italy on total CFR over time. We compare static data from China [4] with different
snapshots from Italy reported in [5]. The direct effect initially was negative, meaning that age-specific fatality in Italy was lower; however, it changes sign around
mid-March when an overloaded health system in northern Italy was reported [3].

on the comparison from II. The result of tracing TCE, NDE, and
NIE of changing from China to Italy over a period of 11 weeks
using (approximately) weekly reports from the work in [5] is
shown in Fig. 3. Note that case and fatality numbers for China
remain constant in the figure, so any changes over time can be
attributed to Italy.6

We find that the TCE—which measures what would happen to
the total CFR if both CFRs by age group and case demographic
were changed to those from Italy—is positive throughout, re-
flecting a higher total CFR in Italy. It increases rapidly from an
initial 2.2% to 9.5% over the first three weeks considered, and
then continues to rise more slowly to 11.4%. This indicates that
the difference between the two countries’ total CFR becomes
more pronounced over the time. In order to understand what
drives this difference, we next consider the direct and indirect
effects separately.

The NDE—which captures what would happen to the total
CFR if the case demographic was kept the same, whereas only
the approach (CFRs per age group) was changed— is negative
at first, meaning that the considered change in approach would
initially be beneficial, consistent with the lower CFRs in each age
group shown in Fig. 1. However, at a turning point around mid-
March, the NDE changes sign: beyond this point, switching to the
Italian approach would lead to an increase in total CFR. While we
can only speculate about the precise factors that came together
in producing this reversal in NDE, it seems worth pointing out
that an overwhelmed healthcare system “close to collapse” in
(northern) Italy was reported during that very period of early to
mid-March [3]. The NDE then keeps rising steeply until April
before gradually flattening off, similar to the TCE.

6At the time of writing, not many new cases have been reported from China
since the study of Wu and McGoogan [4].

The NIE—which measures what would happen to total CFR if
the approach was kept the same, whereas the case demographic
was changed to that in Italy—on the other hand remains largely
constant over time, fluctuating between 3% and 3.5%, indicating
that the case demographic in Italy does not change much over
time. Its large value of over 3% means that simply changing the
case demographic from China to that in Italy would already lead
to a substantial increase in total CFR, consistent with the larger
share of confirmed cases amongst the elderly in Italy shown in
Fig. 1.

In summary, while indirect age-related effects considerably
contribute to differences in total CFR—especially initially, when
the instance of Simpson’s paradox from II is reflected in the
opposite signs of NDE and NIE—it is mainly the direct effect that
drives the observed changes over time.

C. Comparison Between Several Different Countries

We now leave the specific example of China versus Italy
aside and turn to a comparison of causal effects between the
12 countries (including the Diamond Princess) contained in our
dataset. All pairwise effects on total CFR (in %) of changing
only “approach,” i.e., the CFRs by age group, (NDE; left) or case
demographic (NIE; right) from a control country (columns) to a
treatment country (rows), are shown in Fig. 4.

For ease of visualization, the order in which countries are
presented in Fig. 4 was chosen according to their average effect
as a treatment over the remaining countries as control (i.e., by
the mean of rows) for NDE and NIE separately. This allows to read
off trends about the effectiveness of different approaches and the
influence of the case demographic (subject to limitations, such
as, e.g., differences in testing, which we discuss further in VI).
In the case of NDE, for example, the Diamond Princess, China,
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Fig. 4. NDEs (left) and NIEs (right) for switching from the control country (columns) to the treatment country (rows). Numbers show the change in total CFR in
percentage, i.e., negative numbers indicate that switching to the treatment country’s approach, i.e., its CFRs by age group, (NDE) or case demographic (NIE) would
lead to a decrease in total CFR. Countries are ordered by their average effect as a treatment country (NDE or NIE) over the remaining 11 data points as a control.

Portugal, and South Korea compare favorably to most others in
terms of their approaches, whereas the Netherlands, Sweden,
and Italy occupy the bottom end of the range. In the case of NIE,
South Africa, Colombia, and Argentina benefit most from their
case demographic, whereas Spain, the Netherlands, Italy, and
the Diamond Princess are particularly adversely affected by it.

Notably, there is no significant correlation between countries’
ranking by NDE and NIE (Spearman’s ρ = 0.04 and p = 0.9),
suggesting that a country’s approach and case demographic may
be largely unrelated. While some countries, such as South Korea,
Switzerland, the Netherlands, and Italy, take almost the same
place according to both rankings of particular interest are those
countries for which rankings by NDE and NIE differ most. Other
than for the Diamond Princess—which due to small sample
size and high testing rates constitutes an illustrative special
case that we discuss further in VI—the case of high ranking
(rk) in terms of NDE and low ranking in terms of NIE is most
pronounced for Spain (rkNDE − rkNIE = −4), Portugal (−3), and
China (−3). This suggests that for the case of Spain, the high total
CFR may, at least in parts, be attributed to an unfavorable case
demographic, whereas the approaches (age-specific fatality) of
China and Portugal may be even better than suggested by their
(already comparatively low) total CFRs. Conversely, countries
that rank considerably higher in terms of NIE than NDE include
Colombia (+7), South Africa (+6), and Argentina (+5). These
countries’ low total CFRs may thus wrongly suggest a very
successful approach while the low total CFR may actually, at least
in parts, be due to an advantageous case demographic—again,
subject to caveats, such as differences in testing, see VI for more
details.

Noting that South Africa, Colombia, and Argentina are also
the three youngest amongst the considered countries in terms of
median age, we computed the Spearman correlation between the
ranking of countries by NIE and by their median age and found
a strong correlation between the two (ρ = 0.94, p = 7× 10−6).

This indicates that for the countries considered, the case demo-
graphic is predominantly determined by the age distribution of
the population, and suggests that countries seem not to make
(effective) use of strategies, such as, e.g., age-specific quaran-
tines.

As a further investigation into the relation between direct and
indirect effects on COVID-19 fatality, we find that, of the 132
ordered pairs of distinct countries, 64 exhibit opposite signs of
NDE and NIE (as for the example of Simpson’s paradox in II, see
also dates from early March in Fig. 3), meaning that comparing
countries in terms of total CFR may not give an accurate picture
of the relative effectiveness of two countries’ approaches in
those cases. Overall, pairwise NDEs and NIEs are only weakly
but significantly correlated (Pearson’s r = 0.17, p = 0.04), as
shown in Fig. 5.

VI. LIMITATIONS AND FUTURE WORK

In this article, we have taken a coarse-grained causal model-
ing perspective considering the variables country C, age group
A, and case fatality F , which are reported in the context of
COVID-19 CFR data. This view abstracts away many potentially
important factors (some of which we named in III) along the
paths of the assumed causal graph. A strength of this approach
is that it allows for consistent reasoning about age-mediated and
nonage-related effects within the assumed model in situations
where the data does not support a more fine-grained analysis.
On the other hand, any conclusions must be interpreted within
this coarse-grained view: we have thus collectively referred to
various country-specific influences on fatality as “approach.”

A. Considering Additional Mediators

It is safe to assume that the virus is ultimately agnostic
to the notion of different “countries” and that the influence of
country on fatalityC → F is not actually a direct one, but instead
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Fig. 5. Scatter plot of NIE versus NDE between all 132 pairs of distinct
countries: we find a weak but statistically significant positive correlation (see
plot title).

mediated by additional variables Xi, as illustrated in Fig. 6
(left). Candidates for such additional mediators Xi include, e.g.,
nonpharmaceutical interventions and critical healthcare infras-
tructure. We believe that many questions of interest regarding
the COVID-19 pandemic can be phrased as path-specific causal
effects involving such mediators, e.g., “What would be the effect
on total CFR if countryC1 bought as many ventilators as country
C2?” Assuming more fine-grained data will become available as
the pandemic progresses, extending our model with additional
mediators and investigating their effects by building on the
tools described in IV is a promising future direction to deepen
our understanding about which factors most drive COVID-19
fatality.

B. Testing Strategy and Selection Bias

An important potential limitation of our approach (or, more
fundamentally, of CFR data) is that we only consider confirmed
cases, i.e., patients who tested positively for COVID-19. We
can make this explicit in our model by including test status T
as additional variable. Our data are then always conditioned on
T = 1, as illustrated in Fig. 6 (right). Since who is tested is
not random, but generally depends both on a country’s testing
strategy and a patient’s age (e.g., via severity of symptoms),
reflected by the arrows {C,A} → T , this results in a problem
of selection bias [28]. This issue is particularly clear for the
Diamond Princess on which “3063 PCR tests were performed
among the [3711] passengers and crew members. Testing started
among the elderly passengers, descending by age” [27]. As a
result of such extensive testing, the proportion of asymptomatic
cases on board was very high (318 out of 619 detected cases),
leading to low CFRs as manifested in the negative NDEs for the
Diamond Princess as treatment in Fig. 4. This rate of testing is
presently not feasible for countries with millions of inhabitants.
Since testing capacities differ across countries, the reported CFRs
may thus often not be comparable. Building on recent (causal)
work on recoverability from selection bias may help address this
aspect of the problem [29], [30].

A second source of bias may stem from the choice of countries
included in our dataset: we only considered countries that report

Fig. 6. (Left) Direct effect C → F is likely mediated by additional variables
Xi. (Right) Testing strategy may introduce selection bias, since CFR data
implicitly conditions on having tested positive, represented by the shaded T .

age-stratified CFRs—those might be particularly affected by the
pandemic. The cumulative CFR of 9% is thus likely inflated by
such selection processes. An additional problem is the delay
between time of infection and death: to correct for this, fatalities
should be divided by the number of patients infected at the same
time as those who died, i.e., excluding the most recent cases
[31], which requires estimating the incubation period.

C. CFR Versus Infection Fatality Rate (IFR)

To overcome such testing and delay issues, one should ideally
instead use the (delay-corrected) IFR, defined as the ratio of
fatalities over all infected patients, including asymptomatic
ones. However, this requires estimating the number of unde-
tected cases based on specific modeling assumptions (which may
not hold in practice, thus potentially introducing additional bi-
ases) for each country or region separately, and consequently, we
are only aware of very few estimates of age-stratified IFRs (e.g.,
[27], [32], [33]). Our analysis may be adapted for IFR data as
well though, see Appendix VIII-C for more details.

VII. DISCUSSION

The problem of CFRs is a compelling example of Simpson’s
paradox, which brings to bear a core method of AI (causal
reasoning) on a COVID-19 problem. We would like to place
this in a broader context by discussing additional links between
Simpson’s paradox and AI, and contributions of AI in the
ongoing pandemic.

A. Simpson’s Paradox in the Context of AI

We have aforementioned examples of Simpson’s paradox
in college admission policies [26] and epidemiology [10]. In
addition, it has been observed that the paradox may occur in
many other real-life contexts [34], [35], thus making its un-
derstanding relevant to the field of artificial intelligence, com-
monsense reasoning, and in the study of uncertain reasoning
systems in general. Furthermore, the reversal in Simpson’s
paradox becomes critical in decision making situations [12],
[36], where an agent needs to move beyond a merely predictive
setting and reason about the effect of actions or interventions.
As already discussed, the paradox can be “resolved” in different
ways depending on the causal model (e.g., whether covariates
take the role of confounders or mediators) and the causal query
of interest to the agent (e.g., whether a direct, indirect, or
TCE is to be estimated). If variables that are relevant for a
correct resolution of the “paradox” are not directly observed, this
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can be particularly problematic, and causal reasoning therefore
bears nontrivial conceptual and algorithmic implications, e.g.,
in sequential decision making contexts, such as the multiarmed
bandit problem (see [37], [38]).

Since Simpson’s paradox demonstrates that opposite conclu-
sions can be reached depending on how the data are aggregated
or stratified, it also has close connections to clustering [39], [40],
another core AI technique, which is especially challenging for
high-dimensional data as is commonplace in the age of big data.
Other seemingly paradoxical reversals, related to Simpson’s
paradox, can also occur in the context of games; for example,
in Parrondo’s paradox, a coin flip game with a positively bi-
ased outcome can be generated from the combination of two
negatively biased processes [41], [42].

B. AI Against COVID-19: A Causal View

Given the global disruption caused by COVID-19, there is a
growing body of work trying to leverage AI and data science to
help curtail and combat the ongoing pandemic, e.g., in contact
tracing [43], [44], symptom screening [45], risk scoring [46],
vaccine development [47], or diagnosis from CT [48] or X-
ray [49] imaging—see, e.g., [50]–[52] for reviews. Due to typi-
cally small sample sizes and population differences, however,
such applications of AI need to be critically assessed with
respect to transparency and generalizability to different cohorts
of individuals [53]. Indeed, a recent meta-analysis of 232 models
for diagnosis, prognosis, and detection of COVID-19 concluded
that “almost all published prediction models are poorly reported,
and at high risk of bias such that their reported predictive
performance is probably optimistic” [54].

The question whether a machine learning model will gener-
alize outside its training distribution is closely linked to some
of the concepts from causality discussed in this article and has
been studied in the causal inference literature under the term
“transportability” [55], [56]. If, as is common practice, the aim
is to maximize predictive performance on the available data,
then any trained model is encouraged to rely on “spurious”
correlations (e.g., due to unobserved confounding), which may
not generalize to different populations (e.g., different countries)
or modes of reasoning, such as reasoning about the outcome
of treatment interventions based on observational data. Causal
mechanisms, on the other hand, constitute stable (or invariant)
units, which are often largely independent of other components
of a system and should thus be transferable even if the distribu-
tion of some features changes [19], [57]. The aforementioned
reasoning cautions against blind use of supervised learning
techniques without regard to the underlying causal structure.
Indeed, we would argue that applications of AI techniques on
COVID-19 may often benefit from formulating a causal model
underlying the observed data (including potential population
differences), as done in some studies [58]–[60].

VIII. CONCLUSION

We have shown how causal reasoning can guide the interpre-
tation of COVID-19 case fatality data. In particular, mediation
analysis provides tools for separating effects due to different

factors, which, if not properly identified, can lead to misleading
conclusions. We exploited these tools to uncover patterns in the
time evolution of CFRs in Italy, and in the comparison of multiple
countries. To study age-mediated and age-unrelated effects on
CFR across different countries, we curated a large-scale dataset
from a multitude of sources.
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