
w
w
w
.t
he

-in
no

va
tio

n.
or
g

REVIEW
MetaCity: Data-driven sustainable development of complex cities
Yunke Zhang,1,14 Yuming Lin,1,14 Guanjie Zheng,2,14 Yu Liu,1 Nicholas Sukiennik,1 Fengli Xu,1 Yongjun Xu,3,4 Feng Lu,3,5 Qi Wang,6 Yuan Lai,7 Li Tian,7

Nan Li,8 Dongping Fang,8 Fei Wang,3,4,* Tao Zhou,9,* Yong Li,1,* Yu Zheng,10 Zhiqiang Wu,11 and Huadong Guo12,13

*Correspondence: wangfei@ict.ac.cn (F.W.); zhutou@ustc.edu (T.Z.); liyong07@tsinghua.edu.cn (Y.L.)

Received: July 15, 2024; Accepted: December 23, 2024; Published Online: January 16, 2025; https://doi.org/10.1016/j.xinn.2024.100775

ª 2024 Published by Elsevier Inc. on behalf of Youth Innovation Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Rapid urbanization poses challenges for sustainable development in complex cities.

- MetaCity leverages the extensive potential of data-driven methods to tackle challenges of urban complexity.

- MetaCity integrates the discovery of urban problems, simulation of urban operations, and decision-making processes to
optimize urban resource allocation.

- MetaCity presents significant implications across various applications for achieving Sustainable Development Goals.
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Cities are complex systems that develop under complicated interactions
among their human and environmental components. Urbanization generates
substantial outcomes and opportunities while raising challenges including
congestion, air pollution, inequality, etc., calling for efficient and reasonable
solutions to sustainable developments. Fortunately, booming technologies
generate large-scale data of complex cities, providing a chance to propose
data-driven solutions for sustainable urban developments. This paper pro-
vides a comprehensive overview of data-driven urban sustainability practice.
In this review article, we conceptualizeMetaCity, a general framework for opti-
mizing resource usage and allocation problems in complex cities with data-
driven approaches. Under this framework, we decompose specific urban sus-
tainable goals, e.g., efficiency and resilience, review practical urban problems
under these goals, and explore the probability of using data-driven technolo-
gies as potential solutions to the challenge of complexity. On the basis of
extensive urban data, we integrate urban problem discovery, operation of ur-
ban systems simulation, and complex decision-making problem solving into
an entire cohesive framework to achieve sustainable development goals by
optimizing resource allocation problems in complex cities.

INTRODUCTION
Our world is witnessing a rapid urbanization process. Estimates by the United

Nations (UN) suggest that over 70%of the global populationwill reside in cities by
2050, contributing tomore than80%of the global GDPwhile accounting formore
than 70% of global greenhouse gas emissions.1 The dynamic interactions be-
tween constantly increasing city dwellers and urban resources are giving shape
to a new form of cities,2–4 those that have to constantly balance the positive
and negative influences of economic, social, and ecological phenomena. For
instance, unequal distribution of monetary resources causes economic crises,
disrupting the financial pillar of cities and leading to social panic.5 Unconstrained
usage of energy resources produces substantial emissions, giving rise to climate
change and environmental risks, e.g., droughts, floods, and storms.6,7 In the face
of these devastating events, modern cities urgently call for sustainable develop-
ments,8 namely, efficient usage and allocation of urban resources tomeet major
economic, social, and environmental challenges,9–11 aligning with the UN’s Sus-
tainable Development Goal (SDG) 11 “Making cities and human settlements in-
clusive, safe, resilient and sustainable.”1 In response to this need, both govern-
ments and scientists are advocating a unified urban science framework for
urban sustainability.2,12–17

Urban science studies regard the city as a complex system that grows and
develops based on a variety of forces.18 Urban areas are characterized by a
high degree of strong nonlinear interactions among their physical, social, eco-
nomic, and ecological elements. For instance, citizens travel in the city, interact-
ing with electricity, transportation, communication, and water networks, con-
necting with other individuals and forming the overall basis for a society.
Complex cities are growing and self-organizing under these dynamic interac-
ll
tions,19–21 requiring accurate predictions and decisions to achieve sustainabil-
ity. The resilient behaviors of urban areas during the recent pandemic and nat-
ural disasters have also witnessed the complexity of cities. The unique feature
of complex cities is that they are dynamic, interdependent, and nonlinear, which
are qualities that are hard to solve with traditional urban science methods, pro-
posing substantial challenges to urban sustainability. First, the dynamic and
nonlinear properties of complex cities require efficient and effective solutions
for urban sustainability. For example, the propagation of disturbances through
the whole complex systems, and how cities are resilient to them, are difficult to
model by simple statistical approaches, as seen in the COVID-19 pandemic’s
impact on health, social, and infrastructure networks.18,22 Fast-changing de-
mands and consumption behaviors necessitate newmethods that can instruct
the allocation of resources under an enormous search space of optimization.23

Therefore, achieving urban sustainable developments requires multi-disci-
plinary, multi-scale, andmulti-factormodeling, which goes beyond traditional ur-
ban studies. Second, traditional research relies on limited data. For instance,
research on sustainable planning is often limited to a few urban land use
cases,24 and studies on energy consumption are constrained to non-represen-
tative households.25 These challenges of complexity call for a paradigmshift for
advancing global urban sustainability, which must tackle the dynamic, strongly
interdependent, and nonlinear attributes appropriately.
Recently, the burgeoning availability ofmassive data fromdiverse urban sour-

ces has made data-driven approaches increasingly vital for exploring and ad-
dressing urban complexity.26 Advances in computing, simulation, and deci-
sion-making within data science and artificial intelligence (AI) now allow
researchers to probe complex systems in unprecedented ways.27,28 For
instance, data-driven methods can characterize complex interdependencies,29

simulate long-term evolution of complex systems,30 and further control and
manipulate complex systems,31 providing substantial opportunities for imple-
menting data-driven methods toward achieving the sustainable development
of complex cities. However, the design of data-driven methods still faces chal-
lenges. One major challenge is appropriately combining various urban data
sources for discovering sustainable development problems in complex cities.
This can be difficult due to multi-modal, multi-scale datasets, and insufficient
missing data caused by the limited precision and granularity of sensing and
observation technologies. Furthermore, developing sustainable solutions for
complex urban challenges demands a systematic approach that encompasses
problem identification, simulation of potential solutions, and implementation of
effective decision-making strategies. Achieving this comprehensive pathway is
intricate and necessitates enhanced research design that integrates diverse
data-driven approaches, as opposed to the individual steps that they are typi-
cally addressed by existing methodologies.
In this review article, we provide an overview of current research progress

on urban sustainability and conceptualize MetaCity, a unified framework
that explores data-driven approaches to achieve sustainable developments
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Figure 1. The overall framework of MetaCity Facing
complexity challenges, the MetaCity framework uti-
lizes large-scale urban data to develop data-driven
methods that facilitate various applications aimed at
achieving Sustainable Development Goals.
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of complex cities (Figure 1). Governed by instructive SDGs, the complexity of
urban environments poses significant challenges to optimizing limited ur-
ban resources. The large-scale urban data serve as the foundation of
MetaCity, supporting the modeling of complex interactions in cities. Within
this framework, researchers use urban data to investigate complex prob-
lems, simulate operations of urban complex systems, and test the impacts
of various solutions on complex decision-making processes, thereby facili-
tating optimal resource allocation and various applications that support sus-
tainable developments in urban systems. The purpose of this paper is to pre-
sent a novel pathway to achieving urban sustainability by addressing the
challenges posed by complexity as a pivotal breakthrough. The MetaCity
framework has the potential to assist cities in making well-informed deci-
sions and optimizing resource allocation more effectively, thereby bearing
substantial implications for SDG 11 across diverse perspectives including
urban planning, energy, public health, economy, etc.

The remainder of this review article is organized as follows. Core idea and
fundamental problem synthesizes the core concept and research challenges
of the MetaCity framework. Goals of sustainable urban development under
MetaCity summarizes five potential SDGs within the MetaCity framework.
Featured methodology of MetaCity reviews the key methods employed within
MetaCity to address SDG challenges. Applications of MetaCity provides specific
case analyseswith empirical data and highlights key potential applications under
the MetaCity framework. Challenges and future directions explores open ques-
tions and envisions future directions for research. Finally, the conclusions are
summarized.

CORE IDEA AND THE FUNDAMENTAL PROBLEM
A city is a complex system that involves miscellaneous resources, e.g., land,

roads, electricity, and water.32 Equipment such as machines or vehicles in the
city compete for the resources to function normally, and humans compete for
these resources to achieve higher living standards. While the urban population
is growing fast in various locations worldwide, the resources in cities are always
limited and sometimes non-renewable. Therefore, the ultimate problem for a city
is how to use limited resources tomeet the needs of the presentwithout compro-
2 The Innovation 6(2): 100775, February 3, 2025
mising the ability of future citizens to meet their
own needs, i.e., urban sustainable development.

However, as mentioned above, the complexity
of the city presents considerable challenges
when discussing resource allocation. The dy-
namic and nonlinear nature of urban systems
means that the independent optimization of a
single kind of resource for a single component
can lead to unwanted outcomes in other compo-
nents at other times, which cannot be resolved
without introducing complex systems theories
such as operations research, cybernetics, chaos
theory, and dissipation theory, etc. In response to
this urgent need, MetaCity framework is pro-
posed, aimed at using the power of computing
on massive urban data to solve the complexity
of resource utilization and allocation for sustain-
able development. The ability to realize such a
framework comes from the increasing amount
of urban data available, which enables tech-
niques such as statistical modeling, machine
learning, and real-time simulation.

Thename “MetaCity” comes fromour expecta-
tion that this framework can transcend tradi-
tional understandings of complex cities to
achieve SDGs. Since Patrick Geddes introduced the theory of evolution to urban
planning over 100 years ago,33 the idea that a city is a living organism capable of
evolution has inspired innumerable insights and converged on the complexity
theory of cities in the early 21st century.34 The prefix “Meta-” signifies our aim
to understand cities not only at the surface level but also to uncover the under-
lying dynamics and interconnections that shape their functioning. We consider
the city to be a living organism, wherein MetaCity can highly optimize coordina-
tion and solve complex problems with a developmental perspective through
rational analysis, thereby bringing about urban intelligence and a sustainable
future.
For the core idea of the MetaCity framework (Figure 2), sustainable develop-

ment serves as the primary goal and scope that motivates the initial idea, urban
data provides the essential opportunity and foundation to conduct relevant
research, and the complexity of the city highlights where the main challenges
lie and shapes the solution.35 Therefore, the framework is realized through the
interaction of these three concepts. Utilizing massive urban data can allow us
to discover existing or potential problems for urban sustainable development,
thereby serving as our main research interest. The need for sustainable develop-
ment leads to an emphasis on resource allocation under complex systems,
which is the primary theme of the research content in MetaCity. Furthermore,
to respond to the complexity of massive urban data, data-driven approaches
are accentuated as the main methods of the framework. Therefore, MetaCity
is a unified framework for optimizing the utilization and allocation of urban re-
sources in complex cities through data-driven approaches to ensure sustainable
development.

The research object and scope of MetaCity
Taking into account urban sustainable development as the ultimate goal, we

dedicate special emphasis on the variety of urban resource needs. MetaCity
takes urban resources as the primary research object, including but not limited
to land, roads, housing, electricity, food, water, andminerals. Sustainable develop-
ment emphasizes “meeting needs of the present without compromising the abil-
ity of future generations to meet their own needs” so that MetaCity will be con-
cerned with issues directly related to resource allocation and utilization: where
www.cell.com/the-innovation
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Figure 2. Core idea of theMetaCity frameworkUnder Sustainable Development Goals in
complex cities, the MetaCity framework emphasizes the utilization of urban data and
data-driven approaches to discover and solve resource allocation problems.
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are the existing resources, what are the existing needs, whether the current
resource allocationmeets the needs, andwhether the current situation is sustain-
able? While allocation and utilization of resources are placed at the core of the
framework, the acquisition, flow, exchange, and regeneration of urban resources
should also be included to provide a full picture. Considering that the processes
of resource allocation are often closely related to human activities, we also
take into consideration human activities related to generating, distributing,
exchanging, and consuming urban resources. Generally speaking, the framework
is developed around allocating and utilizing urban resources and expanded to
other related aspects.

We emphasize that the scope of MetaCity is not limited to academic discov-
ery but also includes practical applications critical for urban sustainability. For
instance, the famous Boston Big Dig Project36 that consumes extremely large
resources is an extreme case. The project cost 22 billion US dollars and
450,000 cubic meters of cement, enough for three round-trip pedestrian pave-
ments between San Francisco and Boston, showing what happens in practice
if an urban project is not adequately planned and assessed. Therefore,
MetaCity proposes to discuss two kinds of problems: city science problems
and urban computing problems. The former problems focus on revealing the
laws of urban operation, while the latter problems focus on making accurate
real-time predictions and decisions for sustainable development. The strong
connection to practice ensures that the framework brings tangible improve-
ments to urban life.

The essential difference between MetaCity and traditional urban science
research

As an emerging framework, MetaCity has several essential differences
compared with traditional urban science research, which arise directly from
the approach toward complexity and the abundance of urban data.

Multi-modal data-driven methods for complex cities. As a complex sys-
tem, almost every problem in a city involves multiple processes. For instance,
traffic optimization involves the consideration of the urban function zones, traffic
flow, road network, pedestrians, and environmental protection. Thus, resolving
these city problems needs comprehensive consideration of multiple aspects
and deep investigation into the corresponding data.

Traditional urban research and management are largely based on pre-defined
assumptions and theories. Generally, city managers and researchers predict the
short-term and long-term evolution of cities, and make decisions for cities ac-
cording to classical physical laws. For instance, humans travel to different loca-
tions following the gravity law37,38 and the attractiveness of urban locations fol-
lowsZipf’s law.38 On the one hand, these classical lawsmay fail to fit the real data
under different scenarios due to their oversimplified assumptions. On the other
ll
hand, combining the laws fromdifferent aspects to solve a problemwill introduce
heavy compound errors.
Unlike traditional methods, MetaCity will utilize real multi-modal data rather

than model-estimated data. Due to the aggregation of the vast amount of urban
data, it becomes possible that cities can be predicted, modeled, and managed
better viamassive data and computing. Comparedwith recent success in natural
language processing and game fields, e.g., AlphaGo,39 Gato,40 ChatGPT,41 city
applications involve multi-modal data and modeling of much more complex
mechanisms.
Scale changes the problems in complex cities. Different from other areas in

which solutions to small-scale problems can be easily extended to large-scale
problems, scale should be emphasized more. This is because the increasing
scale will change the problem radically, and a small expansion could cause the
emergence of unexpected behaviors as the scale increases.42,43

Traditional urban research and engineering are primarily based on the
study of individual components, overlooking the nature of complexity
within the urban system. For instance, traffic signal control has been inves-
tigated for decades in civil engineering. Previous studies have created
many advanced single-intersection traffic signal control methods to mini-
mize delay. However, when it comes to the problem of controlling one
thousand correlated traffic signals, the problem is not only about mini-
mizing the delay, but also about keeping the road network working nor-
mally. This requires many more factors to be considered, e.g., vehicle buff-
ering and bottlenecks in the road network.
On this scale, the key question is to obtain the synchronized traffic observation

from all intersections and make traffic signal operations, respectively. Even a
basic traffic signal algorithm (e.g., dividing the green time according to the traffic
ratio) can work decently given the observed data, again illustrating the impor-
tance of large-scale urban data. Therefore, MetaCity needs to leap beyond tradi-
tional reductionist approaches and embrace the emergent characteristics of
complex systems. By incorporating prescriptive and generative models,
MetaCity can effectively solve urban tasks at different scales, adapting solutions
that are responsive to theuniquedynamicsand interactionsof city environments.
Simulation and computing for complex cities. Conducting experiments

directly on thewhole city is usually either unfeasible or not worthwhile. Therefore,
an effective method is to establish a model according to the actual urban envi-
ronment and then use it to conduct experiments, compare different conse-
quences, and choose feasible solutions.
Traditional urban research often fails to explore the ability of simulation

methods fully. For example, coarsermodels such as cellular automaton are often
used as the proxy for urban growth,44,45 and simulation at the building level, e.g.,
energy consumption, is extrapolated out to represent the whole city.46 Oversim-
plification of the urban context, failure to account for human-related factors, and
lack of integrated approach for different components can all undermine the fidel-
ity of the simulation.
MetaCity emphasizes the ability of urban computing and simulation. Machine

learning, especially generative AI,47 has greatly advanced models’ expressive ca-
pabilities and enabled urban simulations closer to the urban context, such as the
advancement by reinforcement learning in transportation flow48 and traffic
signal control.49 Meanwhile, accurate and real-time urban data help to capture
actual situations to calibrate simulations and develop strategies directly, e.g.,
the school closure triggering mechanism of COVID-19 based on city-level real
data.50 Advancement of computing power and infrastructure will shift the
research paradigm, making accurate computing and simulation much more
important in the near future.
GOALS OF SUSTAINABLE URBAN DEVELOPMENT UNDER MetaCity
As a complex system, realizing sustainable urban development involves

various urban components, including people, housing, energy, transportation,
ecology, healthcare, etc. Although the urban components involved differ, the
core characteristics of sustainable requirements are highly interrelated, and
the solutions are often similar. For example, the official outcome target of SDG
11.1 mentions safe and affordable housing and essential services, while Target
11.2 concerns safe, affordable, and accessible transport systems. Both targets
canbe used to describe the city’s inclusiveness, and the potential solutionswould
include recommendations about appropriate resource tilting toward vulnerable
groups. Considering the consistency between these targets, we summarize
The Innovation 6(2): 100775, February 3, 2025 3



Figure 3. Goals of urban sustainable development and corresponding challenges that can be solved with MetaCity Building upon the characteristics and challenges of theMetaCity
framework and urban data, five goals are extracted: efficiency, greenness, resilience, inclusiveness, and safety.
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five main abstract goals across various urban components and sustainable tar-
gets: Efficiency, Greenness, Resilience, Inclusiveness, and Safety.

In implementing these abstract and interconnected goals, the city, a complex
system with nonlinear and real-time responses, may experience many unex-
pected impediments. For example, urban greening projects often serve to
improve the health of residents, but the spatial imbalance of greening caused
by various conditions can also contribute to green gentrification and increase
inequality and environmental injustice. Aside from such unexpected and un-
wanted results, similar predicaments could have also been raised in any other im-
plementation stage, covering the situation description, impact evaluation, and
reaching a consensus. MetaCity offers new possibilities to estimate the demand,
and find and allocate resources that are both efficient and beneficial (Figure 3).
We review the fivemain goals, analyze the challenges that they help to overcome,
and the specific ways in which MetaCity can help.

Efficiency
Efficiency generally refers to the ability to accomplish a task or achieve a goal

using the fewest of resources possible for themaximumoutput given an input. In
sustainable urban development, as emphasized in SDG Target 11.b, efficiency
means allocating urban resources effectively and efficiently tomaximize produc-
tion, minimize waste, reduce unfavorable impact, and ensure long-term viability.

Efficiency has been a long-standing focus in achieving sustainable urban
development.51,52 Various types of efficiency indicators and models have
been developed to evaluate and compare the different kinds of urban effi-
ciency, including land use,53 natural resources,54 energy efficiency,55 trans-
port policy,56 etc. However, these analyses are often incomplete and
limited, due to the quantity and timeliness of statistical data and complex
mutual constraints among sectors.57,58 Furthermore, it is usually hard to
convince stakeholders to take practical actions for efficiency improvement
under insufficient collaboration.59

Furthermore, MetaCity offers new possibilities to enhance efficiency in sus-
tainable urban development. With emerging IoT technologies, acquiring, inte-
grating, and analyzing tremendous heterogeneous urban data generated by sen-
sors, vehicles, buildings, and humans can be made much easier. The rapid
development of data-driven AI methods also enables the exploration of phenom-
ena and rules in complex urban systems,60 and the centralized platform enables
communication and information sharing among different stakeholders by
providing a comprehensive view of the situation and ensuring reliable real-time
simulations.
4 The Innovation 6(2): 100775, February 3, 2025
Greenness
Modern cities consume vast amounts of energy and resources, generate a

disproportionate amount of waste and pollution, and endanger the health and
well-being of urban residents,61,62making greenness oneof the core goals of sus-
tainable urban development.63 Although it is often used as the synonym for sus-
tainability, the goal of greenness still shows conceptual specificity by viewing the
urban environment as the main entry point for urban issues. Here, we examine
two aspects involved in the greenness goal: the greening of urban space and
the greening of urban life. The first one emphasizes providing accessible green
space,64,65 protecting urban ecological systems,66–68 and retrofitting green infra-
structure or nature-based solutions,69,70 while the second one focuses on pro-
moting clean production,71,72 circular economy,73,74 energy conservation,75 and
reducing pollution from production and consumption.76,77 Both of these can
result in the promotion of residents’ health and well-being.
Some common vital steps exist despite considerable aspects and possibilities

to reach the greenness goal. The first is to match the evidence and data across
sectors and facilitate the integration of different indicators to develop linked
indices for key sectors such as public space, transportation and energy.78–82

Then comes the decision-making and priority setting based on health risk and
environmental data, which aims to incorporate factors and disciplines that influ-
ence urban policy.83–85 The last is to introduce community participation and inte-
grate participatory procedures in policy formulation and implementation, essen-
tial to counter green gentrification for environmental justice.86–88

The MetaCity is of great importance in helping to achieve SDG Target 11.7
“provide universal access to green spaces.” It can monitor real-time environ-
mental data such as air and water quality, energy consumption, and waste man-
agement.89 These data can then be used to make informed decisions on energy
management, waste reduction, and resource utilization based on simulation. In
addition, MetaCity can facilitate the integration of various data sources into the
system, whichmeans a lot in evidence and datamatch across sectors.90 Finally,
this technology also helps to promote an unbiased, open, and transparent partic-
ipatory decision-making process under the premise of careful application of AI
technology.89,91

Resilience
Considering the continuous increase in urban size, population diversity, and

complexity, the potential damages from future extreme events and disasters in-
crease proportionally. Besides natural disasters such as earthquakes, typhoons,
and floods, cities face social-economic shocks such as economic crises, public
www.cell.com/the-innovation
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health events, fires, and terrorist attacks.92 Furthermore, the lack of infrastruc-
ture, insufficient food and cleanwater supply, andunemployment areall enduring
challenges to cities, especially in developing countries.93 These shocks and ten-
sions put resilience at the heart of sustainable urban development.

Resilience refers to the ability of the system to resist, recover, adapt, and trans-
form under external disturbances and pressure.93–95 Mitigating the impact of di-
sasters through land use planning and risk mitigation strategies constitute the
complex framework of urban resilience,96 including completing post-disaster re-
covery and reconstruction with the cooperation of local communities and gov-
ernment agencies,97,98 and preparing for future hazards through transforming
political structures and local social networks.99,100

Despite the broad coverage of urban resilience characteristics, few procedures
and operational tools exist to evaluate and improve urban resilience in an inte-
grated way.94 When faced with emergencies, it is difficult to make reasonable
resource allocation and emergency response without sufficient data and timely
analysis as support.101,102 Even after the shock, making an optimal repair plan
based on intuition or simple principles for complex systems such as roads
and power grids is almost impossible,103–105 and the social awareness and insti-
tutional transformation needed to deal with chronic stress are also based on
open and transparent evidence.99,106

MetaCity has special advantages in tackling these problems. Applying rich ur-
ban data to make early warnings and predictions before shocks is an essential
manifestation of MetaCity on urban resilience, such as using remote-sensing
techniques to predict landslides,107 or using mobile phone data to early warning
emergencies.108 When a disaster occurs, the real-time collection and integration
of urban data can also help relief organizations to monitor human movements
and reach people in need quickly.109 The AI-powered MetaCity can also provide
real-time decision-making suggestions in simulated and actual scenarios
through reinforcement learning and other methods.110–113 Compared with tradi-
tional slow and time-consuming analysis and judgment by humans, such auto-
mated mechanisms are vital when dealing with emergencies that require rapid
response114,115 or in the face of complex and coordinated cascading sys-
tems.116,117 Furthermore, MetaCity can give play to its optimization features
for long-term land use planning118–120 and short-term deployment of disaster
relief materials,121,122 promoting urban resilience without additional resource
investment.

Inclusiveness
Inclusiveness is the first description of cities and communities in SDG 11

“make cities and human settlements inclusive, safe, resilient and sustainable.”
To ensure that cities can provide opportunities and better living conditions for
all residents, it is essential to understand that inclusive cities mainly involve
spatial, social, and economic factors.123 Spatial inclusion refers to affording ne-
cessities such as housing, water, and sanitation, since access to essential infra-
structure and services is a daily struggle formany disadvantaged households.124

Social inclusion refers to equal rights and participation of all, including the most
marginalized urban poor, which prevents incidents of social upheaval in cities.125

Economic inclusionmeans creating jobs andallowing all urban residents to enjoy
the benefits of economic growth.126 It should be clear that, while the goal of re-
silience focuses on the robustness of the city’s infrastructure and services, the
goal of inclusiveness emphasizes social equity and the fair distribution of bene-
fits across all communities.

To advance inclusiveness in cities means achieving a fair and equitable distri-
bution of spatial, social, and economic resources, respectively. This includes the
pursuit of fair distribution and utilization of resources and more emphasis on
reasonable preference for vulnerable and underrepresented groups from the
comprehensive perspective of history and social reality. A deep understanding
of the conditions of urban residents and spatial configuration is necessary,127,128

so as to increase the participation of local communities in the decision-making
process and avoid subjective bias as much as possible.129

As a data-driven method, MetaCity can identify vulnerable populations and
vulnerable communities by detecting their social-economic status through
remote sensing andmobile phone data,130,131 and can further analyze and under-
stand their specific needs and challenges.132–134 Importantly, in the design of
MetaCity, it is crucial to incorporate public participation by integrating interfaces
at the input stage, aligning with SDGs’ emphasis on inclusive development. This
requires a deliberate inclusion of public participation features in both the techno-
ll
logical framework and institutional design to ensure that all community mem-
bers, especially vulnerable groups, can contribute to and influence decision-mak-
ing processes. On this basis, MetaCity can use predictive modeling to simulate
the impacts of different policies and programs, helping to develop targeted
ones and identify the most likely effective ones.135,136 Moreover, MetaCity can
facilitate community engagement and empowerment by providing platforms
and tools that allow vulnerable groups to participate in decision-making.137–139

By using such a data-driven and inclusive approach, MetaCity can help cities
create more inclusive spaces for vulnerable groups, identify and address their
specific needs and challenges, and provide opportunities for participation in de-
cision-making processes.

Safety
Global studies show that 60% of all urban residents in developing countries

have been victims of crime at least once over the past 5 years.140 The increased
crime, violence, and lawlessness during urbanization are exacerbated by corrup-
tion, the proliferation of weapons, substance abuse, and youth unemployment.
These insecurity factors restrict urban social and economic development in re-
turn, constantly jeopardizing opportunities and future development, posing a
challenge that will not be solved without a deliberate effort.
As UN-Habitat has pointed out in the Safer Cities approach,141 crime and

violence do not happen spontaneously, but are motivated by inadequate urban
environments.142 Namely, excluding somemembers of society from the benefits
of urbanization is the economic origin of crimes.143 At the same time, the lack of
political participation and the failure to promote inclusive policies creates a
breeding ground for social unrest.144 Furthermore, criminal justice systems
such as police, courts, and prisons play a crucial role in deterrence, but alone
they cannot offer sustainable governance.145 Urban safety must be considered
a right for all, and the long-term solutions to these social, economic, and gover-
nance problems depend on partnerships between local governments and other
stakeholders.146

The real-timemonitoring of the urban environment provided byMetaCity is an
excellent aid in preventing and fighting crime. Real-time monitoring of the occur-
rence of crime can help efficiently allocate police forces,147 promoting alternative
policing forms such as community policing,148 significantly reducing the cost of
tracking criminals,149 and establishing effective deterrence to prevent
crime.150,151 On the other hand, upgrading projects in the urban physical environ-
ment, such as slum upgrading, is one of the pillars of urban crime preven-
tion,152,153 and can benefit a lot from the accurate and sufficient urban data pro-
vided by MetaCity.154 Finally, community planning, managing urban streets and
public spaces, and community appropriation can help promote social integration
and citizenship values,155,156 all of which depend on open and inclusivemanage-
ment and decision-making. MetaCity can provide an open participation
approach, and expound and prove the effectiveness of various agendas, strate-
gies, and activities with its sufficient data and powerful simulation capabil-
ities.157,158 Overall, MetaCity will be a powerful tool to achieve the goal of urban
safety.

FEATURED METHODOLOGY OF MetaCity
The ability of theMetaCity framework to solve urban sustainable development

problems is one of the core guiding principles of its methodology. Here, we intro-
duce the advantage of data-intensive urban science techniques and review
recent progress in data-driven urban computingmethodologies for optimizing ur-
ban resources in complex cities.

Data-intensive urban science
The backboneof theMetaCity framework is the use ofmassive urban data and

advanced analytical tools that extract laws and rules of cities from these data.
Data-intensive urban science, MetaCity’s first featured methodology (Figure 4),
makes intense usage of various forms of real-time urban data to investigate ur-
ban problems. All further applications, including urban simulation, resource allo-
cation, and sustainable decisions, aremade based on data from various sources,
including sensor data, social media data, remote sensing data, administrative
data, web content, etc.159,160 Thus, the framework needs to gather and store
abundant data that can capture complex interactions and activities within cities
as the basis of its application on urban sustainable development. Size as well as
the dynamically changing nature of urban interaction data are key characteristics
The Innovation 6(2): 100775, February 3, 2025 5



Figure 4. Featured methodology of MetaCity Data-
intensive urban science emphasizes the use and
processing of urban data from various sources and
scales. Subsequently, methods under the data-driven
urban computing paradigm solve urban resource
allocation problems to achieve sustainability.
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of data-intensive urban science. The credibility and quality of collected data are of
great importance to solving urban sustainable development problems; therefore,
researchers should seek data with high temporal and spatial resolutions, partic-
ularly real-time and online urban data to support the framework.161–163 Real-time
data, such as traffic flows, interactions on social media, air quality, and electricity
consumption, all reflect the traces of urban functioning and the state of cities on
their path to sustainable goals. Therefore, the update of real-time and large-scale
urban data is an essential part of the MetaCity framework.

This data-driven approach allows MetaCity to discover real problems of
resource usage and allocation in the city from collected real-time data, which
consists of three stages. First, data of different temporal resolutions, spatial
resolutions, and representation forms are stored and merged on an appropriate
level. For instance, satellite image data are often recorded as RGB images of
grids in cities under certain resolutions, while demographic and administrative
data are collected based on administration areas defined by the government.
These data should be aligned carefully and correctly in the quest for accurate
estimations of urban resources. Second, merged data from various sources are
processed with statistical tools. This stage includes feature extraction from
mass trajectories and movement, graphic, audio, and video data, the transfor-
mation of time series data, the redistribution of demographic data on remote
sensing grids, etc.164,165 The processing procedure aims to provide more
contextual information on the distributions and dynamics of urban resources.
From the processed urban data, researchers can deduce urban laws that
uncover the development and scales of cities. For instance, the law of
human flows and mobility,38 and the scaling laws of urban facilities. Finally,
the processed data are utilized in data-driven urban computing tasks, which
are discussed in the following section. In general, data-intensive urban science
is the theoretical basis of the framework. We build a path linking multi-disci-
plinary real-time data from complex cities to inform urban computing tasks
in practice.

Data-driven urban computing
The data-intensive urban science emphasizes the use of large-scale real-time

urban data for urban sustainable development problems. Correspondingly, to
solve these problems under the scenario of complex cities, appropriate data-
driven urban computing methods are adopted in the MetaCity framework (Fig-
ure 4).Urban computing aims to learn reinforced knowledge fromheterogeneous
urban data efficiently with computational methods as the basis to provide urban
services.166 Here, we summarize three key classes of urban computingmethods
for addressing sustainable development problems in complex cities, namely pre-
diction, simulation, and decision.
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Prediction. Urban prediction tasks can be
viewed as a procedure for the discovery of com-
plex relationships in the city, such as how urban
infrastructures are resilient to disasters and how
pandemics spread throughout urban networks.
One important urban prediction problem is the
prediction of the unobserved amount of urban re-
sources. For instance, retrieving the actual car-
bon emissions or the real total traffic on roads
is time-consuming and thus inefficient. Estima-
tions of these metrics based on easily collected
data, including electricity and gas consumption,
remote sensing data, and parking data, are
feasible substitutes for downstream applica-
tions. However, accurate predictions are limited
as urban resourcesare influenced by complex ur-
ban factors. Traditional estimation and predic-
tion methods, such as time series forecasting
and statistical regression models, are effective but are limited when applied to
large-scale data or complex scenarios involving numerous interacting vari-
ables.167 These traditional methods often struggle to capture the intricate,
nonlinear relationships and dependencies that characterize urban systems.
Recent advances in deep learning have enhanced the accuracy and efficiency

of urban prediction tasks, particularly in scenarios involving large datasets and
complex variable interactions.28,168 Deep neural networks, known for their ability
to approximate complex functions, become central to urban prediction models.
These networks are often combined with spatiotemporal prediction models,
which are particularly vital in urban computing. Spatiotemporal models address
the need to predict phenomena such as traffic flow, pollution levels, or weather
conditions by capturing how these variables evolve over both space and
time.169–172 For instance, traffic prediction models utilize graph convolutional
networks to represent the spatial structure of road networks, combined with
recurrent neural networks (RNNs) or temporal attention mechanisms to model
how traffic patterns change over time. These integrated models can handle
diverse data sources, such as GPS data, traffic cameras, and historical logs,
providing accurate, real-time predictions that inform urban transportation plan-
ning and congestion management. Transformer models, originally developed
for natural language processing tasks, are adapted for urban prediction tasks
due to their ability to handle long-term dependencies in data.173–175 Unlike tradi-
tional RNN-based models, transformers rely on self-attention mechanisms that
allow them to consider all parts of a sequence simultaneously, making them
particularly effective for tasks that require understanding of long-range depen-
dencies.176 Using such deep learning algorithms, the MetaCity framework is
able to achieve satisfying prediction performances on diverse urban sustainabil-
ity problems.
Simulation. Merely predicting metrics of urban sustainable developments

cannot provide a macro view of the problems, especially on important policy-
making procedures. A step forward from prediction to the simulation of complex
cities from real-world data is a promising solution to bridge this gap.50,177 Map-
ping the operating laws of real complex cities into a simulation system can pro-
vide a flexible and open environment for decision-making issues such as subse-
quent policy formulation. Traditional simulation methods are restrained to small
scales due to the lack of computational resources, making them incapable of be-
ing extended to complex city scenarios.178

Recent advancements in generative models have shown the power in gener-
ating languages, time series, human trajectories, etc., based on real-world obser-
vations while retaining basic characteristics.47,179–181 Generative adversarial net-
works (GANs)182 use a generator to create synthetic data and a discriminator to
evaluate its authenticity, refining the output until it closely resembles real data.
www.cell.com/the-innovation
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Figure 5. Demonstration of a real-world application of theMetaCity framework The future city project conducted in a new district in China exemplifies the application of theMetaCity
framework. Leveraging large-scale urban data, the project employs data-drivenmethods to predict, simulate, andmake decisions aimed at achieving Sustainable Development Goals.
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Variational autoencoders183 encode data into a latent space and then decode it
to generate new variations, useful for simulating different urban scenarios.
Generative adversarial imitation learning184 combines GANs with imitation
learning to model and replicate complex human behaviors based on real-world
examples. On the other hand, diffusion models185 iteratively transform random
noise into structured data, producing high-resolution simulations that capture
intricate real-world details.

Under the MetaCity framework, these models need further extension and per-
mutations to fit the complex interactions within cities and the requirement of
simulating data across various fields. Moreover, the simulated data should
also be reliable enough to support the deduction of complex interactions in cities
and the followingdecision-making processes.186 Therefore, the data-driven simu-
lation methods should be cross-scaled to fit the macro- and micro-level of cities
and enhanced with knowledge of urban sustainable development to generate
reliable reflections of real cities.

Decision. Built upon the simulation system of complex cities, MetaCity seeks
to make decisions on optimizing the allocation of urban resources to achieve
SDG 11. Values of decisions are affected by various complex interactions in cit-
ies. For instance, scheduling traffic signals based on the simulation of urban
traffic flow to reduce waiting time and carbon emissions, controlling the supply
of power grids tominimize costs while meeting generated household and indus-
try needs, allocating healthcare resources to people with high affection risks dur-
ing pandemics, and planning public transit and shuttle bus routes to accurately
meeting travel demands. To enhance the decision-making process within the
MetaCity framework, we propose a shift from traditional expert knowledge-driven
optimization algorithms to data-driven methods. Traditional methods, such as
meta-heuristic and mathematical optimization techniques, often struggle with
complex systems due to the enormous search space and the need for simplifi-
cation,187 which can compromise accuracy and effectiveness.

The improvements made in reinforcement learning models188 present the op-
portunity of optimizing long-term sustainable outcomes with sequences of deci-
sions made by artificial agents. In reinforcement learning, artificial agents are
ll
trained to make decisions by interacting with their environment. The agents
receive feedback in the form of rewards or penalties based on the outcomes
of their actions, allowing them to learn and refine their strategies over time.
This method is particularly suited for urban resource optimization because it en-
ables the agents to focus on long-termsustainable outcomes rather than just im-
mediate gains. For example, reinforcement learning has been successfully
applied inmany sustainable development problems such as healthcare resource
allocation,189 power grid control,190 traffic light control,191 urban planning,192,193

etc. Imitation learning194 is another key method that complements reinforce-
ment learning by enabling agents to learn from expert demonstrations. Instead
of learning solely through trial and error, imitation learning allows agents to
observe and mimic the actions of human experts. This approach can signifi-
cantly accelerate the training process and improve the performance of agents
in complex urban scenarios. Typically, decisions and policies can be tested on
the simulation system in the framework, reducingmonetary and temporal costs.
In this way, the featuredmethodology ofMetaCity acts as a system ranging from
data collection to decision-making as a whole.

APPLICATIONS OF MetaCity
Based on SDGs advocated in goals of sustainable urban development under

MetaCity andMetaCity’s advantageousmethodology, we first provide two repre-
sentative cases under the framework reflecting the featured methodology (Fig-
ure 5). Then, we elaborate on possible applications of the framework from seven
perspectives, i.e., urban planning, urban governance, transportation, carbon emis-
sion, energy, public health, and economy. For each application, we discuss the
multi-source urban data as the foundation of aMetaCity framework and possible
data-driven methods that can be leveraged to solve urban sustainability prob-
lems based on existing research topics (Figure 6).

Representative cases
Mirage: City simulation framework. Decisions on urban sustainable

development are difficult to evaluate before being implemented in the
The Innovation 6(2): 100775, February 3, 2025 7



Figure 6. Potential applications of the MetaCity
framework for urban sustainable developments We
summarize important urban data and corresponding
applications of MetaCity from seven typical perspec-
tives of urban sustainability.
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physical world. To address this, we introduce Mirage,195,196 an efficient and
extensive city simulation framework that provides a data-driven solution to
decision-making in complex city environments. Based on distributed simula-
tion systems and data-driven analytical tools, Mirage simulates the complex
interactions between space (road, area of interest), humans (referred to as
agents in the system), and objects (environment, infrastructures) in cities
on a large scale. It leverages various machine learning methods enhanced
with expert knowledge to efficiently simulate collected behavioral data on ur-
ban infrastructure networks, urbanmobility, and traffic patterns. Specifically,
based on learned patterns in the simulated city, its mobility module can
simulate 900,000 agents (humans) simultaneously on the road network of
Beijing, one of the world’s largest cities, at within 200 ms per step. This
high efficiency, combined with its API availability to real urban data input,
can provide a real-time simulation of interactions in complex cities. Beyond
conventional traffic simulation systems that mainly focus on urban traffic
flows, Mirage considers agents’ social needs, including their demand for wa-
ter, electricity, communication, and mobility. The extensiveness of interac-
tions between human and infrastructure networks in the simulation frame-
work yields applications for urban sustainable developments, including
urban vulnerability, disaster risk reduction, water supplies, power shortages,
and sustainable transport. Researchers can test how their policies meet ur-
ban SDGs in Mirage for better decision-making procedures such as traffic
light control.

Sustainable future city project. Weprovide a comprehensive demonstration
of how the MetaCity framework operates in a real-world application (Figure 5).
We take the future city project conducted in a newdistrict in China as an example,
which applies the idea of the MetaCity framework to build a green, efficient, and
resilient city. In line with the featured methodology in Figure 4, the project com-
prises two main components: (1) data sensing and processing and (2) data-
driven urban computing. As for the data sensing stage, in addition to data
collectedby traditional sensors embedded in factories and power plants, the proj-
ect introduces 1,500 smart light poles equippedwith intelligent sensors and cam-
eras, as well as hundreds of driverless cars patrolling the district. These smart
devices generate multi-modal data covering road conditions, vehicle and pedes-
trian mobility, energy consumption, and environmental indicators, etc., which are
stored and processed in big data centers.
8 The Innovation 6(2): 100775, February 3, 2025
Based on the data foundation, the project
implements data-driven methods to achieve
following three SDGs: greenness, efficiency,
and resilience. At the prediction stage, it em-
ploys spatiotemporal deep learning methods
to comprehensively model the complex
spatial and temporal interactions within the
city. Specifically, it accurately predicts short-
term operational demand as well as long-
term development demand patterns for
various energy types, including electricity,
hydrogen, and solar energy, using an autoen-
coder network that separates different time
scales.197 In addition, based on data sensed
by driverless cars, a graph neural network198

is applied to model the spatiotemporal
mobility patterns of vehicles and pedestrians,
predicting their future locations and travel de-
mands. Furthermore, the project utilizes a
graph neural ordinary differential equations
network199 to predict the impact of disasters
on human mobility and the condition of
crucial infrastructure within the district.
The project then develops a comprehensive urban simulator that integrates el-
ements across various aspects, including people, infrastructure, energy, trans-
portation, the environment, etc., to generate the behaviors of city elements and
their interactions. An energy simulation module generates hourly demands for
five energy types under different development scenarios with a relative error
less than 1.0%. Variational autoencoders179 and diffusion models200 are imple-
mented to simulate the trajectories of over 100,000 vehicles and 200,000 pedes-
trians throughout the entire district. The urban simulator also includes a disaster
module to analyze the impacts of typhoons and floods on individual housing and
key infrastructure.201

With the accurate simulation of urban dynamics under specific scenarios, the
project employs data-driven decision-making methods to achieve sustainability
goals. Amulti-scale energy layout optimization algorithm is used to plan the oper-
ation of 10 energy stations within the district. By redistributing energy across re-
gions with heterogeneous demand, these energy stations achieve an annual
reduction of 800 kilotons in carbon emissions. In addition, deep reinforcement
learning algorithms are integrated into the urban simulator to optimize traffic
and parking resources,191 and to efficiently allocate driverless vehicles and
hydrogen-powered buses to meet travel demands within the district. The driver-
less public transit system is capable of transporting over 100,000 passengers
each day. For the resilience goal, nature-based solutions are implemented to
redesign the layout of key infrastructure and land-use types,193 as well as to
construct disaster prevention facilities such as public shelters and seawalls.
The overall resilience of the district is enhanced by over 30%.

Potential applications
Urban spatial planning. More than 56% of the population lives in cities today,

and reasonable urban spatial planning plays a critical role in providing adequate
and accessible housing and service provision. However, the imbalance of rapid
economic development and the neglect of planning in urban sprawl gives rise
tomany slumcommunities202 and leads to segregation, crime, education, health,
and environmental problems.203 Compared with traditional approaches, the
MetaCity framework has the potential for planning cities and rearranging urban
resource that simultaneously cover multiple goals.204–206 Important factors that
produce slums include the urban economy, the supply of land, and changes in
real estate prices, and the inefficiency of previous proactive planning in
www.cell.com/the-innovation
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preventing slums is due to the lack of prior knowledge of slum development and
drivers.207,208 MetaCity’s integration of land use and economic data209,210 pro-
vides a chance to predict and simulate the development of slums as a basis
for optimizing economic benefits. On the other hand, human mobility data are
crucial for assessing accessibility to urban resources. Through predicting and
analyzing mobility patterns, MetaCity can enhance the accessibility of essential
services such as food,211 healthcare,212 and education.213 This analysis aids in
strategically positioning urban services to mitigate slum-related issues.214 Given
these applications, MetaCity has the potential to utilize demographic, land use,
mobility, and economic data to address not only slum conditions but also
broader urban spatial challenges such as urban exodus and green gentrification,
aligning with SDG Target 11.1’s emphasis on improving housing and upgrad-
ing slums.

Urban governance. It is widely believed that smart city technology can be a
possible solution for the population pressures faced by developing cities to
meet the rising demand for services and infrastructure.215–217 This is mainly
achieved by making use of closed-circuit television and government data in ur-
ban governance fields such as traffic control, police management, and govern-
ment services, which is also the field that has gone the farthest in the practice
of MetaCity.218–220 However, it has some very promising but not yet fully
explored possible applications in urban governance. First, the powerful computer
vision capabilities cannot only be applied to traffic and public security but also
provide direct information about the status of urban ecosystems,221 thereby
providing assistance for factory production,222 waste management,223 etc. For
instance, MetaCity can link real-time information on waste, recycling stations,
and logistic vehicles to match waste processing needs and logistic vehicles,
reducing the adverse impact of cities made by waste (SDG Target 11.6). Sec-
ondly, based on the massive data of social media with geographic information
such as POI, the administrators would be able to perceive the opinions and emo-
tions of residents throughMetaCity, and provide precise and targeted responses
and services.224–226 Finally, the framework can facilitate community engage-
ment and empowerment by providing platforms and tools that allow vulnerable
groups to participate in decision-making, as emphasized in SDG Target
11.3.227,228 For example, MetaCity can create digital media that will enable resi-
dents to give feedback on proposed policies and programs or to participate in vir-
tual town hall meetings.229 By using a data-driven and inclusive approach, the
framework can help cities create more inclusive spaces for vulnerable groups,
identify and address residents’ specific needs and challenges, and provide oppor-
tunities for participation in decision-making processes.230

Transportation. Traffic congestion has been a major barrier preventing the
efficiency of cities from being improved. The literature mainly covers traffic pre-
diction and traffic policy making to enhance sustainable transportation, as advo-
cated in SDG Target 11.2. Under the framework of MetaCity, studies on traffic
prediction aim to provide accurate predictions in future time intervals and/or un-
observed locations. Thus, they either organize the data as a grid or graph and
applymachine learningmodels, including deep neural networks,231,232 clustering
model,233,234 and boosting methods.235 These studies mainly utilize the spatial
dependency of locations that are neighboring each other on the graph, and the
temporal dependency of time intervals adjacent to each other or occupying
similar time points on different days. Currently, analysis under the MetaCity
framework makes accurate predictions up to the scale of hundreds of intersec-
tions.236 This has provided a basis for quick sensing and discovery of traffic
congestion, and further policy making to improve traffic efficiency. Traffic pol-
icies, including traffic signal control,191 congestion pricing,237 and restriction pol-
icies,238 have been long investigated to build a sustainable and efficient transpor-
tation system. Traditional methods usually assume that the traffic flow follows a
pre-defined pattern, and then convert the policy making as an optimization prob-
lem. Thesemethods perform poorly when dealing with the dynamic and increas-
ingly large traffic flow. Hence, MetaCity research proposes reinforcement
learning-based methods to work on these problems, due to their characteristics
of directly learning from data rather than relying on assumptions. These newly
innovated methods have demonstrated performance that exceeds traditional
methods in various scenarios and are expected to bring more intelligence to
related problems.191

Carbon emission. Carbon emissions are a major contributor to climate cri-
ses, especially global warming.239 The world is still far from achieving the Paris
Agreement’s goal of reducing global warming, calling for urgent and strict con-
ll
trol on current carbon emissions generated from human activities.240,241 Ac-
cording to the World Bank, cities account for over 70% of global carbon emis-
sions, indicating the key role of cities in the road to net zero emission.242

Novel technologies such as carbon capture, utilization, and storage are funda-
mental solutions to sustainable carbon emission, which should be guided under
data-driven methods to enhance efficiency.243 The MetaCity framework can be
leveraged for managing carbon emissions to achieve the Greenness goal. First,
there are extensive data to support the data-intensive urban science on carbon
emission. Urban carbon emissions can bedivided into various sectors, including
electronic generation, road transportation emissions, fossil fuel emissions, in-
dustrial emissions, aviation emissions, and residential emissions.162,244 Annual
carbon emission data are provided by most countries.245,246 By contrast, real-
time and high-resolution carbon emissions of each sector are mostly derived
from other sources such as real-time power generation data, transportation
congestion data, natural gas consumption data, and industrial consumption
data. Another important resource is satellite data, for instance, NASA’s OCO-2
and OCO-3,247 and China’s TanSat,248 etc., collect data on atmospheric carbon
dioxide. On the basis of these data sources, urban computing methods can
be adopted for carbon accounting andmonitoring.249 Extensive studies have at-
tempted to estimate real-time carbon emission data from power data.162,250,251

However, current estimation of carbon emissions mainly relies on empirical al-
gorithms that transform other data sources into the amount of emission.
Following the guidance of the MetaCity framework, data-driven machine
learning methods have the potential to calibrate the expert knowledge with
high predictability when combinedwith atmospheric carbon dioxide data, which
can be applied to discovering high-emission sites and sectors. Furthermore,
based on real-time high-resolution emission information, decarbonization pol-
icies could be learned from data-driven optimization methods to identify the
most efficient ways to conduct carbon capture technologies and shift to renew-
able energy sources.252 Furthermore, the learned relationship between emis-
sions and urban transportation could be used to guide transportation legislation
such as traffic restriction policies,253–255 aligningwith the ambitions of the Paris
Agreement and the Sendai Framework.
Energy. The UN’s SDG 7 “Ensure access to affordable, reliable, sustainable

and modern energy for all” pursues an equitable allocation of energy resources
in the world.256 The MetaCity framework can be adopted for energy manage-
ment to achieve all goals. The inequality of energy accessibility is revealed
from energy consumption data in most countries, indicating that the lights in
some underdeveloped countries are “going out.”257 Global investments in elec-
tricity supplies and renewable resources are strongly interacting with the current
usage of energy resources.258 Under the MetaCity framework, data-driven
methods such as time series prediction could model these interactions and
possibly evaluate the effect of investments on filling the gap, for instance, to
what extent can shifting a one billion dollar investment from themost developed
countries to least developed countries enhance the deployment of clean and reli-
able energy in these countries. In addition, newly deployed renewable or tradi-
tional energy systems should take network resilience into consideration, particu-
larly those in high-poverty developing countries that may be more vulnerable to
natural shocks.259 Research on the resilience of electricity systems has pointed
out ways to build a complex system with topological structures robust to distur-
bances.260 Here, we propose to improve these methods with data on the demo-
graphic and socioeconomic status of urban areas, providingmore details on their
vulnerability.261 Models that are aware of these features could possibly simulate
the dynamics of complex energy systems with higher accuracy, serving as the
basis of targeted energy management decision-making for improving energy ef-
ficiency as advocated in SDG Target 7.3.
Public health. The serious consequences of the COVID-19 pandemic have

brought unprecedented concern about the sustainable development of public
health. The shock impact it had on the public health systemalso callsmore atten-
tion to the existing concern over non-communicable disease.262 Furthermore,
the pandemic brings about mental health issues that remain long after it has
ended. Over 90% of countries have included mental health support in COVID-
19 response plans.263 These interconnections depict a complex urban public
health system that links the physical environment, health indicators, and psycho-
logical responses.264 TheMetaCity framework should be built on extensive public
health data to support a sustainablepublic health systembyaccurate predictions
of health crises, allocation of medical resources for healthcare equity, and
The Innovation 6(2): 100775, February 3, 2025 9
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 building resilient and equitable medical systems. At present, digitalized health-

care systems generate useful electronic health records, whereas wearable de-
vices and sensors collect environmental risk data such as air quality and pollu-
tion.265–267 The literature on data-driven epidemic prediction has increased
largely during the COVID-19 pandemic. Real-time infection case data are fitted
by data-driven models that integrate expert knowledge and data knowledge,
generating acceptable simulations of future infection trajectory.268 Based on
these simulations, data-driven optimization algorithms can be adopted for
more equitable allocation of medical resources including vaccines and respira-
tors.269 These applications should be considered under specific scales, for
instance, inter-city or intra-city resource allocation have different costs and social
influence. Historical health record data and urban environmental data should be
combined to build a resilient public health system that could operate well when
facing unexpected healthcare demands,270 especially in the post-pandemic
era.271

Economy. Our world is still on the road to ending poverty.272 The unequal dis-
tribution of wealth is exacerbated by the COVID-19 pandemic, highlighting the se-
vere poverty in the least developed countries.273 Moreover, economic activities
are disrupted during the pandemic, leading to an economic recession that
threatens countless households.274,275 These negative economic trends are
derived mostly from multi-scale open economy data provided by governments
of different levels, providing a chance to construct aMetaCity framework for eco-
nomic simulation and decision. Economic outcomes in cities have complicated
interactions with many aspects, including social contacts, transportation, con-
sumption, lockdown, employment, land use, the vigor of urban activities,
etc.276,277 Modeling the complex relations among urban planning data, urban so-
cial interaction data, and economic indicators by data-driven learning methods
can help the evaluation of the economic impacts brought by urban policies
and projects278 and the selection of development paths.279,280 This knowledge
can support decisionsmade by economic experts in promoting economic equity
and economic growth. One potential challenge of monitoring and boosting eco-
nomic growth is the lack of economic evaluation in developing countries.281

MetaCity research provides data-driven prediction and data generation tools to
obtain economic indicators from other data sources, such as satellite pictures
and street view images.282 Combined with historical construction conditions, un-
derstanding of consequences of allocating urban resources to economic growth
and poverty reduction could further contribute to the elimination of poverty in
developing countries.

CHALLENGES AND FUTURE DIRECTIONS
TheMetaCity framework posesmany promising applications inmultiple areas

of urban sustainable development. However, large-scale implementation and
deployment of MetaCity still face several concerns and challenges. In this sec-
tion, we outline the major challenges and suggest directions for future work.

d Data security and privacy. MetaCity relies on large-scale data sharing and
processing, which raises ethical concerns about data security and pri-
vacy. Open and prompt urban data are provided by diverse stakeholders
including business agencies, companies, governments, research groups,
and other groups. How multiple stakeholders reasonably share their
respective data, especially individual data, is an important issue that re-
quires careful consideration.Moreover, data collected frompublic spaces,
such asCCTV surveillance to deter crime,may pose challenges to privacy
and human rights protection.283 The integration and overlay of various
data sources to construct a comprehensive urban data network further
complicates these issues, introducing new and open challenges. Some
recent implementations propose building a central data governance pro-
tocol in MetaCity, where data are conceptualized as elements that flow
through the system but never hold by any stakeholder accessing it. The
central protocol also needs to manage and supervise any offline and on-
line data access. In summary, as urban problems become increasingly
data-driven, ensuring that data governance protocols evolve to meet
data privacy challenges is essential for maintaining public trust and safe-
guarding the rights of all stakeholders involved.

d Limitation in key assumptions. One of the core assumptions of the
MetaCity framework is the availability and accessibility of data.
MetaCity assumes that large-scale urban data can be readily obtained
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from various sources in a timely, accurate, and comprehensive
manner. However, in reality, the availability of such data may be con-
strained by factors such as proprietary restrictions, privacy concerns,
and inconsistent data collection practices across different regions.
Moreover, the quality and scale of data may be limited, particularly
in smaller cities with less-advanced technological infrastructures.
Limited data access and variability in scale can lead to reduced predic-
tion accuracy and an increased vulnerability to bias, such as overlook-
ing critical factors in urban dynamics, as well as deficiencies in
providing real-time responses to urgent urban incidents. To address
these challenges and implementMetaCity in smaller or less-developed
cities, researchers could pre-train data-driven models on large-scale
datasets frommajor cities and transfer the knowledge to smaller cities
through fine-tuning strategies to achieve reasonable performance.284

Generative models can be applied for data augmentation, while real-
world feedback can be incorporated during the framework’s operation
to support continuous learning. In addition, integrating data-driven
methods with expert knowledge could help build hybrid models that
enhance the framework’s applicability. Another key assumption of
MetaCity is that all urban sustainability challenges can be addressed
through data-driven methods. However, certain challenges may
require more nuanced approaches that incorporate human judgment,
cultural factors, and political considerations—elements that data
alone may not fully capture.217 Therefore, MetaCity research should
be carefully assessed or supplemented with human expertise when
applied to real-world problems.

d Trustworthy data-driven methods. From the perspective of the data-
driven methods, MetaCity frameworks require effective and reasonable
algorithms to solve the problem of urban sustainable development. As
mentioned above, traditional methods are difficult to adapt to the data-
intensive characteristics and complexity of MetaCity, calling for combina-
tions with new technologies in the fields of AI and machine learning.
Particularly, AI algorithms for sustainable development problems should
have a certain degree of interpretability, or be trustworthy285 for any prac-
tical applications on urban policies. Moreover, these algorithms can be
biased due to deficiencies in data representativeness, where the accuracy
of data concerning vulnerable groups may be questionable, leading to
over-fitted decisions that favor the majority group. This requires strict
regulation of data collection and policy formulation from authentic and
comprehensive data. Furthermore, as urban sustainable development
problems are unique in specific places, the reproducibility and applica-
bility of algorithms under the MetaCity framework for these spatial-tem-
poral problems should be emphasized. Although the effectiveness of al-
gorithms could vary, researchers should build an “applicability map” for
their methods to be applied in broader cases.286

d System deployment. A promising future direction involves the develop-
ment of MetaCity systems tailored to address urban sustainable devel-
opment challenges. Given the unique characteristics of sustainable
development issues in different scenarios, such as varying resource
distributions, cultural backgrounds, and policies on data sharing and al-
gorithms, there is a need for customized implementations of the frame-
work. To enhance efficiency and reduce the cost of repetitive system
construction, future research should focus on creating a unified back-
bone framework, for example, a system that can estimate urban resil-
ience and vulnerability, and complement specific elements of different
scenarios.

d Interdisciplinary collaborations. MetaCity presents valuable opportu-
nities for fostering interdisciplinary collaboration. The framework has
the potential to connect diverse urban factors, resources, and infrastruc-
tures, thereby bringing together researchers from various fields,
including urban planning, transportation, energy, health, computing,
and social sciences.287 Tomaximize the benefits of this interdisciplinary
approach, it is essential to establish a platform that facilitates commu-
nication and cooperation among these scholars. In addition, developing
a new research paradigm within the MetaCity framework will be crucial
to ensuring fair and productive collaborations, enabling researchers to
reach a consensus on complex urban issues.
www.cell.com/the-innovation
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d New resources and innovative development. As cities continue to
evolve, the resources that drive urban development will also change,
necessitating innovative approaches to human dynamics and urban
mobility.288 Intangible assets, such as data, patents, knowledge, talent,
beliefs, and values, are becoming increasingly important in shaping
modern urban development. Future research should explore how
MetaCity can be leveraged to effectively utilize these disruptive new re-
sources, guiding cities in selecting the most appropriate paths for inno-
vative economic and social development. This direction invites explora-
tion into how MetaCity can remain a compatible and adaptive platform
in the face of ongoing urban evolution.

d Integration with large language models (LLMs). Future research could
explore how MetaCity can leverage the capabilities of LLMs to
enhance urban decision-making and planning.41,289 LLMs, with their
ability to process and generate human-like text, can be integrated
into MetaCity to facilitate more natural and effective communication
between the system and its users. This could involve developing intel-
ligent chatbots or virtual assistants that help urban planners, policy-
makers, and citizens interact with the MetaCity framework. LLMs
could also assist in analyzing vast amounts of urban data, generating
insights, and predicting trends that inform sustainable urban develop-
ment strategies.290

Based on the above discussion, we advocate for different stakeholders,
including researchers, policymakers, and communities, to take concrete actions
within theMetaCity framework, fostering scientific research and collaborative ef-
forts toward building sustainable cities.

CONCLUSION
In this review, we present a comprehensive review of the potential of data-

driven methods to achieve sustainability goals in complex urban environments,
advocating for adapting these methods under the proposed MetaCity frame-
work. While proliferating urban data provide inconceivable opportunities toward
sustainable goals, the complexity of urban interactions across various domains
hinders the exact recovery of urban resources and efficient resource allocation,
requiring careful integration of data sources and analytical tools under specific
SDGs. The framework underscores the use of data-drivenmethods, including ur-
ban resource prediction, urban simulation, and urban decision-making methods
for resource optimization, to address the challenge of complexity. We offer
strong implications across multiple disciplines and also interdisciplinary
research. We hope that our framework can stir up data-driven research on urban
sustainability topics, contributing to the efficiency, greenness, resilience, inclu-
siveness, and safety of future cities.
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