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Abstract: We developed an influenza hemagglutinin (HA) pseudotype library encompassing In-
fluenza A subtypes HA1-18 and Influenza B subtypes (both lineages) to be employed in influenza
pseudotype microneutralization (pMN) assays. The pMN is highly sensitive and specific for detecting
virus-specific neutralizing antibodies against influenza viruses and can be used to assess antibody
functionality in vitro. Here we show the production of these viral HA pseudotypes and their em-
ployment as substitutes for wildtype viruses in influenza neutralization assays. We demonstrate
their utility in detecting serum responses to vaccination with the ability to evaluate cross-subtype
neutralizing responses elicited by specific vaccinating antigens. Our findings may inform further
preclinical studies involving immunization dosing regimens in mice and may help in the creation
and selection of better antigens for vaccine design. These HA pseudotypes can be harnessed to meet
strategic objectives that contribute to the strengthening of global influenza surveillance, expansion
of seasonal influenza prevention and control policies, and strengthening pandemic preparedness
and response.

Keywords: influenza; hemagglutinin; pseudotype; vaccine; immunogenicity; monoclonal anti-
body; neutralization

1. Introduction

Influenza viruses are segmented, negative sense, single-stranded, enveloped RNA
viruses belonging to the Orthomyxoviridae family [1–3]. Within this family, there are three
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types of influenza virus that circulate in humans, influenza A, B, and C [4–6]. Only influenza
A (IAV) and influenza B (IBV) viruses are endemic in the global human population, rapidly
spreading around the world in seasonal epidemics, imposing considerable economic
burden and death [7,8]. From its wild bird reservoir, IAV is able to transmit from domestic
poultry [9], which is the gateway to infection of mammals, most notably, swine and
humans [10]. IBV’s natural reservoir is humans, however there have been reports of
infection in seals [11–13], alluding to its potential to cause disease in other species.

Influenza A and, to a lesser extent, influenza B can be further classified by structural
and genetic differences in the two most abundant glycoproteins expressed on the viral
surface—hemagglutinin (HA), which is required for viral entry and fusion [14–16], and
neuraminidase (NA), which is involved in the release of viral progeny [17]. Currently,
18 distinct antigenic HA (H1-H18) and 11 antigenic NA (N1-N11) subtypes have been
de-scribed for IAV [6,7,18]. Based on phylogenetic analysis, IAV HA subtypes are divided
into two groups: Group 1—H1, H2, H5, H6, H8, H9, H11, H12, H13, H16, H17, and H18
subtypes, and Group 2—H3, H4, H7, H10, H14, and H15 [17]. IBV is not as diverse and has
been divided into two distinct lineages, B/Yamagata-like and B/Victoria-like viruses [19].

Hemagglutinin is a trimeric glycoprotein consisting of a globular head attached to
a fibrous stem [16,20,21]. The HA head is highly antigenic and is subject to mutations
and reassortment of genetic material over time [10,22,23]. Minor genetic changes such as
single point mutations in the HA head are known to give rise to antigenic drift. In contrast,
antigenic shift, wherein an influenza A virus strain acquires an HA or NA segment from
another subtype of IAV, usually from a zoonotic reservoir, can also occur leading to the
emergence of new variants or strains [22,24–29]. Antigenic shift is of concern as it may
result in the emergence of a completely novel virus to which the human population has
no pre-existing immunity and, as such, may have pandemic potential. To date only three
HA (H1, H2, and H3) and two NA (N1 and N2) subtypes are known to have caused
human pandemics [30–33]. However, this does not preclude other subtypes from causing a
pandemic in the human population in the future. There have been numerous documented
cases of human infection with highly pathogenic influenza A viruses (HPAI) H5 and H7,
viral subtypes that predominantly cause outbreaks in poultry [34–37]. Nonetheless, these
incidences have not yet resulted in these viruses acquiring the ability to sustain human
to human transmission [38–40]. Whilst antigenic divergence both within and across HA
subtypes exists, the HA stem domain is more conserved and, although not as immunogenic
as the head domain [17,22], is increasingly being explored as a candidate for universal
influenza vaccines [22,41]. As such, the importance of studying HA structure and func-
tion and monitoring antigenic changes within HA is critical to understanding antigenic
evolution, defining the most antigenically relevant antigens for annual human vaccina-
tion programs [42,43], determining potent universal vaccine targets [44,45], developing
vaccines for veterinary use [9,46], and improving influenza diagnosis and therapeutic
interventions [47–50].

Vaccine strain selection for seasonal influenza is carried out via the hemagglutinin
inhibition (HI) assay that antigenically characterizes influenza viruses [51,52]. The HI test
works by measuring the interaction between the serum antibody and the influenza HA
domain of currently circulating IAV and IBV strains and the resulting inhibition of red blood
cell agglutination and is currently the measure for seroconversion and protection [43,53–55].
To improve current vaccination strategies and to aid the development of a universal
influenza vaccine, additional reliable tools are necessary to identify and progress promising
candidates targeting both the hemagglutinin head and stem domains [49,56–58]. The
advent of pseudotyped lentiviral vectors have enabled the study of HA interactions with
antibodies, drugs, and host cell receptors with ease [13,59–61]. These pseudotypes (PV)
undergo abortive replication and do not give rise to replication-competent progeny [62,63].
While it is logistically possible to deal with low pathogenic strains of influenza, studies on
strains that are exotic and not widespread in the population are considerably hampered by
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the availability of BSL facilities and highly trained and qualified personnel required for
handling and processing these viruses.

To address these issues, we constructed a comprehensive library of IAV and IBV
HA pseudotypes that we tested against available antisera and HA stem-directed mon-
oclonal antibodies, to detect neutralizing responses in sera in mouse vaccine studies to
produce optimized seasonal vaccines and candidate pandemic vaccines. This repository of
pseudotypes is contributing to the World Health Organization’s global influenza strategy
for 2019-2030 of “Prevent, Control and Prepare” [64], with the goal of employing these
PV as tools to further vaccine R&D that will contribute to reducing the burden of sea-
sonal influenza, minimizing the risk of zoonotic influenza, and mitigating the impact of
pandemic influenza.

2. Materials and Methods
2.1. Plasmid Production and Transformation

Hemagglutinin genes from Influenza A virus (IAV) subtypes HA1-18 and Influenza B
(IBV), presplit, B/Victoria-like, and B/Yamagata-like viruses, were cloned in either pI.18
(in house), phCMV1 (GenScript, Leiden, The Netherlands), or pEVAC plasmids (GeneArt,
Regensburg, Germany). pI.18 is a high-copy AmpR pUC-based plasmid that permits robust
mammalian gene expression in various cell types via the human cytomegalovirus (hCMV)
immediate-early gene promoter and the enhancer hCMV Intron A [65]. phCMV1 is a
constitutive mammalian gene expression vector driven by a modified hCMV immediate-
early promoter and enhancer/intron together with a Simian Vacuolating virus 40 (SV40)
promoter with KanR and NeoR allowing selection of plasmid-positive prokaryotic and
eukaryotic cells. pEVAC is also a mammalian expression vector with an hCMV immediate-
early promoter/enhancer followed by an intron (HTLV-1-R splice donor and hCMV-IE
splice acceptor), a bovine growth hormone (BGH) polyadenylation sequence, and KanR
gene. All HA genes were gene-optimized and adapted to human codon use using the
GeneOptimizer algorithm [66] and have a strong Kozak-initiation motif.

Influenza hemagglutinin plasmid constructs were generated by cloning the IAV or
IBV HA transgenes into pI.18, phCMV1, or pEVAC via restriction digest into the plas-
mids’ multiple cloning site (MCS). Plasmids were transformed in chemically induced
competent E. coli DH5α cells (Invitrogen 18265-017) via the heat-shock method. Plasmid
DNA was recovered from transformed bacterial cultures via the plasmid mini kit (Qi-
agen 12125, Manchester, UK) or the endotoxin-free HiSpeed Plasmid Midi Kit (Qiagen
12643, Manchester, UK). All DNA extracts were quantified using UV spectrophotometry
(NanoDrop™—Thermo Scientific, Paisley, UK).

2.2. Propagation and Maintenance of Cell Cultures

Human embryonic kidney (HEK) 293T/17 (ATCC: CRL-11268ª) cells were used for pro-
duction and titration of pseudotyped lentiviral vectors and neutralization assays. Madin–
Darby canine kidney (MDCK) II cells were used for titration and neutralization assays
of Influenza H17 and H18 pseudotyped viruses. Both cell lines were maintained in com-
plete medium, Dulbecco’s modified essential medium (DMEM) (PANBiotech P04-04510,
Wimborne, UK) with high glucose and GlutaMAX. DMEM was supplemented with 10%
(v/v) heat-inactivated foetal bovine serum (PANBiotech P30-8500), and 1% (v/v) penicillin–
streptomycin (PenStrep) (Sigma Aldrich, Dorset, UK P4333). Cells were incubated at 37 ◦C
and 5% CO2.

2.3. Production of Influenza HA Pseudotypes (PV)

Influenza HA pseudotypes were produced as described previously [13,60]. Briefly,
4 × 105 HEK 293T/17 cells in complete DMEM were seeded per well of a 6-well plate
and incubated at 37 ◦C, 5% CO2 overnight. The next day, media was replaced and cells
were transfected using Opti-MEM™ (Thermo Fisher Scientific 1985062, Paisley, UK) and
FuGENE® HD transfection reagent (Promega E2312 Madison, USA) with the following
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plasmids: HA encoding plasmid (pI.18/phCMV1/pEVAC), luciferase reporter plasmid
pCSFLW [59], and p8.91 gag-pol (Gag-Pol expression plasmid [62,63,67]). Plates were
incubated at 37 ◦C, 5% CO2. For transfection of low pathogenicity avian influenza (LPAI)
and other subtypes with a monobasic cleavage site, an additional plasmid expressing type
II transmembrane protease serine 2 (TMPRSS2) [68], type II transmembrane protease serine
4 (TMPRSS4) [69], or human airway trypsin-like protease (HAT) [68] was also included.
For the H18 subtype, 50 ng of A/flat-faced bat/Peru/033/2010/N11 in pEVAC was also
included. The amounts of plasmid DNA and reagents used for transfection in a single well
of a 6-well plate are indicated in Table 1. All plasmid DNA were combined in Opti-MEM
and FuGENE® HD added dropwise followed by incubation for 15 min. The plasmid
DNA-OptiMEM mixture was then added to the cells with constant swirling. At least 8 h
post-transfection, 1 unit of exogenous neuraminidase (Sigma AldrichN2876, Paisley, UK)
was added to the 6 well-plates, with the exception of the H18 subtype. Forty-eight hours
post-transfection, supernatants were collected, passed through a 0.45 µm filter, and stored
at −80 ◦C.

Table 1. Amounts of Influenza HA transfection components.

Solutions/Plasmids Amount

OptiMEM 100 µL
p8.91 250 ng

pCSFLW 375 ng
HA in pEVAC 10 ng (50 ng for HA18)

HA in pI.18 50–500 ng
HA in phCMV1 50–500 ng

Protease-encoding plasmid 2.5–500 ng
FuGENE® HD 3 µL per µg of total plasmid DNA

2.4. Influenza Pseudotype Titration

Titration experiments were performed in Nunc F96 MicroWell white opaque
polystyrene plates (Thermo Fisher Scientific 136101). The pseudotype production titre was
evaluated by transducing HEK293T/17 cells (or MDCKII cells for H17 and H18) with the
PV. Fifty microliters of viral supernatant were serially diluted two-fold across a 96-well
plate in duplicate before adding 50 µL of 1 × 104 HEK293T/17 cells to each well. Control
wells in which there was no PV added were also present on each plate as an indirect cell
viability measurement. Plates were then incubated at 37 ◦C, 5% CO2 for 48 h. Media was
removed and 25 µL of Bright-Glo® (Promega, Madison, USA) luciferase assay substrate
was added to each well. Titration plates were then read using the GloMax® Navigator
(Promega, Southampton, UK) using the Promega GloMax® Luminescence Quick-Read
protocol. Viral pseudotype titre was then determined in relative luminescence units/mL
(RLU/mL).

2.5. Reference Antisera and Bat Surveillence Sera

Reference antisera to assess the neutralization sensitivity of representative IAV and IBV
pseudotypes from our library were obtained from the OIE (World Organisation for Animal
Health), the National Institute for Biological Standards and Control (NIBSC), or the Animal
and Plant Health Agency (APHA) (Table 2). Antisera were generated by immunizing
chickens (OIE) and sheep (NIBSC) with HA antigen. At the time of publication, reference
antisera for H17 and H18 were not available, however, frugivorous bat sera, collected as
part of a bat sera surveillance program in Nigeria, was provided by APHA.
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Table 2. Details of reference antisera obtained from OIE, NIBSC, and APHA for strains of IAV (H1-16)
and IBV (B/Yam and B/Vic).

HA Subtype Antiserum Strain Source

H1 A/duck/Italy/447/2005 (H1) OIE
H2 A/duck/Germany/1215/1973 (H2) OIE
H3 A/psittacine/Italy/2873/2000 (H3) OIE
H4 A/cockatoo/England/1972 (H4) OIE
H5 A/chicken/Scotland/1959 (H5) APHA
H6 A/turkey/Canada/1965 (H6) OIE
H7 A/Anhui/1/2013 (H7) NIBSC
H8 A/turkey/Ontario/6118/1968 (H8) OIE
H9 A/mallard/Italy/3817-34/2005 (H9) OIE

H10 A/ostrich/South Africa/2001 (H10) OIE
H11 A/duck/Memphis/546/1974 (H11) OIE
H12 A/duck/Alberta/60/1976 (H12) OIE
H13 A/gull/Maryland/704/1977 (H13) OIE
H14 A/mallard/Gurjev/263/1982 (H14) OIE
H15 A/shearwater/Australia/2576/1979 (H15) OIE
H16 A/gull/Denmark/68110/2002 (H16) OIE
H17 Polyclonal sera (BATS) APHA

B/YAM B/Phuket/3073/2013 NIBSC
B/VIC B/Brisbane/60/2008 NIBSC

2.6. Mouse Immunogenicity Studies

For mouse immunogenicity studies, 6–8-week-old female BALB/c mice were obtained
from Charles River Laboratories and housed at the University Biomedical Services, Univer-
sity of Cambridge. Mice were divided into groups of six for each individual vaccination
antigen. On day 0, mice were injected subcutaneously (SC) on the rear flank with a 50 µL
volume of 50 µg of pEVAC HA, produced using the EndoFree Plasmid Mega Kit (Qiagen
Manchester, UK)), or negative control group (PBS) for negative control groups. Immu-
nizations were repeated on weeks 2, 4, and, 6 (Figure 1). Mice were weighed daily and
monitored for any signs of disease or distress. Mice were bled at 42 days post immunization
(dpi), 56 dpi, and 70 dpi (Figure 1). At 70 days post immunization, all mice were culled and
terminal bleeds collected. Collected blood was left to clot for 1 h at room temperature and
serum was separated via centrifugation at 2000× g for 10 min at 4 ◦C and stored at −20 ◦C.
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Figure 1. Study schedule of immunization with pEVAC HA antigens. Mice received either pEVAC HA antigens or PBS
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2.7. Pseudotype Microneutralization (pMN) Assay

We performed pseudotype microneutralization assays using standard reference antis-
era, monoclonal antibodies (mAb), and serum samples from animal studies. The mono-
clonal antibody concentrations used were in the range of 0.5–1000 ng/mL and serum and
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antiserum samples were initially diluted 1:20 or 1:50 in 50 µL of complete DMEM, before
being serially diluted two-folds across a 96-well plate. Fifty microliters of PV at a titre of
1.0 × 106 RLU/well as determined via titration was then added to the mAb or serum dilu-
tions, making the final dilution of sera 1:40 or 1:100. This mixture was incubated for 1 h at
37 ◦C, 5% CO2. Afterwards, 50 µL of 1.5 × 104 HEK293T/17 cells were added to each well.
PV only (equivalent to 0% neutralization) and cell only controls with no virus (equivalent
to 100% neutralization control) were also included in the test plate. Plates were incubated
for 48 h at 37 ◦C and 5% CO2. Media was removed and 25 µL of the Bright-Glo® luciferase
assay substrate added to each well. Plates were then read using the GloMax® Navigator
(Promega, Southampton, UK) using the Promega GloMax® Luminescence Quick-Read
protocol. Half-maximal inhibitory dilution or concentration (IC50) values were calculated
using GraphPad Prism 8.12. A detailed analysis is described in Ferrara, 2018 [70].

2.8. Statistical Analysis

All statistical analyses were performed with GraphPad Prism 8.12 for Windows
(GraphPad Software, San Diego, CA, USA). The Kruskal–Wallis H test, a rank-based
nonparametric test, was used to determine if there were statistically significant differences
between two or more groups in comparison to a control group.

2.9. Bioinformatic Analysis

HA sequences for both IAV and IBV were downloaded from the Influenza Virus
Resource database (IVRD) (fludb.org). The phylogenetic tree was generated using the
Cyber-Infrastructure for Phylogenetic Research (CIPRES) gateway [71]. The resulting tree
file was then visualized using the Archaeopteryx tree viewer in the Influenza Resource
Database (IRD) [72].

3. Results
3.1. Production of the IAV and IBV Pseudotype Library

The influenza pseudotype viruses (PV) described herein were constructed using the
transfection method detailed above (Section 2.3). All PV were produced with the following
three plasmids: (i) a plasmid containing packaging genes from a surrogate lentivirus
(HIV) (gag-pol), which is defective for the native HIV envelope, (ii) a plasmid expressing
the HA envelope of the strain being studied (IAV or IBV), and (iii) a transfer plasmid
expressing the firefly luciferase reporter (Figure 2a). One unit of exogenous neuraminidase
(exoNA) was added per well to facilitate viral egress, with the PV containing the HA
envelope on its surface, harvested in cell supernatants. For influenza H18, an additional
plasmid expressing A/flat-faced bat/Peru/033/2010/N11 was included in the place of
exogenous NA.

IAV and IBV strains that contain monobasic cleavage sites require the presence of a
trypsin-like protease in vitro to catalyse HA proteolytic cleavage from the inactive trimeric
HA0 to the active HA1 and HA2 leading to viral membrane fusion [73–75]. As demon-
strated previously, an additional plasmid expressing a trypsin-like protease was required
for PV production (Figure 2a) [60,68,69], with the amount of protease plasmid DNA re-
quiring optimization for each PV produced. We found that this is dependent on the HA
subtype and occasionally the strain being produced (Figure 3, Table 3). Optimization was
achieved using a 6-well plate checkerboard system for protease amounts (Figure 2b), and
a fixed amount of all other plasmids was used to transfect 293T/17 cells. For all strains
except HPAI strains, initial transfections were undertaken with human airway trypsin-like
protease (HAT) in the top three wells and transmembrane serine protease 4 (TMPRSS 4)
in the bottom three wells of the 6-well plate. Protease plasmid was added at a ratio to
the HA plasmid (Figure 2b), i.e., for every 10 ng of HA, we tested with 10 ng, 5 ng, and
2.5 ng protease DNA. All PV produced were titrated and the PV titre determined in RLU
(Figure 3).
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Figure 2. Schematic representation of the production of influenza HA pseudotypes by plasmid transfection. (a) Using the
3 or 4 plasmid system, exogenous NA was added to the transfected cultures at least 8 h post-transfection. (b) Addition of
protease, which is necessary for the production of low pathogenic influenza A viruses (LPAI) and subtypes with a monobasic
cleavage site, and IBV were optimized to increase titres by transfecting in a ‘checkerboard’ approach with different proteases
(e.g., HAT, TMPRSS4, and TMPRSS2). Protease plasmid was added at a ratio of 1:1, 1:0.5, and 1:0.25 to HA plasmid DNA
for rapid optimization in a 6 well plate format. All pseudotypes were harvested after 48 h in culture. The image was created
using BioRender (biorender.com).

If production titres were less than 5 × 107 RLU/mL, we additionally tested with
transmembrane serine protease 2 (TMPRSS2) for the PV strain in the same plasmid ratios
(Figure 2b). Generally, TMPRSS4 produced the highest titres (RLU/mL) for all subtypes
except for H17 and IBV lineages, where HAT produced the highest titres and H2, H3, and
H4 required TMPRSS2 [76] for optimal production (Table 3). Protease was not necessary
for the production of HPAI representative viruses, H5 and H7 in Figure 3 and Table 2
(as indicated by *). Optimized conditions were then recorded and PV production was
scaled up to produce larger PV stocks. We showed here (Figure 3, Table 3) the highest
titres we achieved during several rounds of PV production following optimization. PV
titre variability between batches was found to be small, with titres achieved within half a
log of each other.

Our optimized method enabled us to produce the most comprehensive pseudotype
library to date with representative strains from IAV subtypes H1-H18 and both IBV lineages.
Figure 4 illustrates the range of IAV subtypes already present and available in this library.
Full details of the current library at the VPU are indicated in Table S1. These include
low pathogenic avian influenza (LPAI) strains from H7, in addition to HPAI H5 and H7
presented (Figure 3, Table 3).

biorender.com
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eages) viruses. Pseudotyped lentiviral particles with HA envelopes: H1—A/England/195/2009(H1), H2—A/quail/Rhode
Island/16-0186222-1/2016(H2), H3—A/ruddy turnstone/Delaware Bay/606/2017(H3), H4—A/green-winged
teal/California/K218/2005(H4), H5—A/gyrfalcon/Washington/41088-6/2014(H5), H6—A/American wigeon/California/
HS007A/2015(H6), H7—A/Shanghai/2/2013(H7), H8—A/mallard/Netherlands/7/2015(H8), H9—A/chicken/
Israel/291417/2017(H9), H10—A/duck/Bangladesh/24268/2015(H10), H11—A/red shoveler/Chile/C14653/2016(H11),
H12—A/northern shoveler/Nevada/D1516557/2015(H12), H13—A/laughing gull/New Jersey/UGAI7-
2843/2017(H13), H14—A/mallard/Astrakhan/263/1982(H14), H15—A/duck/Bangladesh/24697/2015(H15), H16—
A/black-headed gull/Netherlands/1/2016(H16), presplit—B/Hong Kong/8/1973, B/Victoria—B/Brisbane/60/2008, and
B/Yamagata—B/Phuket/3073/2013, were titrated in HEK293T/17 cells. H17—A/little yellow-shouldered
bat/Guatemala/60/2017(H17), and H18—A/flat-faced bat/Peru/33/2010(H18) were titrated in MDCKII cells.
∆HA is included as a no envelope control. Each point represents the mean and standard deviation of two replicates per
dilution (n = 2). Readout is expressed in relative luminescence units (RLU).

Table 3. Titres in relative luminescence units/mL (RLU/mL) of IAV and IBV hemagglutinin pseu-
dotyped viruses as indicated in Figure 3. Protease utilized to achieve the highest titres is indicated.
TMPRSS4 is abbreviated to T4 and TMPRSS2 to T2.

Group I IAV HA Group II IAV HA

HA
Envelope

Titre
(RLU/mL) Protease HA

Envelope
Titre

(RLU/mL) Protease

H1 2.25 × 108 T4 H3 5.39 × 1010 T2
H2 6.62 × 107 T2 H4 6.12 × 109 T4
H5 1.32 × 109 * H7 5.25 × 1010 *
H6 2.35 × 1010 T4 H10 2.68 × 1010 T4
H8 4.75 × 1010 T4 H14 2.92 × 1010 T4
H9 4.88 × 108 T4 H15 5.16 × 1010 T4

H11 8.78 × 109 T4 IBV HA

H12 1.21 × 1010 T4 B pre-split 3.87 × 1010 HAT
H13 1.44 × 109 T4 B/Vic-like 2.89 × 1010 HAT
H16 5.81 × 109 T4 B/Yam-like 1.78 × 109 HAT
H17 2.94 × 108 HAT
H18 5.33 × 107 T4

(*) indicates highly pathogenic avian influenza (HPAI) strains, which do not require protease for production.
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Figure 4. Phylogenetic tree of representative IAV HA from the PV library constructed as shown in Figure 3 and Table 3.
Influenza A Group I HA PV are shown in black and IAV Group II PV in red. Accession numbers are reported with the
subtype on the tree tips. Nodes are shown at the ends of branches, which represent sequences or hypothetical sequences
at various points in evolutionary history. Branch lengths indicate the extent of genetic change. The tree generated was
constructed with PhyML on the Influenza Research Database (IRD) [72] and graphically elaborated with Archaeopteryx.js
(https://sites.google.com/site/cmzmasek/home/software/archaeopteryx-js) (access on 3 April 2021).

3.2. Neutralization of Pseudotypes by Reference Antisera

The neutralization susceptibility of representative PV generated to the available HA
subtype specific reference antisera (Table 2) was assessed. All reference antisera were
able to neutralize the subtype homologous PV they were tested against (Figure 5). We
showed neutralization dose response curves for PV representing IAV strains, which were
reported as the cause of human disease, including avian subtypes that caused zoonotic
infection without being associated with sustained human to human transmission (HPAI
H5 and H7, and H9), with IC50 dilution values ranging from the most potent, ~14521 for
H1, and the least potent, ~416 for H3 (Figure 5a). We also tested against HA PV that have
been associated with swine and human infection, such as H1 strains that have been found
in pigs, which may acquire the ability to transmit to humans due to possible antigenic
shift (Figure 5b), and avian IAV subtypes that are found in their natural reservoir, wild,
and occasionally domesticated, birds (Figure 5c) and may evolve in the future to cause
novel pandemic strains in humans. Antisera used herein have IC50 dilution values that
are comparatively higher than the IC50 values for HA subtypes associated with human
disease (ranging from ~13,000 for H14 to ~900 for H13). Currently there is no commercially
available H17 or H18 subtype antisera. Due to the association of H17 in frugivorous
bat species, sera collected from bats in Nigeria, as provided by the Animal and Plant
Health Agency (APHA), were assessed against the H17 pseudotype (Figure 5d). Three
bats within a larger panel (only five samples shown here) neutralized the H17 PV with
similar IC50 dilution values of 537, 645, and 724, respectively. (Figure 5d). Human IBV
PV from both Yamagata and Victoria-like lineages were also susceptible to neutralization
from reference antisera (Figure 5e). Antisera to pre-split IBV strains were not available
for this study, nonetheless, our representative pre-split IBV (B/Hong Kong/73) strain was
neutralized by both anti-Yamagata and anti-Victoria reference sera. However, this PV was

https://sites.google.com/site/cmzmasek/home/software/archaeopteryx-js
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more susceptible to neutralization by antisera generated using HA from the Victoria-like
lineage than the Yamagata-like lineage (Figure 5e), with IC50 dilution values of 688.8 and
>10,000, respectively. All antisera IC50 dilutions are reported in Table S2.
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Figure 5. Neutralization of influenza pseudotypes by reference antisera and bat sera from influenza surveillance. (a) Neu-
tralization of representative IAV subtypes that have previously caused infection in humans (H1, H2, H3, H5, H7, and
H9). (b) Neutralization of pseudotypes representing IAV isolated from swine (H1). (c) Neutralization of pseudotypes
that are representative of IAV found in avian populations (H4, H6, H8, H9, H10, H11, H12, H13, H14, H15, and H16).
(d) Neutralization of H17 PV (A/little yellow-shouldered bat/Guatemala/060/2010) by bat sera from bat surveillance
sampling in Nigeria as provided by APHA. (e) Neutralization of IBV pseudotypes that have caused human infection
(B/Yamagata-like and B/Victoria-like viruses and presplit IBV). As presplit antiserum was not available, neutralization
susceptibility of this PV to B/Yamagata lineage antisera (denoted with *) and B/Victoria lineage antisera denoted with **)
have been shown. Neutralization was measured by a luciferase reporter assay. Reference antisera and bat sera were serially
diluted two-fold from a starting dilution of 1:100. A total of 1.0 × 106 RLU of PV was then added to each well. For all
plots, each point represents the mean and standard deviation of two replicates per dilution. Details of reference antisera are
indicated in Table 2.
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3.3. Mouse Immunogenicity Studies

We conducted preliminary mouse immunogenicity studies to determine the capacity
of selected HA potential vaccine candidates to elicit a measurable immune response, assess
safety, and to see if our dose and dosing regimen could inform future preclinical trials for
protection and efficacy. In this study, we measured immune responses to vaccination in
mouse sera (humoral immune responses). The humoral immune response is assessed from
the post-vaccination appearance of antibody directed at the specific vaccine antigen at
appointed time points. Using our PV library, we measured functional antibodies in mouse
sera that can be applied to samples in low containment, which would not be possible using
wildtype viruses.

3.3.1. Monitoring of the Immune Response throughout the Vaccination Protocol

We first determined if our dose of 50 µg of pEVAC HA DNA could generate an
immune response that could be monitored across a certain time frame, and if additional
immunizations could increase this specific immune response (Figure 1). It should be noted
that all mice used for our experiments were naïve and have not had prior exposure to
influenza, hence it is assumed that neutralization of PV will be due to the immune response
generated by immunization with influenza antigens.

We observed an immune response in all mice (n = 6) vaccinated with pEVAC EN/09
(H1) against the corresponding homologous EN/09 (H1) PV in all post-vaccination samples
from the earliest time of sampling (42 dpi) as compared to pre-vaccination sera (day 0)
(Figure 6). At 42 dpi, mice had received three immunizations (day 0, day 14, and day 28)
and had already developed neutralizing antibody responses compared to day 0 (Figure 6a).
At 56 and 70 dpi, mice had received four immunizations (day 0, day 14, day 28, and
day 42) (Figure 6b,c). A significant increase in detectable neutralizing antibodies can be
seen between the third and fourth round of immunizations (Figure 6d) demonstrating
that boosting the immune response with subsequent immunizations may give rise to
stronger neutralizing titres. There was no significant difference between neutralizing
activity of mouse sera from bleeds taken at 56 and 70 dpi (Figure 6d), suggesting that we
had employed an ideal number and interval of immunizations of pEVAC HA to achieve
optimal strain-specific titres in mice.

3.3.2. Strain-Specific and Subtype-Specific Immune Responses Post-Vaccination

The ability of mouse sera vaccinated with a specific IAV strain to neutralize strains of
the same subtype was then evaluated. This was to assess possible strain cross-reactivity of
the immune responses elicited by vaccination. This is especially important for influenza,
which is subject to continuous random antigenic drift and wherein viruses of the same
subtype may belong to different clades. Given this, we chose to investigate H1, the
most recent IAV pandemic strain (in 2009), and HPAI subtypes H5 and H7, which have
caused human spillovers from fatal poultry outbreaks in the past. We employed the
same immunization procedure as detailed above and terminal bleeds were assessed for
neutralizing activity.

For our A/H1 panel, we immunized mice with the pandemic strain EN/09 (H1)
(Figure 7a). We tested against a previous H1 pandemic strain, SC/1918 (Spanish flu), and a
possible emerging pandemic strain, swine/BJ/18, guided by the knowledge that the last
H1N1 pandemic (swine flu) was caused by a quadruple-reassortant virus, containing genes
from Asian and European swine, North American avian, and human influenza virus [32].
Terminal sera from mice immunized with EN/09 were able to neutralize all H1 PV tested,
with no significant difference observed in neutralization activity against homologous and
heterologous strains of the same subtype, with representative PV strains covering 100 years,
from 1918 to 2018 (Figure 7a).
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Figure 6. In vitro neutralizing activity of mouse sera against A/England/195/09 (H1) (EN/09) as monitored at specific
timepoints during the immunization protocol. Mice were vaccinated with 50 µg of pEVAC EN/09 (H1) on days 0, 14,
28, and 42 (Figure 1). Bleeds were taken (a) 42 days post immunization (dpi), (b) 56 dpi, and (c) 70 dpi (terminal bleed).
Neutralizing activity was tested against 1 × 106 RLU of A/England/195/09 (H1) PV. (d) Comparison of the half maximal
inhibitory dilutions (IC50) in post-vaccination samples as a function of time is shown in brackets (* p < 0.05). The broken
line shows an assigned baseline level of 2 indicating 0% neutralization. For plots (a–c), the mean and standard deviation of
individual mouse serum samples are shown (n = 6). Plot (d) shows the median and interquartile range of samples tested.

We immunized mice with gyr/WA/15 (H5) for our A/H5 panel (Figure 7b). We tested
across six different clades, gyr/WA/14 (clade 2.3.4.4c), chx/MX/07 (American non-goose
Guangdong), ID/05 (clade 2.1.3.2), VN/04 (clade 1), wsn/MN/05 (clade 2.2), and AN/05
(clade 2.3.4). HPAI H5 strains have been known to cause deadly outbreaks in poultry with
some human spillover in the past [77,78]. H5 viruses especially those in clade 2 are known
to evolve rapidly and extensively, with newly emerging strains circulating in many regions
of the world [78]. Our findings here demonstrate that terminal sera from mice immunized
with gyr/WA/15 (H5) were unable to neutralize the other H5 PV tested as effectively as the
homologous strain used for vaccination (Figure 7b). Interestingly, one mouse developed a
broadly neutralizing response and was able to neutralize all PV tested except for IN/05 but
all other samples revealed no H5 cross-strain neutralizing immune response (Figure 7b).

Mice were immunized with SH/13 (H7) for the H7 panel (Figure 7c). In addition to
the homologous SH/13 (H7) PV, we tested against four other H7 strains, FPV/RO/1934,
the historical H7 fowl plague virus of 1934, a human IAV PV, AH/13, and two avian PV,
npd/CA/16, and duc/VN/18. Terminal sera from mice immunized with SH/13 were able
to neutralize all H7 PV tested, with no significant difference observed in the means of the
IC50 dilution values obtained against homologous and heterologous strains of the same
subtype (Figure 7c). Some serum samples were unable to neutralize all three H7 avian PV,
but all serum terminal bleeds were effective against the other H7 human PV tested, AH/13,
with neutralization of the homologous strain showing the same pattern (Figure 7c).
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Figure 7. In vitro neutralizing activity as shown by IC50 dilution of mouse sera vaccinated with an HA subtype
tested against homologous PV and representative PV strains of the same subtype. (a) Mice were vaccinated with
50 µg of pEVAC HA A/England/195/09 (H1) (EN/09) (n = 5). Terminal bleeds (70 dpi) were tested against H1
PV strains (x-axis): homologous EN/09, A/South Carolina/1/1918 (H1) (SC/1918), and A/swine/Beijing/301/18
(H1) (swine/BJ/18). (b) Mice were vaccinated with 50 µg of pEVAC HA A/gyrfalcon/Washington/41088-6/14 (H5)
(gyr/WA/14) (n = 5). Terminal bleeds (70 dpi) were tested against H5 PV strains (x-axis): homologous gyr/WA/14,
A/chicken/Mexico/7/07 (H5) (chx/MX/07), A/Indonesia/5/05 (H5) (ID/05), A/Vietnam/1203/04 (H5) (VN/05),
A/whooper swan/Mongolia/244/05 (H5) (wsn/MN/05), and A/Anhui/1/05 (H5) (AN/05). (c) Mice were vaccinated
with 50 µg of pEVAC HA A/Shanghai/2/13 (H7) (SH/13) (n = 6). Terminal bleeds (70 dpi) were tested against H7 PV strains
(x-axis): homologous SH/13, A/Anhui/1/13 (H7) (AH/13), A/FPV/Rostock/1934 (H7) (FPV/RO/1934), A/northern
pintail duck/California/UCD1582/16 (H7) (npd/CA/16), and A/duck/Vietnam/HU10-64/18 (H7) (duc/VN/18). For all
plots, the median and interquartile range of individual mouse serum samples per immunization group are shown. The
solid line indicates an assigned maximum IC50 dilution of 10,000 showing 100% neutralization and the broken line shows
an assigned baseline level of 0.1 indicating 0% neutralization (cell only mean). Comparisons of no significant difference (ns:
p > 0.05) against the homologous PV are shown in brackets.

We then examined the breadth of responses within a subtype with the idea that one
vaccination could protect from small changes caused by antigenic drift and provide some
initial protection from reassortant viruses that can transmit between species. This is also the
basis of strain selection for seasonal influenza vaccination [56,79]. To test this, we examined
cross strain neutralization in mice vaccinated with antigens from strains of IAV H3 isolated
from human and avian origins. H3 circulates in the human population and is a component
of the quadrivalent influenza vaccine, transmission is often from animal sources [7,8], and
therefore cross-reactive immune responses would be beneficial.

We immunized groups of mice with H3 from avian strains, A/ruddy turnstone/
Delaware Bay/606/2017 (H3) (rtn/DE/17) and A/duck/Quang Ninh/220/2014 (H3)
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(duc/QN/14), and two strains of H3 of clades 3C.2a2 that have circulated recently in the hu-
man population, A/South Australia/34/2019 (H3) (SA/19) and A/Switzerland/8060/2017
(H3) (SZ/17), respectively (Figure 8). Terminal sera from mice were tested against two
avian H3 PV matched to the immunization antigens, rtn/DE/17 and duc/QN/14, and one
representative human strain PV, A/Udorn/307/1972 (H3).
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Figure 8. In vitro neutralizing activity as shown by IC50 dilution of mouse sera vaccinated with avian and human pEVAC
H3 vaccine antigens tested against homologous avian H3 PV and a representative human PV strain of H3. Four groups
consisting of 6 mice each (n = 6/group) were vaccinated with 50 µg of pEVAC HA-A/ruddy turn-stone/Delaware
Bay/606/2017 (H3) (rtn/DE/17) (pink square) or HA-A/duck/Quang Ninh/220/2014 (H3) (duc/QN/14) (green triangle),
HA-A/South Australia/34/2019 (H3) (SA/19) (violet inverted triangle), and HA-A/Switzerland/8060/2017 (H3) (SZ/17)
(purple diamond), respectively. An additional group of mice was vaccinated with PBS (negative control group) (n = 6).
Terminal bleeds (70 dpi) were tested against H3 PV strains: 2 homologous avian PV, rtn/DE/17 and duc/QN/14, and
one human PV, A/Udorn/307/1972 (UD/1972), as shown in the x-axes. For all plots, the median and interquartile range
of individual mouse serum samples per immunization group are shown. The solid line indicates an assigned maximum
IC50 dilution of 10,000 showing 100% neutralization and the broken line shows an assigned baseline level of 0.1 indicating
0% neutralization (cell only mean). Comparisons of no significant difference (ns: p > 0.05) against the homologous PV are
shown in brackets.

Terminal sera from mice immunized with rtn/DE/17 (Figure 8, 1st panel) were
able to strongly neutralize a homologous PV (rtn/DE/17) with an IC50 dilution range of
413–8634. These mice were also able to neutralize a heterologous PV duc/QN/14 with
no significant difference compared to sera from mice vaccinated with the duc/QN/14
antigen (Figure 8, 2nd panel). Only one mouse from the group vaccinated with rtn/DE/17
produced responses that were able to neutralize human H3 PV, A/Udorn/307/1972
(Figure 8, 3rd panel), whereas, all mice vaccinated with duc/QN/14 were able to neu-
tralize A/Udorn/307/1972. This is promising as vaccination with an avian H3 has shown
neutralization of a human H3 PV, albeit an older strain from 1972. Mice immunized with
SA/19, a human H3 antigen, did not neutralize any of the PV tested except for serum from
one mouse, which was able to neutralize PV rtn/DE/17 (IC50 dilution of 5659). Sera from
half of the mice immunized with SZ/17 were able to neutralize PV rtn/DE/17 and two
mice were able to neutralize duc/QN/14 and A/Udorn/307/1972 PV. Our results show
that vaccination with duc/QN/14 elicited the best immune responses against all H3 PV
tested, either avian or human (Figure 8).

3.3.3. Cross-Subtype Immune Responses Post-Vaccination

As seen with the results indicated above (Figures 7 and 8), vaccination with subtype
specific antigens had very little effect against other strains from that same subtype. This is
what is observed in seasonal vaccination that generates subtype-specific antibodies that
will have little or no efficacy against drifted strains [80,81]. An immunization that gives rise
to broadly protective humoral immunity against influenza remains a sought-after goal [82].
It has been previously described that cross-protective immunity against pandemic H1N1
(2009) can be induced by seasonal influenza A (H3N2) infection [83]. Here we attempted to
demonstrate cross-subtype neutralization from immunization among IAV subtypes that
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are closest to each other on the phylogenetic tree for IAV (Figure 4) and between the two
IBV lineages, B/Victoria (B/Vic) and B/Yamagata-like viruses (B/Yam).

For the IAV H7/H10/H15 study (Figure 9a, 1st panel), mice vaccinated with npd/CA/
16 (H7) showed no significant difference in neutralizing activity (n.s.) with mice vaccinated
with duc/VN/18 (H7) when tested against the duc/VN/18 (H7) PV. This was also observed
with mice vaccinated with mrd/UT/18 (H10) and duc/BD/15 (H15) (Figure 9a, 1st panel).
This suggests that the vaccination with northern pintail duck/CA/16 (H7), mrd/UT/18
(H10), and duc/BD/15 (H15) produced a similar neutralizing response to the homologous
antigen against the duc/VN/18 (H7) PV in vitro. Mice vaccinated with the other antigens,
duc/BD/15 (H10) and wts/WAUS/79 (H15), showed little to no neutralization of the H7
PV, this may be partly due to this H15 virus being isolated in 1979, suggesting that this
avian H15 diverged between 1979 and 2018 (Figure 9a, 1st panel).

Results for groups tested against mrd/UT/18 (H10) PV are more clear-cut (Figure 9a,
2nd panel), with only groups vaccinated with H10 antigens showing neutralizing activity
against the PV. There was also no significant difference between the IC50 values against
the mrd/UT/18 (H10) PV in the group vaccinated with the other H10, duc/BD/15, to that
vaccinated with the homologous mrd/UT/18 (H10) (Figure 9a, 2nd panel). Here, only
neutralization of PV by mice vaccinated with the same subtype is demonstrated. Looking
at the phylogenetic tree (Figure 4), H10 resides on a different branch than H7 and H15, and
therefore it was highly unlikely that cross-subtype neutralization would be observed.

For groups tested against duc/BD/15 (H15) PV, vaccination with the homologous
antigen, the other H15 antigen, wts/WAUS/79, and duck/VN/18 (H7) showed neutraliz-
ing activity (Figure 9a, 3rd panel). Neutralizing activity of mice vaccinated with all other
antigens tested was closer to that of the negative control group (PBS), although a few
responders, located above the upper extreme quartile, were observed.

For the IAV H11/H13/H16 study (Figure 9b, 1st panel), mice vaccinated with rds/CL/
16 (H11) showed no significant difference in neutralizing activity (n.s.) with mice vacci-
nated with cnt/NL/15 (H11) when tested against the cnt/NL/15 (H11) PV. This suggests
that vaccination with rds/CL/16 (H11) produces the same neutralizing response as its
homologous antigen against the cnt/NL/15 (H11) PV in vitro. Mice vaccinated with both
H13 antigens showed very little neutralization against the H11 PV, with only two mice
of the lgl/NJ/17(H13) group and one mouse from the rbg/MN/17 (H13) group showing
neutralization though IC50 values that were closer to the negative control group (Figure 9b,
1st panel). There was no neutralization of the H11 PV by mice vaccinated with H16 anti-
gens, mgl/SCA/18 (H16) and bhg/NL/16 (H16), suggesting that this antigen did not elicit
significant responses to epitopes that are common to both the H11 and H16 IAV strains.

When sera were tested against lgl/NJ/17 (H13) (Figure 9b, 2nd panel), mice vaccinated
with H11 antigens produced poor neutralizing responses. However, similar to what we
observed in the H11 PV neutralization (Figure 9b, 1st panel), there was no significant
difference between the IC50 values of groups vaccinated with the other H13, rbg/MN/17
(H13), to those vaccinated with the homologous lgl/NJ/17 (H13) against the lglNJ/17 (H13)
PV (Figure 9b, 2nd panel). Surprisingly, cross subtype neutralizing activity was observed
in sera from mice vaccinated with both H16 antigens with no significant difference between
the IC50 values of these groups with those vaccinated with the homologous lgl/NJ/17
(H13) against the lgl/NJ/17 (H13) PV (Figure 9b, 2nd panel). It is of note here that low
level background neutralization was observed in the sera of the negative control group
against lgl/NJ/17 (H13) PV, this was not seen when this group was tested against the H11
or H16 PV, reasons for this are currently unclear.
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Figure 9. In vitro neutralizing activity as shown by IC50 dilution of mouse sera vaccinated with HA antigens from the 
closest phylogenetically related IAV subtypes, (a) H7, H10, and H15, (b) H11, H13 and H16, and (c) IBV HA antigens from 
pre-split, Yamagata and Victoria like-lineages. Neutralizing activity of sera from vaccinated mice were tested against ho-
mologous and heterologous strains from the same subtype and a representative strain within the related subtypes. (a) IAV 
H7/H10/H15 study. Six groups consisting of 6 mice each (n = 6/group) were vaccinated with 50 μg of pEVAC expressing 
A/duck/Vietnam/HU10-64/2018 (H7) (duc/VN/18) (pink square), A/northern pintail duck/California/UCD1582/2016 (H7) 
(npd/CA/16) (green triangle) (n = 6), A/duck/Bangladesh/24268/2015 (H10) (duc/BD/15) (violet inverted triangle), A/mal-
lard/Utah/D1802334/2018 (H10) (mrd/UT/18) (purple diamond), A/wedge-tailed shearwater/Western Australia/2576/1979 
(H15) (wts/WAUS/79) (light blue circle), and A/duck/Bangladesh/24697/2015 (H15) (duc/BD/15) (hollow black square), 
respectively. Terminal bleeds (70 dpi) were tested against H7 PV duc/VN/18, H10 PV mrd/UT/18, and H15 PV duc/BD/15 
as shown on the x-axes. (b) IAV H11/H13/H16 study. Six groups consisting of 6 mice each (n = 6/group) were vaccinated 
with 50 μg of pEVAC cloned with A/common teal/Netherlands/1/2015 (H11) (cnt/NL/15) (pink square), A/red/shov-
eler/Chile/C14653/2016 (H11) (rds/CL/16) (green triangle), A/laughing gull/New Jersey/UGAI7-2843/2017 (H13) (lgl/NJ/17) 
(violet inverted triangle), A/ring-billed gull/Minnesota/OPMNAI0816/2017 (H13) (rbg /MN/17) (purple diamond), 
A/black-headed gull/Netherlands/1/2016 (H16) (bhg/NL/16) (light blue circle), and A/mew gull/South central Alas-
ka/18MB01898/2018 (H16) (mgl/SCA/18) (black hollow square). Terminal bleeds (70 dpi) were tested against H11 PV 
cnt/NL/15, H13 PV lgl/NJ/17, and H16 PV mgl/SCA/18 as shown in the x-axes. (c) IBV cross liA neage study. Four groups 
of mice were vaccinated with 50 μg of pEVAC cloned with B/Singapore/222/1979 (presplit) (B/SG/1979) (pink square) (n = 
5), B/Colorado/06/2017 (B/Vic) (B/CO/17) (green triangle) (n = 6), B/Phuket/3073/2013 (B/Yam) (B/PHK/13) (violet inverted 

Figure 9. In vitro neutralizing activity as shown by IC50 dilution of mouse sera vaccinated with HA antigens from the
closest phylogenetically related IAV subtypes, (a) H7, H10, and H15, (b) H11, H13 and H16, and (c) IBV HA antigens
from pre-split, Yamagata and Victoria like-lineages. Neutralizing activity of sera from vaccinated mice were tested against
homologous and heterologous strains from the same subtype and a representative strain within the related subtypes. (a) IAV
H7/H10/H15 study. Six groups consisting of 6 mice each (n = 6/group) were vaccinated with 50 µg of pEVAC expressing
A/duck/Vietnam/HU10-64/2018 (H7) (duc/VN/18) (pink square), A/northern pintail duck/California/UCD1582/2016
(H7) (npd/CA/16) (green triangle) (n = 6), A/duck/Bangladesh/24268/2015 (H10) (duc/BD/15) (violet inverted triangle),
A/mallard/Utah/D1802334/2018 (H10) (mrd/UT/18) (purple diamond), A/wedge-tailed shearwater/Western Aus-
tralia/2576/1979 (H15) (wts/WAUS/79) (light blue circle), and A/duck/Bangladesh/24697/2015 (H15) (duc/BD/15) (hol-
low black square), respectively. Terminal bleeds (70 dpi) were tested against H7 PV duc/VN/18, H10 PV mrd/UT/18, and
H15 PV duc/BD/15 as shown on the x-axes. (b) IAV H11/H13/H16 study. Six groups consisting of 6 mice each (n = 6/group)
were vaccinated with 50 µg of pEVAC cloned with A/common teal/Netherlands/1/2015 (H11) (cnt/NL/15) (pink square),
A/red/shoveler/Chile/C14653/2016 (H11) (rds/CL/16) (green triangle), A/laughing gull/New Jersey/UGAI7-2843/2017
(H13) (lgl/NJ/17) (violet inverted triangle), A/ring-billed gull/Minnesota/OPMNAI0816/2017 (H13) (rbg /MN/17) (pur-
ple diamond), A/black-headed gull/Netherlands/1/2016 (H16) (bhg/NL/16) (light blue circle), and A/mew gull/South
central Alas-ka/18MB01898/2018 (H16) (mgl/SCA/18) (black hollow square). Terminal bleeds (70 dpi) were tested against
H11 PV cnt/NL/15, H13 PV lgl/NJ/17, and H16 PV mgl/SCA/18 as shown in the x-axes. (c) IBV cross liA neage study.
Four groups of mice were vaccinated with 50 µg of pEVAC cloned with B/Singapore/222/1979 (presplit) (B/SG/1979)
(pink square) (n = 5), B/Colorado/06/2017 (B/Vic) (B/CO/17) (green triangle) (n = 6), B/Phuket/3073/2013 (B/Yam)
(B/PHK/13) (violet inverted triangle) (n = 6), and B/Brisbane/60/2008 (B/Vic) (B/BRI/08) (purple diamond) (n = 6),
respectively. Terminal bleeds (70 dpi) were tested against a representative B pre-split PV, B/Hong Kong/8/1973, a rep-
resentative B/Yamagata PV, B/Yamagata/16/1988, and B/Victoria PV B/Brisbane/60/2008 as shown in the x-axes. For
all plots, an additional group of mice was vaccinated with PBS (n=5/6). Plots show the median and interquartile range of
individual mouse serum samples per immunization group. The solid line indicates an assigned maximum IC50 dilution of
10,000 showing 100% neutralization and the broken line shows an assigned baseline level of 0.1 indicating 0% neutralization.
Comparisons of no significant difference (ns: p > 0.05) and significant difference (* p < 0.05) among IC50 dilution values
with antigen homologous to the PV being tested against is shown in brackets. In the case of (c), comparison is made with
neutralization of the antigen belonging to the same lineage as the PV it is tested against.
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Interestingly, all vaccination groups neutralized the mgl/SCA/18 (H16) PV (Figure 9b,
3rd panel). Vaccinations with the other H16 antigen (bhg/NL/16 (H16)) and both H13
antigens achieved IC50 titres that had no significant difference (n.s.) compared to the
homologous mgl/SCA/18 (H16) vaccination against the mgl/SCA/18 (H16) PV (Figure 9b,
3rd panel). Neutralizing responses were also observed in the sera of mice immunized with
H11 antigens, albeit not as strong as that of the homologous ones, nonetheless these re-
sponses were significantly different from the negative control mice sera (p < 0.05) (Figure 9b,
3rd panel).

In the IBV study, for groups tested against the B/Hong Kong/1973 (B/HK/1973) PV,
a pre-split IBV (Figure 9c, 1st panel) (n = 5 for all groups), no neutralization was observed
in sera from mice regardless of the antigen they had been inoculated with including the
pre-split antigen B/Singapore/1972 (B/SG/1972). None of the groups showed responses
that were significantly different from sera collected from mice in the negative control group
(PBS), which, incidentally, was showing some background against this PV. Most of the mice
that were vaccinated with any of the antigens tested failed to reach 50% neutralization
against the pre-split PV (Figure 9c, 1st panel).

When groups were tested against B/Yam/1988 (B/Yam) (Figure 9c, 2nd panel) (n = 5),
sera from mice vaccinated with B/SG/1972 (pre-split) did not show any neutralization,
except for one outlier that was outside the upper extreme quartile. Neutralization was
observed for sera from all other groups including, as expected, those vaccinated with
the antigen from Yamagata-like lineage (B/PHK/13) (Figure 9b, 2nd panel). Nonetheless,
vaccination employing these antigens did not produce strong neutralizing responses against
the B/Yam PV, as responses showed no significant difference with the PBS group, with
IC50 dilution values ranging from 0.1 to 100.

Results for groups tested against B/Bri/08 PV (Figure 9c, 3rd panel) were interesting;
as sera from mice in all groups were able to neutralize this B/Vic PV. Sera from mice
vaccinated with B/SG/1972 (pre-split) and the other B/Vic antigen, B/CO/17, achieved
IC50 dilution values, which had no significant difference (n.s) compared to that vaccinated
with the homologous B/Bri/08 (B/Vic) against the B/Bri/08 (B/Vic) PV (p > 0.05). Sera
from mice vaccinated with antigens from the other lineage, B/PHK/13 (B/Yam), achieved
IC50 titres that were higher than those observed for mice from the group vaccinated with
homologous B/Bri/08 (B/Vic) antigen (* p < 0.05) against B/Bri/08 (B/Vic) PV. This
suggests that vaccination with either pre-split, B/Yam or B/Vic lineage antigens produces
a significant neutralizing response against this B/Victoria PV.

3.4. In Vitro Neutralization of HA Pseudotypes by HA-Stem Directed Monoclonal Antibodies

It is desirable to have antibodies that will elicit a broad, cross-subtype specific response
in order to address a pandemic threat. The influenza pseudotype microneutralization
(pMN) assay is highly sensitive and specific for detecting neutralizing antibodies against
influenza viruses regardless of whether they are HA-head specific or are targeted against the
HA stem, making it an excellent test of antibody functionality in vitro [13,47,57,84]. Several
broadly reactive monoclonal antibodies have been developed for use in immunotherapy
against influenza. Monoclonal antibody CR9114 binds to IBV from both lineages and
additionally binds influenza A viruses from both group 1 and group 2 [85], and FI6 is
a pan-influenza A neutralizing antibody [84]. Both CR9114 and FI6 bind to a highly
conserved epitope in the HA stem [84,85] enabling them to broadly neutralize influenza
viruses and providing protection against a lethal influenza challenge in vivo. Here, we
show neutralization of representative IAV and IBV PV by both mAbs (Table 4).

The half-maximal inhibitory concentration (IC50) of both mAbs against the PV tested
were determined. Dose response curves (Figure S1) were obtained by normalizing the RLU
values against that of the pseudotype only controls corresponding to 0% neutralization and
cell-only (no virus) controls corresponding to 100% neutralization. A non-linear regression
(curve fit) analysis on the normalized data using a log (inhibitor) versus normalized
response variable slope equation to compute for the IC50 values was then carried out. The
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IC50 values for CR9114 against all IAV PV tested were in the range of 0.3–120 ng/mL
(Table 4). The IC50 values for FI6 were more varied, with a range of 0.02–60 ng/mL
(Table 4).

Table 4. IC50 (half-maximal inhibitory concentration) values of CR9114 and FI6 against representative
influenza PV in vitro. (-) indicates no neutralization. n.d. indicates the experiment was not done.

Pseudotype Virus (PV) IC50 (ng/mL)

Subtype Strain CR9114 FI6

H1 A/England/195/2009 3.63 13.25

H2 A/quail/Rhode Island/16-018622-1/2016 5.06 26.70

H3 A/ruddy turnstone/Delaware Bay/606/2017 51.62 9.83

H4 A/Calidris
ruficollis/Hokkaido/12EY0172/2012 1.68 8.36

H5 A/gyrfalcon/Washington/41088-6/2014 10.74 60.15

H6 A/American wigeon/California/HS007A/2015 0.68 2.91

H7 A/Shanghai/02/2013 11.88 17.39

H8 A/mallard duck/Ohio/16OS0672/2016 0.71 0.23

H9 A/chicken/Israel/291417/2017 0.39 6.41

H10 A/mallard/Utah/D1802334/2018 1.26 0.57

H11 A/red shoveler/Chile/C14653/2016 120.90 0.02

H12 A/duck/Mongolia/850/2018 15.06 0.51

H13 A/laughing gull/New
Jersey/UGAI17-2843/2017 31.97 52.05

H14 A/blue-winged Teal/Ohio/18OS1695/2018 0.58 0.06

H15 A/wedge-tailed shearwater/Western
Australia/2576/1979 10.73 14.12

H16 A/black-headed gull/Netherlands/1/2016 45.41 55.50

H17 A/little yellow-shouldered
bat/Guatemala/60/2010 0.54 0.34

H18 A/flat-faced bat/Peru/033/2010 0.26 3.14

B B/Hong Kong/8/1973 - n.d.

B/Vic B/Victoria/1/1987 - n.d.

B/Yam B/Yamagata/16/1988 - n.d.

Both CR9114 and FI6 effectively neutralized key Group I Influenza A subtypes, H1,
H2, H3, H5, H7, and H9 in vitro (Table 4, Supplementary Figure S1). These representative
IAV subtypes were previously detected in the human population, including A(H1N1),
A(H2N2), and A(H3N2), strains of which have previously caused global pandemics. Both
mAbs were also able to neutralize all influenza PV representative strains from known avian
subtypes for both the IAV Group I (H6, H8, H11, H12, H13, and H16) and Group II (H4, H10,
H14, and H15) (Supplementary Figure S1). Notably, bat influenza H17 and H18 were also
potently neutralized by CR9114 and FI6 (Table 4). In contrast, CR9114 and FI6 showed no
neutralization activity against any of the influenza B strains tested. This correlates with the
previous findings of CR9114 being unable to neutralize influenza B viruses in vitro as tested
using the classic microneutralization and hemagglutination inhibition assays [85]. Some
neutralization activity can be seen for CR9114 against B/Phuket/3073/2013, a B/Yamagata-
like virus, at the highest concentration tested (1 µg/mL), but there was no dose–response
established indicating no true neutralization occurred. As FI6 is only expected to neutralize
influenza A viruses, we did not test it against IBV PV.
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4. Discussion

Influenza infection contributes annually to morbidity and mortality in humans and
in wild and domesticated animals worldwide even with vaccination programs already
in place. There is additionally the ever-present threat of a pandemic brought about by
novel influenza subtypes to which the population has no pre-existing immunity and of
which seasonal vaccines may be unable to protect against. Protection provided by current
seasonal influenza virus vaccines is generally limited and relies on predictive science.
Ideally, vaccines should be rapidly generated upon the emergence of a novel threat and
should be able to protect against both drifted and shifted strains, this is the goal of a
universal vaccine approach.

To aid in efforts to create a universal influenza vaccine and assist in pandemic pre-
paredness, we created a comprehensive influenza hemagglutinin pseudotype library. This
library enables assessment of responses in lower containment settings thus negating the
requirement for BSL3 facilities that are commonly required when working with high-risk
influenza subtypes. Using pseudotypes also negates the need to isolate live viruses from
clinical material, a process that is expensive and can be technically challenging and can
potentially reduce the genetic authenticity of the isolated virus through egg adaptation.
Generation of influenza pseudotyped lentiviral vector particles by transient transfection
was achieved by utilizing the packaging construct p8.91, which drives the expression of
all viral proteins required in trans [62]. Viral cis-acting sequences are then introduced into
the same cell, maintaining the separation of viral genes and cis-acting sequences during
production. This prevents recombination, leading to the production of replication-defective
particles able to specifically transduce target cells. This system has been extensively op-
timized by Naldini et al. to ensure that recombination does not occur and to assess for
safety [62,63,67,86]. The HA genes are then expressed by heterologous plasmids. Once the
HA sequence has been identified, this can be cloned into a suitable plasmid expression
vector. Here we utilized pI.18, pEVAC, and phCMV but other plasmids could be employed
and the amount of DNA required determined using the optimization described in this
study. Addition of a luciferase reporter plasmid produces results that can be determined
rapidly using a system, which has the potential to be upscaled to high throughput plat-
forms. Additionally, PV can be stored at −80 ◦C for extended periods of time and as was
shown with H5, can be lyophilized and stored for up to 4 weeks at 37 ◦C [87]. Lyophiliza-
tion could expand the potential to investigate and respond to pandemics or other outbreaks
from any subtype at speed and without the need for cold chain storage.

We also showed that our HA PV library is suitable for the investigation of neutral-
ization of sera collected from different species including mice, bats, sheep, and chickens
(Figure 5, Table 2). The pseudotype library was also effective for use with neutralizing
reference antisera (Figure 5), and this is integral to the vaccine strain selection process for
seasonal influenza vaccines. Laboratories around the world that are part of the World
Health Organization global influenza surveillance and response system monitor the anti-
genic phenotypes of circulating viruses to select vaccine strains for upcoming influenza
seasons. However, investigation of emerging strains that could cause pandemics is limited,
as it is arduous to isolate and propagate the wildtype virus to test against. Our influenza
pseudotype library can be employed to test protection offered by existing vaccines and
antisera used in their selection, in this instance, as tools for surveillance and pandemic
preparedness.

We conducted several preliminary immunogenicity trials with selected vaccine anti-
gens to inform the design of pivotal trials and to provide possible initial evaluation of
vaccine efficacy employing our IAV and IBV pseudotypes. Other screening tools employ
assays that evaluate the presence of binding antibodies but are unable to determine if these
antibodies are functionally useful within samples. A common screening tool is the enzyme
linked immunosorbent assay (ELISA), which can measure the total antibodies (e.g., total
IgG) that bind to selected antigens. However, only a proportion of the total antibodies
detected will be capable of inhibiting viral infection and this should be heavily taken into
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consideration when deciding how to measure the humoral immune response. Alternatively,
the immune response may be assessed by neutralization assays employing native virus or
viral pseudotypes. The latter can be carried out at BSL2 and allow a rapid, reliable, safe,
and easy assessment of humoral immune responses of vaccine antigens against influenza
subtypes, which are difficult to isolate and propagate.

We were able to show that immunization with prospective vaccine antigens and sub-
sequent collection of blood serum samples at appropriate time intervals can be used to
evaluate immune responses that are relevant to dosing strategies going forward (Figure 6).
The data generated could inform the appropriate periods between doses and the num-
ber of doses that could provide the optimal immune response. In our immune response
monitoring study, we found that immunization with 50 µg of pEVAC HA four times in
2-week intervals, produced optimal titres after the 4th inoculation, with immune responses
at 56 and 70 days post immunization showing no significant difference (Figure 6d). Addi-
tionally, for vaccines, it may also be useful to explore the shortest time frame within which
doses may be completed without a detrimental effect on the final immune response. Our
results indicate that by employing our immunization and dosing strategy, a 4th immuniza-
tion with pEVAC HA is necessary to achieve maximal titres, as lower titres were achieved
with only three compared to four immunizations (Figure 6). This could be extended in the
future to explore prime boost regimens with alternative vectors or proteins.

We also ran investigative trials wherein all mice received the same pEVAC HA vaccine
antigen and we performed additional testing using relevant representative PV strains
belonging to the same subtype (Figures 7 and 8). It has been previously demonstrated that
virus strains, even those within the same subtype, have different neutralization suscepti-
bilities to sera that have been identified as cross-neutralizing, suggesting factors such as
availability of HA epitopes via exposure, glycoprotein shielding and their role in antigenic
drift, and immune evasion may be in play [88–91]. Our findings provide an indication as to
whether immunization with a particular strain of the subtype can neutralize drifted strains
of the same subtype, which is very important for lasting vaccine efficacy and protection
especially in the case of influenza. This additional testing can also provide an assessment
of the robustness and breadth of the humoral immune responses elicited by the vaccine to
avian and human strains of the same subtype in the case of IAV and can guide the vaccine
strain or antigen selection in a vaccine to improve or maintain its protective effect.

We also looked at comparing the immune response against phylogenetically related
subtypes to investigate cross-subtype neutralization that can be brought about by vacci-
nation (Figure 9). Here, we also selected IAV strains that are not usually studied, H10,
H11, H13, H15, and H16, together with IBV from both lineages. Data from immunization
protocols using these HA subtypes are very limited and to our knowledge, our group is
among the first to report immune responses as a result of vaccination in these subtypes.
Findings may aid in the development of a vaccine for pandemic purposes or inform pos-
sible pre-existing immune responses in the population. Immune responses generated
by a vaccination with an HA antigen against the homologous PV was successful in all
groups tested (Figures 6–9). These can be used as control groups for future vaccination
experiments. We found that cross-subtype protection is rare and neutralizing responses
are not as strong as the homologous antigen against the PV. Several vaccinations include
that of an H7 antigen that showed neutralization against an H10 and H15 PV (Figure 9a,
1st panel), H13 and H16 antigens showing cross neutralization with each other (Figure 9b),
and B/Yamagata-lineage vaccinated mice neutralizing B/Victoria-lineage PV (Figure 9c).
It can be hypothesized that immunogenic epitopes on the head domain of these rare HA
subtypes are not under strong immune pressure in their natural avian reservoir and are
unlikely to undergo genetic changes due to this pressure, but are more likely to be influ-
enced by stochastic effects that conserve antigenic site sequences [92,93]. This results in the
preservation of important antigenic epitopes such as the membrane-distal receptor-binding
site (RBS) on the HA head containing key highly conserved amino acids involved in re-
ceptor binding [94–97] and can partially explain cross-subtype neutralization seen in our
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vaccination results. Nevertheless, our pseudotype library has enabled us to test immune
responses brought about by vaccination against a variety of IAV and IBV pseudotypes.
This is a promising in vitro screening tool to guide preclinical studies.

In addition to vaccination and antiviral drugs [50], the use of recombinant mono-
clonal antibodies that are broadly neutralizing against influenza is a promising strategy
to counter annual epidemics and pandemic threats especially in individuals with severe
disease. These mAbs, several of which are already in clinical development, bind to function-
ally conserved epitopes such as those in the influenza hemagglutinin (HA) stem, thereby
providing strain independent protection [47,84,85,98,99]. For a time, discovery of these
broadly neutralizing antibodies has been hampered by the lack of assays to properly show
neutralization afforded by these mAbs that is exclusive from hemagglutination inhibition
of HA-head directed antibodies. Antibodies that target the HA stem do not inhibit hemag-
glutination inhibition [51] and are thought to neutralize influenza via other mechanisms.
We successfully employed our pseudotype library to investigate the neutralizing activity of
HA stem-directed mAbs CR9114 and FI6 against representative IAV and IBV PV available.
For instance, we could confirm that CR9114, despite binding to IBV HA, does not neutralize
IBV in vitro. This is an invaluable tool to test functionality of new immunotherapies against
influenza in vitro.

5. Conclusions

Lessons from the past have shown us, that despite our efforts, we are still unprepared
to mitigate the devastating loss of life and livelihood when the next influenza pandemic
occurs. The data presented in this study demonstrated the utility, versatility, and ease of
employing influenza hemagglutinin pseudotyped viruses in preclinical studies to further
vaccine research using reference standards, improve vaccine antigen design, and to evaluate
alternative therapies such as mAbs, against influenza.

This library is expanding as influenza continues to undergo antigenic changes to the
HA protein. We believe it can be part of a toolbox of assays that can be made available
to researchers and will be especially helpful for studies investigating alternative and
innovative influenza vaccine targets. This method employs a system that has the potential
to be high throughput, can be easily adapted to other reporters, and may be incorporated
into large scale clinical trials and surveillance programs. The PV can also be further
developed in an ELISA where it will display the HA trimer in its native form and can be
used to distinguish HA stalk responses and quaternary epitopes. Lentiviral PV can be
constructed to display other potential vaccine targets such as neuraminidase (NA) and,
in the future, we plan to complete a full NA PV library to complement our HA library.
Additionally, these PV could be used to observe glycosylation patterns and their influence
on the neutralization of influenza. We believe that our influenza PV library will be an
invaluable tool for research and would be impactful in the development of solutions against
the changing face of influenza.
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