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Abstract 

Background: Adrenocortical carcinoma (ACC) is a rare, often-aggressive neoplasm of the adrenal cortex, with a 
14–17 month median overall survival. We asked whether tumors from patients with advanced or metastatic ACC 
would offer clues as to putative genes that might have critical roles in disease progression or in more aggressive 
disease biology.

Methods: We conducted comprehensive genomic and expression analyses of ACCs from 43 patients, 30 female, and 
42 from metastatic sites, including deep sequencing, copy number analysis, mRNA expression and microRNA arrays.

Results: Copy number gains and losses were similar to that previously reported for ACC. We identified a median 
mutation rate of 3.38 per megabase (Mb). The mutational signature was characterized by a predominance of C > T, 
C > A and T > C transitions. Only cancer genes TP53 (26%) and beta-catenin (CTNNB1, 14%) were mutated in more than 
10% of samples. The TCGA-identified putative cancer genes MEN1 and PRKAR1A were found in low frequency—4.7 
and 2.3%, respectively. The majority of the mutations were in genes not implicated in the etiology or maintenance 
of cancer. Specifically, amongst the 38 genes that were mutated in more than 9% of samples, only four were repre-
sented in Tier 1 of the 576 COSMIC Cancer Gene Census (CCGC). Thus, 82% of genes found to have mutations likely 
have no role in the etiology or biology of ACC; while the role of the other 18%, if any, remains to be proven. Finally, the 
transcript length for the 38 most frequently mutated genes in ACC is statistically longer than the average of all coding 
genes, raising the question of whether transcript length in part determined mutation probability.

Conclusions: We conclude that the mutational and expression profiles of advanced and metastatic tumors are very 
similar to those from newly diagnosed patients—with very little in the way of genomic aberration to explain differ-
ences in biology. With relatively low mutation rates, few major oncogenic drivers, and loss of function mutations in 
several epigenetic regulators, an epigenetic basis for ACC may be postulated and serve as the basis for future studies.
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Background
Adrenocortical carcinoma (ACC) is a rare, often aggres-
sive, and frequently fatal neoplasm of the adrenal cortex. 
A report describing trends in ACC in the United States 
found an age adjusted annual incidence of ~ 1/1,000,000 
population with the incidence largely unchanged since 

the mid 1970′s [1]. The median age was 55, with a female 
to male preponderance of 1.34:1, a Whites to non-Whites 
ratio of 6.3:1, and most still diagnosed in advanced stages 
[1]. The rarity of this malignancy creates problems for its 
detailed study, even in large academic centers. Epidemio-
logic studies outside the United States have also indicated 
the rarity of the disease, at 1/1 million in the Netherlands, 
although a cluster with an incidence of 3-4/1 million has 
been found in children in Brazil [2, 3].
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Prognosis is poor, with a 14–17 month median over-
all survival, and 5-year mortality rates of 75–90% [1, 
2, 4]. Multiple strategies have been utilized to identify 
prognostic factors, including clinical, transcriptomic, 
epigenomic, and genomic. A staging system by the 
European Network for the Study of Adrenal Tumors 
(ENS@T) based on a retrospective analysis of data from 
416 patients in the German ACC registry utilizes clini-
cal data [5]. Transcriptomic analyses initially identi-
fied two clusters indicating poor (C1A) and good (C1B) 
prognosis groups [6, 7]. de Reyniès et al. also found in 
92 patients that “the combined expression of BUB1B 
and PINK1 was the best predictor of overall survival” 
[6]. A transcriptomic analysis utilizing The Cancer 
Genome Atlas (TCGA) dataset confirmed the C1A/
C1B subgroups, refining the data into four subgroups 
based on expression of steroid differentiation genes and 
proliferation genes, with high steroid/high proliferation 
having the poorest outcome [8]. Others have reported 
that hypermethylation is associated with a poor sur-
vival [9] including in particular hypermethylation of 
the G0S2 gene [10]. One study that examined 203 ACC 
tumors in a validation cohort concluded that CpG 
island methylation analysis was an independent prog-
nostic marker of survival in ACC, “independent of the 
best established prognostic factors, including tumor 
stage and Ki67” [11].

Somatic mutations have also been examined as prog-
nostic markers. Genomic studies reported TP53 and 
CTNNB1 (encoding beta-catenin) mutations to be mutu-
ally exclusive and found in patients with ACC who had a 
“poor outcome” [12, 13]. Both held up as poor prognostic 
markers in a later multivariate analysis [14]. Importantly 
all survival curves have late plateaus that demonstrate 
“prolonged survival in occasional patients” with meta-
static disease, although the biology for this phenomenon 
is not understood. The best prediction models integrate 
multiple of the above noted features [15].

Two comprehensive genomic analyses including the 
TCGA dataset identified alterations in CTNNB1, TP53, 
CDKN2A, RB1 and MEN1—genes that had previously 
been reported as mutated in ACC—as well as in ZNRF3, 
DAXX, TERT and MED12 [8, 16]. Collectively, alterations 
in ZNRF3, CTNNB1, APC and MEN1 suggested that the 
Wnt/beta-catenin pathway could be a common pathway 
involved in ACC carcinogenesis. And while the authors 
reported numerous mutations and DNA methylation 
alterations in ACCs with poor outcome and specific 
deregulation of two microRNA clusters in ACCs with 
good prognosis, it was unclear how these changes could 
translate into potentially “druggable” findings. A recent 
review suggested as many as 10% of mutations could be 
actionable [17]. A recent genomic analysis of metastatic 

disease concluded there was a higher mutation rate but 
without a common mutation profile emerging [18].

In the present study, we report on a distinct group of 
ACCs, with disseminated metastatic disease. We began 
this effort hoping to discern potential biologic underpin-
nings for bad outcomes. We conclude that ACC remains 
very much a mystery—with advanced and metastatic 
tumors very similar to those from newly diagnosed 
patients—with very little in the way of genomic aberra-
tions to explain it.

Methods
Sample collection, DNA, and RNA isolation
The tumors analyzed for these studies were obtained 
from patients with ACC seen at the National Cancer 
Institute, National Institutes of Health (NIH) in Bethesda, 
Maryland, USA from 1995 to 2015, a period of time 
when over 300 patients were evaluated and treated at the 
center. Tumor samples were collected at the time of sur-
gical resection of sites of recurrence and in one instance 
extensive locally advanced disease; no primary tumors 
are included in this patient cohort. When possible, a 
paired normal buffy coat was obtained for each patient. 
Normal adrenal tissue was obtained from the Coopera-
tive Human Tissue Network (CHTN), Southern Divi-
sion, Birmingham, AL. The H295 cell line was obtained 
from ATCC (Manassas, VA) [19]. Ethics approval for 
the analyses reported here was provided by the Institu-
tional Review Board (IRB) of the National Cancer Insti-
tute in Bethesda, MD, USA. Samples were obtained from 
patients distinct from those reported by Gara et al. [18].

Tumor samples were fresh frozen on dry ice, embed-
ded in OCT, sectioned, stained with hematoxylin and 
eosin and reviewed by a pathologist (MM and SP). 
DNA for Exome Sequencing was isolated using the Qia-
gen DNA micro Kit (Qiagen, Valencia, CA). DNA was 
extracted only on tissue sections that were ≥ 75–80% 
tumor. DNA extraction was also performed on 1–5 × 106 
cells obtained from patient buffy coat samples. RNA was 
extracted from 50–100  mg of patient tumor using the 
Qiagen miRNeasy Kit (Qiagen, Valencia, CA). Extracted 
RNA was then used for cDNA and miRNA array analyses.

Exome capture, sequencing and analysis
Genomic DNA (3  µg, quantitated by fluorometer and 
agarose gel) from 43 adrenal tumors, 25 buffy coats and 
the H295R cell line was isolated, fragmented and exome 
captured.

Exome target capture and enrichment were performed 
using Agilent SureSelect Human All Exon V4 target 
enrichment kit (Agilent Technologies, Santa Clara, CA), 
which targeted 51 megabases of sequence (20,965 genes, 
and 334,378 exons and miRNAs). Exome libraries were 
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prepared by following manufacturer’s recommended 
protocols. Sequencing was performed using an Illumina 
HiSeq2000 (Illumina, San Diego, CA), the sequencing was 
run as 2 × 100 base pairs with TruSeq V3-HS reagents. 
The HiSeq Real Time Analysis (RTA 1.12.4.2) was used 
for processing image files, and the Illumina CASAVA 
1.8.2 was used to demultiplex and convert binary base 
calls and qualities to fastq format. The sequence reads 
were aligned to human genome (GRCh37/USCS hg19) 
reference using the CASAVA 1.8.2 alignment module 
(ELANDv2e gapped alignment). SNPs and Indels were 
called using CASAVA 1.8.2 variant detection module. 
Variants were annotated using ANNOVAR [20]. Variants 
covered by less than 10 high quality reads were excluded. 
Variants in segmental duplications and known repeat 
regions were removed, as these are likely false positives. 
This study aimed to focus on somatic genetic changes, 
therefore identical variants observed in > 4 samples and 
those observed in > 1% of the 1000 Genomes Project [21] 
or NHLBI GO Exome Sequencing Project (ESP6500) [22] 
were also removed as likely germline variants. Addition-
ally, variants in olfactory receptor genes were also not 
included in analyses. Whole Genomic Sequencing fastq 
files were deposited in Sequence Read Archive (SRA); the 
link for the Fastq files can be found in SRA: https ://trace 
.ncbi.nlm.nih.gov/Trace s/study 1/?acc=PRJNA 59617 5

Mutation signatures were analyzed by the Muta-
Gene program [23, 24]. Separate analyses of tumor only 
and tumor normal (blood DNA) pair data gave similar 
results. Mutation profiles were compared to two other 
ACC studies with filtering as follows: COMETE (n = 45, 
cutoff = 4) [16], TCGA (n = 91, cutoff = 9) [8], and NIH 
(n = 43, cutoff = 7).

Variant validation
Selected variants identified in tumor exomes were vali-
dated by manual review using IGV software (Broad Insti-
tute) [25, 26]. When variant frequency was low, primers 
were designed using Primer 3 [https ://bioto ols.umass 
med.edu/bioap ps/prime r3_www.cg] and synthesized by 
Life Technologies (Carlsbad, CA). Phusion Hi Fidelity 
PCR reagents (NE Biolabs, Ipswich, MA) and Eppendorf 
Gradient thermal cycler (Hauppauge, NY) were used to 
generate 200 bp amplicons that were validated by agarose 
gel electrophoresis. Big Dye v.1.1 chemistry (ABI, Fos-
ter City, CA) sequencing was performed on each ampli-
con and then subjected to chromatography on a 3130XL 
Genetic Analyzer (ABI). Chromatograms were examined 
visually to confirm called variants.

Copy number analysis
Copy number was derived from the exome sequence 
of 25 pairs of matched tumor/normal (blood) samples 

using ngCGH [27]. Windows of 1000 reads in the nor-
mal sample were used to calculate a log2 ratio of tumor 
and normal reads and ratios were then median centered. 
These ratios were imported into Nexus 7.5 (Biodiscovery, 
Hawthorne, CA) and the Fast Adaptive States Segmenta-
tion Technique (FASST2) was used to make CNV calls. 
A significance threshold of  5e−6 was used to adjust the 
sensitivity of the algorithm and a minimum number of 
20 amplicons per segment were used to eliminate small 
CNV segments. 0.2/-0.2 were used as cutoffs for gain/loss 
and 0.6/-1.0 for high gain/high loss. Eight tumors were 
removed from analysis due to excessive noise. Regions 
significantly altered in the remaining 17 tumors (as com-
pared to their paired normal sample) were defined and 
gene ontology (GO) terms over-represented in these 
regions were identified.

Gene expression by microarray profiling
Global gene expression analysis was performed accord-
ing to protocol using the Affymetrix PrimeView platform, 
which was applied on 63 samples including 43 patients 
(some with replicates), 5 normal adrenal tissue controls, 
and 1 ACC cell line (H295R). Gene expression data were 
summarized by the SST-RMA (signal space transforma-
tion—robust multi-array average) gene level method 
implemented in the Transcriptome Analysis Console 
(TAC) 4.0 software (Thermo Fisher Scientific, Waltham, 
MA). Differentially expressed genes (DEG) were identi-
fied by comparing the ACC group to the group of 5 nor-
mal controls (Welch t-test, cut-off: twofold change and 
P < 0.05). Significance was adjusted for multiple testing by 
estimating false discovery rates (FDR)1. Data were visual-
ized in Qlucore Omics Explorer v. 3.4 (Qlucore AB, Lund, 
Sweden), including principal component analysis (PCA), 
heat maps, and unsupervised hierarchical clustering. 
Functional analysis, including pathway, upstream regu-
lator, and network analysis, was performed in Ingenuity 
Pathway Analysis (IPA, Qiagen, Redwood City, CA). The 
expression data are deposited in Gene Expression Omni-
bus (GEO), accession number GSE143383 [28].

MicroRNA array profiling
The RNA quality was verified by an Agilent 2100 Bio-
analyzer profile, and 450  ng total RNA from sample 
and a common reference pool was labelled with Hy3™ 
and Hy5™ fluorescent label, respectively, using the 
miRCURY™ LNA Array power labelling kit (Exiqon, 
Denmark) following the procedure described by the 
manufacturer. The labeled RNA samples were hybridized 
to the LNA-enhanced miRCURY™ microarray version 
11.0 (Exiqon, Denmark), which contained capture probes 
targeting all miRNAs for human, mouse or rat registered 
in the miRBASE version 13.0 at the Sanger Institute at 

https://trace.ncbi.nlm.nih.gov/Traces/study1/?acc=PRJNA596175
https://trace.ncbi.nlm.nih.gov/Traces/study1/?acc=PRJNA596175
https://biotools.umassmed.edu/bioapps/primer3_www.cg
https://biotools.umassmed.edu/bioapps/primer3_www.cg
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the time of the analysis. The hybridization was performed 
according to the miRCURY™ LNA array manual using 
a Tecan HS4800 hybridization station (Tecan, Austria). 
After hybridization, washing and drying, the microar-
ray slides were scanned in an Agilent G2565BA Micro-
array Scanner System (Agilent Technologies, Inc., USA) 
and the resulting images were quantified by ImaGene 
v.8.0 software (BioDiscovery, Inc., USA). The quantified 
signals were background corrected (Normexp with off-
set value 10)3 and normalized using the global LOWESS 
(LOcally WEighted Scatterplot Smoothing) regression 
algorithm. The miRNA expression data are deposited 
in Gene Expression Omnibus (GEO) accession number 
GSE143385 [28].

Results
We performed genomic analysis on a set of 69 samples 
that included (1) tumor tissue from 43 patients with ACC 
who underwent resection of metastatic disease (one 
patient #44 had locally advanced disease with extension 
into surrounding tissue); (2) matching normal DNA from 
25 of the 43 patients; and (3) the ACC cell line, H-295, 
established from a carcinoma of the adrenal cortex [19] 

(Table 1). Thirty of the forty-three were women. Median 
age of females was 46; median age of males was 52. 
Patients were likely to have had prior systemic chemo-
therapy and even refractory disease. We utilized a com-
bination of approaches, including exome sequencing, 
mRNA expression arrays and miRNA expression arrays. 
We performed exome capture followed by paired-end 
sequencing on the 69 samples itemized above. The mean 
depth of coverage was 115X per sample, with an average 
of 98% of targeted bases covered by ≥ 10 reads (Addi-
tional file 1: Figs. 1A and 1B).

We used the exome sequence data to perform copy 
number analysis on the 25 tumors with matched nor-
mal samples using ngCGH [20] and Nexus segmentation 
(Biodiscovery, Hawthorne, CA). Eight tumors with excess 
noise were removed from further analysis. In the remain-
ing 17 samples, significant gains were found on chromo-
somes 4, 5, 7, 8, 12, 14, 16, 19 and 20; with significant 
losses observed on chromosomes 1, 2, 6, 9, 10, 11,13, 15, 
17, 18, 21 and 22 (GISTIC, q value < 0.05; Fig. 1a). In all, 
55% of the genome was affected by copy number altera-
tions. The copy number profiles of the tumors described 
here are very similar to Assie et al. and to the metastatic 

Fig. 1 a Frequency of copy number gains/losses in 17 of the 25 ACC tumors with paired normal DNA. The y-axis represents the percentage of 
samples with gain/loss.[ngCGH + Nexus segmentation]. Eight tumors removed due to excess noise. b Mutational Signature in 25 samples from 
Tumor/Normal pairs and in 18 samples with Tumor Only analysis
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Table 1 Demographics for patients whose tumors were subjected to whole exome sequencing (n = 43)

All samples except #44 were obtained from metastatic disease sites; #44 was locally advanced disease; #18 is omitted in the sequence

Abbreviations: MAVE = mitotane + Adriamycin (doxorubicin) + vincristine + etoposide; T-MAVE = tariquidar + MAVE; EDP = etoposide + doxorubicin + cisplatin;

**MS ID, Manuscript ID number

***Age range provided for privacy compliance

MS ID** Sex Age*** Mitotane Systemic therapy prior to metastatectomy DOD Hormonally active

13 F 20′s Yes Mitotane MAVE Taxol Cisplatin Alive Yes, Cushing syndrome

43 F 20′s Yes Dead Yes, Cushing syndrome

9 F 20′s Yes Alive Unknown

17 F 20′s Yes Dead No

4 F 20′s No Dead Yes, Cushing syndrome

30 F 20′s Yes Mitotane Alive No

32 F 30′s Yes T-MAVE Dead No

11 F 30′s Yes EDP Alive No

38 F 30′s Yes Alive Yes, Cushing syndrome

12 F 30′s Yes T-MAVE Alive No

31 F 40′s Yes T-MAVE Dead No

36 F 40′s Yes Dead Yes, aldosterone

26 F 40′s Yes MAVE Dead

42 F 40′s Yes Dead Yes, testosterone

3 F 40′s Yes T-MAVE Gemzar/Cisplatin Alive Yes, based on symptoms

34 F 40′s No Dead Yes, Cushing syndrome

40 F 40′s Yes Mitotane × 2 months Dead No

1 F 40′s Yes EDP Dead Yes, based on symptoms

27 F 40′s No Cisplatin prior to primary resection; cisplat in & 
axitinib prior to metastatic resection

Dead Yes, Cushing syndrome

23 F 50′s Yes Dead Yes, likely Cushing syndrome

2 F 50′s Yes IMC-A12, mitotane Dead Yes, Cushing syndrome

16 F 50′s Yes T-MAVE Dead Yes, Cushing syndrome

44 F 50′s Yes EDP/M Alive Yes, Cushing syndrome based on symptoms

15 F 50′s Yes EDP/M Dead No, palpitations, HTN, sweating

25 F 50′s Yes Mitotane Alive No

21 F 50′s Yes OSI-906, EDP/M, Streptozocin Dead No

29 F 50′s Yes Dead Yes, based on symptoms

24 F 50′s No Dead No, h/o HTN

5 F 50′s Yes EDP/M, Streptozocin Dead No

7 F 60′s Yes T-MAVE Alive No

39 M 30′s No PSC-Velban Alive No

35 M 30′s Yes MAVE Dead No

19 M 30′s Yes Mitotane Dead No

33 M 30′s Yes EDP/M Dead No, h/o hypokalemia

10 M 40′s Yes Mitotane, streptozocin, cisplatin Dead Yes, Cushing syndrome

8 M 50′s No Dead No

37 M 50′s Yes Mitotane Dead Yes, Cushing syndrome

6 M 50′s No Dead No

28 M 50′s No Cisplatin, mithramycin Dead Yes, estradiol

22 M 50′s Yes EDP/M Dead No

14 M 50′s Yes EDP/M Dead No

41 M 60′s Yes MAVE, Etoposide + Carboplatin Dead No

20 M 70′s No Dead No



Page 6 of 15Fojo et al. BMC Med Genomics          (2020) 13:165 

ACCs described by Gara et al. In all three studies there is 
a high proportion of tumors with a gain of all or nearly 
all of chr. 5, 7, 12, 19 and 20, and loss of chr. 1, 2, 6, 11, 
13, 17, 18, and 22 [16, 18] (Additional file 1: Fig. 2A and 
B). By contrast, several of these chromosome alterations 
were rarely observed in the tumors of Zheng et  al. [8]. 
We also found amplification of the TERT (5p15.33) and 
CDK4 loci (12q14) in 76.5% and 82% of the tumor sam-
ples assessed, respectively; and deletions of the CDKN2A 
(9p21.3), RB1 (13q14) and ZNRF3 loci (22q12.1) in 35%, 
59% and 76.5% of tumors, with the incidence of each 
higher than that previously reported [8, 16].

Whole exome sequencing
After filtering using public databases and normal sam-
ples to remove likely false positive and germline vari-
ants and including only variants (and targeted bases) in 
exons or within 3 bp of exons (see Methods), we iden-
tified 4981 putative somatic mutations in 3814 genes 

in the 43 ACC samples, with a median mutation rate 
of 3.38 per megabase (Mb) in exonic + 3 bases (range 
0.50—18). As regards the DNA mutation spectrum, it 
was characterized by a predominance of C > T, C > A 
and T > C transitions, with the 25 tumors with matched 
normal samples shown in the upper panel (Fig.  1b). 
Twenty-nine genes with non-silent alterations (mis-
sense, nonsense, insertions and deletions [indels] and 
splice variants within 3  bp of exon) present in > 9% of 
our cohort ( ≥ 4/43) were each validated by manual 
inspection in the Integrated Genome Viewer [14, 15] 
and by PCR and Sanger sequencing. Figure  2 shows 
these mutations, with the upper set identified in at least 
9% of patients in whom we had germline DNA, and 
the lower set the mutations identified in at least 9% of 
the whole population. The two most frequently altered 
genes, TP53 and β-catenin (CTNNB1) were altered in 
11 (26%) and 6 (14%) samples, respectively. Nine of the 
twelve TP53 mutations (eleven patients) had variant 

Gene / Sample H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 %
TP53 26
CTNNB1 14
MYH15 14
DCHS2 14
SETD2 12
RELN 12
CUX1 9
CDC27 9
FN1 9
RYR1 9

PABPC1 16
TTN 16
IGFN1 14
MAGEC1 14
MAP3K5 14
MUC16 14
PKD1L1 14
RYR3 14
OBSCN 12
STARD9 12
GPR98 12
LRP1B 12
SYNE1 12
VCL 12
MYCBP2 12
NACAD 9
NUP153 9
PTPRG 9
ZNF469 9

missense mutation
indel 
nonsense mutation
indel & SNV 
splice variant 

Fig. 2 Mutations in individual patients. Genes that were mutated in ≥ 4 patients ( ≥ 9%) and validated by a second sequencing method are shown. 
Column labeled H, depicts the results in the H295 cell line. Top portion: Mutations found in ≥ 9% of those samples with buffy coats; Lower portion: 
Mutations found in ≥ 9% of all samples. The last column indicates the percent mutated in the entire dataset
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frequencies of 70–90% suggesting LOH. TP53 muta-
tions preferentially affected the DNA-binding domain 
(10/12—83.3%) and one occurred in the transactivation 
2 domain (1/12—8.3%) (Additional file  2: Table  1). By 
comparison, the CTNNB1 mutations all occurred in the 
GSK-3B phosphorylation domain of the gene, a serine/
tyrosine rich region.

Next, we compared our data with two prior sequenc-
ing studies performed in ACC, the COMETE and TCGA-
ACC datasets and with the multiple cancer types of the 
TCGA PanCancer Atlas (Fig.  3a) [8, 16, 29]. We found 
that the majority of genes in ACC that had mutations 
also have been found to have mutations in all cancers, 
suggesting that they were just as likely to have been 
found to harbor mutations in other cancers as in ACC. 
Four genes shown in italic bold on shaded background 
(TP53, CTNNB1, NF1 and AFF1) are included in Tier 
1 of the 576 COSMIC cancer gene census (CGC), while 
three genes in bold but without italics also on a shaded 
background (MUC16, MUC4 and PABPC1) are among 
the 147 CGC Tier 2 genes [COSMIC]. For only two of 
the 38 genes were mutation rates higher than those in all 
cancers. These two, CTNNB1 and HGC6, seem unique 
to ACC. Removing these two from the comparison, the 
regression coefficient for the incidence of the mutations 
in ACC and the incidence in all other cancers increased 
to R = 0.87,  R2 = 0.76 (Fig. 3b). Finally, we compared tran-
script length for the 38 most frequently mutated genes 
in the 3 ACC datasets with the transcript length for the 
average of all coding genes, and with the transcript length 
for the COSMIC cancer census genes (Fig. 3c). We found 
a statistically significant difference between the three 
datasets with the transcript length of genes mutated 
in ACC being the longest. This suggested that at least 
some of the mutations, such as those in TTN, may have 
occurred as random events.

A recent analysis of TCGA data identified 300 putative 
cancer genes; including five identified as putative onco-
genic drivers in ACC [8, 30]. Our analysis finds a simi-
lar higher incidence for the two most frequently mutated 
genes, TP53 and CTNNB1 (26% and 14%, respectively), 
as well as comparably low frequencies for the other 
three putative drivers—ATRX, 7.0%; MEN1, 4.7%; and 
PRKAR1A, 2.3%.

The p53-Rb and WNT-CTNNB1 pathways were most 
frequently altered. Inactivating mutations or homozy-
gous deletions were found in TP53 (11/43, 26%); no 
other p53-Rb pathway mutations were found, including 
in CDKN2A, RB1, CDK4 or MDM2. In addition to the 
CTNNB1 alterations (6/43, 14%) described above, muta-
tions in the WNT-CTNNB1 pathway also included APC 
(2/43), AXIN1 (2/43), and AXIN2 (1/43) [31]. No muta-
tions were detected in GSK3B, CK1 or TCF/LEF. In all, 

this pathway appeared to carry mutations in 10/43 (23%) 
tumors from individual patients.

As more tumors have been subjected to sequence 
analysis the prevalence of mutation in genes encoding 
proteins regulating chromatin and mediating DNA dam-
age and its repair has been recognized and in some cases 
associated with oncogenesis [32, 33]. We examined the 
occurrence of mutations in genes encoding epigenetic 
regulators and DNA repair pathways in the 43 patients. 
Among epigenetic regulators we found 6 (14%) with pre-
dicted loss of function mutations, and 24 (56%) unique 
tumors with any alteration in any epigenetic regulators 
(Additional file 2: Table 2A). Among those genes known 
to be involved in mismatch repair deficiency (MMR), we 
found mutations in seven (16%) tumors, including one 
with clear loss of function and 2 with loss of heterozy-
gosity (Additional file  2: Table  2B). Among other types 
of DNA repair proteins, including those involved in 
the homologous recombination pathways, we found 14 
(33%) tumors with alterations in these genes, including 
2 frameshift mutations with predicted loss of function in 
the WRN and BLM genes, and the rest nonsynonymous 
with unknown effect on function. These included muta-
tions in BRCA1, BRCA2, PALB2, and POLE. Included 
amongst the variants in epigenetic regulators were two 
with ATRX mutations and six with SETD2 mutations, 
both known to be involved in DNA repair and with 
mutations in both associated with high mutation bur-
den. Aggregating ATRX, SETD2, and MMR, homolo-
gous recombination (HR), and other genes involved in 
DNA repair, but excluding TP53, we found 36 mutations 
in samples obtained from 21 (49%) of the 43 patients. 
Together, these results suggest that impaired DNA repair 
may be an important theme in these aggressive ACCs.

The occurrence of TP53 mutations in ACC was already 
well-known and considered a negative prognostic factor 
in adults and children [34, 35]. We asked whether TP53 
or β-catenin mutations had an impact on overall sur-
vival in either the NIH cohort, or in the TCGA cohort. 
In the Kaplan Meier plots shown in Fig. 4a, we demon-
strate that, while TP53 mutations are associated with 
worse outcome in the patients that comprise the TCGA 
data, TP53 was not able to discriminate survival in the 
NIH cohort. Results with β-catenin were less defini-
tive. Recently, the success of immunotherapy has led to 
development of biomarkers, including that of tumor 
mutational burden (TMB), which can be associated with 
better outcome following immunotherapy [36, 37]. We 
found occasional tumors with elevated TMB, and only 
a weak association between TMB and TP53 mutation 
(Fig.  4b). While there was an association in the TCGA 
data, the results may be confounded by the presence of 
mutations suggestive of MMR deficiency.
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TP53 17.8 19.8 25.6 20.7 38.3
TTN 15.6 15.4 27.9 18.4 37.3
CTNNB1 20.0 15.4 14.0 16.2 10.5
MUC16 13.3 15.4 18.6 15.6 27.7
MUC4 0.0 26.4 2.3 14.0 23.4
OBSCN 0.0 9.9 20.9 10.1 19.0
PKHD1 6.7 11.0 11.6 10.1 13.2
RYR1 8.9 7.7 11.6 8.9 16.6
IGFN1 2.2 4.4 25.6 8.9 9.3
SYNE1 8.9 5.5 14.0 8.4 21.1
RYR2 8.9 6.6 9.3 7.8 21.8
PABPC1 0.0 1.1 30.2 7.8 11.2
FBN3 2.2 5.5 18.6 7.8 12.8
PRUNE2 6.7 3.3 18.6 7.8 9.7
DNAH5 2.2 9.9 9.3 7.8 17.3
SSPO 2.2 4.4 18.6 7.3 15.8
ADGRV1 2.2 5.5 16.3 7.3 15.4
RP1L1 2.2 5.5 16.3 7.3 11.8
NF1 0.0 9.9 7.0 6.7 13.8
NPAP1 0.0 11.0 4.7 6.7 14.9
DST 0.0 11.0 4.7 6.7 16.3
ZNF469 0.0 3.3 18.6 6.1 8.7
PCLO 11.1 2.2 9.3 6.1 16.2
MYH15 2.2 2.2 18.6 6.1 9.5
GON4L 6.7 1.1 16.3 6.1 13.6
PLEC 2.2 3.3 16.3 6.1 19.4
PCDH15 0.0 11.0 2.3 6.1 14.8
CEP290 8.9 3.3 7.0 5.6 7.9
FAM186A 2.2 2.2 16.3 5.6 6.4
PCNT 0.0 1.1 18.6 5.0 10.1
MAGEC1 0.0 2.2 16.3 5.0 11.1
TNRC18 0.0 2.2 16.3 5.0 10.5
AHNAK2 0.0 9.9 0.0 5.0 16.3
STARD9 2.2 0.0 16.3 4.5 7.9
HGC6.3 0.0 0.0 18.6 4.5 0.0
CDC27 0.0 0.0 16.3 3.9 6.9
PDZD2 8.9 1.1 0.0 2.8 10.9
AFF1 8.9 0.0 0.0 2.2 7.3
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Fig. 3 a ACC mutation frequencies. The heat map lists the frequencies of the 38 most commonly mutated genes across 3 ACC studies: COMETE 
(n = 45, cutoff = 4) [16], TCGA (n = 91, cutoff = 9) [8], and NIH (n = 43, cutoff = 7 [the current study]), as well as the average percentage of the three 
studies (ACC column, n = 179), and the cancer average as recorded in the TCGA PanCancerAtlas, which includes 33 cancers and 11.315 cases [https 
://gdc.cance r.gov/]. The heat map is sorted according to the average percentage of the three studies – the ACC column (i.e. number of patients 
with the mutation / total number of patients). The four genes shown in italic bold on shaded background (TP53, CTNNB1, NF1 and AFF1) are 
included in the 576 COSMIC Cancer Gene Census (CGC) Tier 1 genes, while the three genes in bold also on a shaded background (MUC16, MUC4 
and PABPC1) are among the 147 CGC Tier 2 genes [REF.: COSMIC, Catalogue of Somatic Mutations in Cancer, https ://cance r.sange r.ac.uk/cosmi c]. 
b Correlation between the mutation frequency of the 38 cancer genes in 3A in ACC and in cancer in general both plotted as the average of their 
occurrence in ACC (Y-axis) and all cancers (X-axis). The diagonal identity line and the dashed linear regression line (R = 0.78, p = 1.6 E-08) are shown. 
The average mutation occurrence in ACC for 36 of the 38 genes, including TP53, fall below the identity line, indicating the mutation frequency is 
lower in ACC compared to the average in all cancers. The two exceptions are CTNNB1 and HGC6.3. c Median transcript length: comparing ACC 
(from 3 datasets) to all cancers in TCGA to all coding genes. Bar graph showing differences in median transcript length; comparing all coding genes 
from Ensembl Biomart (n = 37,416), the Tier 1 cancer-related genes in the COSMIC database (n = 576), and the most frequently mutated genes 
in the three ACC datasets (n = 38). The median with interquartile range is shown for each dataset. The transcript median length was statistically 
different between the 3 datasets: all coding genes vs. COSMIC (p < 0.0001); all coding genes vs. ACC (p < 0.0001); COSMIC vs. ACC (p < 0.01). The 
non-parametric Kruskal–Wallis statistic was applied for comparison of median values between the three groups

https://gdc.cancer.gov/
https://gdc.cancer.gov/
https://cancer.sanger.ac.uk/cosmic
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Gene expression arrays
In addition to the genomic analysis we conducted a gene 
expression analysis in 57 tumor samples and five nor-
mal adrenal samples using the Affymetrix PrimeView 
arrays 49,395 probe sets. Figure  5a shows a heat-map 

and unsupervised hierarchical clustering reflecting the 
769 differentially-expressed genes (DEGs) separating 
ACC and NA ( σ/σmax >0.2, p < 0.05, q = 0.18, > 2-FC, 
one sample per patient, replicates removed). Most of 
the ACC samples clustered separately from the NA, 
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Fig. 4 a Kaplan Meier plots evaluating the impact of TP53 and CTNNB1 mutation on overall survival in the TCGA and in the NIH datasets. These 
can be compared to the Kaplan Meier plots derived from gene expression array data for aggressive C1A and indolent C1B subtypes [6, 8]. b Total 
number of mutations for each subgroup are graphically depicted with the mean and SD. The numbers in brackets below each dotplot are the mean 
number of mutations for that subgroup. Mutation counts in the ACC TCGA dataset are higher in tumors harboring a TP53 MUT compared to those 
with TP53WT [***p = 0.001], although many of those patients were also noted to have mutations suggestive of MMR deficiency (red symbols). The 
correlation with TP53 MUT was weaker in the smaller NIH dataset [*p = 0.05]. Orange symbols indicate that the mutation counts were additionally 
filtered by germline sequencing in those patients. None of the patients in the NIH set had germline TP53 mutations

Fig. 5 Results of cDNA Array analysis of ACC gene expression. a Heat-map and unsupervised hierarchical clustering based on the 769 genes 
that differ most between ACC and NA (σ/σmax >0.2, p < 0.05, q = 0.18, > 2-FC, one sample per patient, probe-sets collapsed to median per 
gene). Compared to the normal adrenal, 289 DEG were noted to be upregulated, and 480 downregulated in the tumors. The ACC samples cluster 
separately from the normal adrenal (NA) samples, with the exception of 35 T, 47 T, and 48 T (gray arrow) that cluster together with the NA samples 
(Note: as these tumor samples were from metastasectomies normal adrenal tissue could not have contaminated the samples). b Heat-map and 
unsupervised hierarchical clustering based on the 33 out of 576 Tier 1 COSMIC cancer census genes that differ the most between ACC and NA 
(σ/σmax >0.2, p < 0.05, q = 0.17, > 2-FC). The ACC samples cluster separately from the NA. Again, 35 T, 47 T, and 48 T cluster together with the NA 
samples

(See figure on next page.)
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but interestingly, three of the samples, 35  T, 47  T, and 
48  T clustered together with the NA samples, suggest-
ing they are more “normal-like”. Among the 769 DEGs, 
289 were upregulated and 480 downregulated (Addi-
tional file 2: Table 3). Box plots demonstrated that there 
was a wide expression range in the ACC samples, rela-
tive to the normal adrenal (Additional file 1: Fig. 3A and 
3B). Furthermore, in a heat-map and HCL plot of the 
1666 most variable genes ( σ/σmax >0.3) to look at how 
well different samples from the same patient segregated 
together, we analyzed 57 tumors samples, the H295 cell 
line and five normal adrenal samples [data not shown]. 
As in Fig. 5a, the five normal adrenal samples clustered 
together. For nine of the patients more than one meta-
static tumor was analyzed and in seven of the nine cases 
the different tumor samples segregated next to each 
other in this unsupervised analysis including six different 
lung metastases from one patient all of which clustered 
together.

Additionally, we looked to see whether the DEGs were 
among the known cancer genes, using the Catalog of 
Somatic Mutations in Cancer (COSMIC) Cancer Gene 
Census (CGC) [38]. Out of 576 COSMIC Tier 1 genes, 40 
(6.9%) met the significance criteria (fold change > 2.0 and 
P < 0.05) (Fig. 5b); and among 147 Tier 2 COSMIC genes, 
only 12 (8.2%) met the same significance criteria. As with 
the 769 DEGs, three ACC samples clustered with the 
normal adrenal samples. None of the cancer genes were 
up- or down-regulated in a predominant manner.

We also analyzed our data according to the previous 
prognostic signatures validated in ACC, using 136 “K4” 
genes identified by Zheng et  al. in the TCGA analysis 
(Additional file 1: Fig. 4A and B) [8]. We found samples 
clustering into the two groups C1A and C1B, represent-
ing more aggressive and indolent cancers, respectively [6, 
7]. And we found that samples clearly clustered based on 
the adrenal differentiation genes (steroid high vs. low) but 
less well based on proliferation, with 18 samples indeter-
minant. Based on these assignments, Kaplan–Meier plots 
were derived, as shown in Fig.  4a and Additional file  1: 
Fig. 5. Our data are consistent with the overall poor prog-
nosis of metastatic ACC.

We also analyzed the data by IPA for alterations in 
upstream regulators in known cancer drivers (Additional 
file 2: Table 4). Interestingly, p21 and TP53 were among 
the regulators predicted to be downregulated; consist-
ent with the known loss of function mutations in TP53. 
In contrast, cyclin D1, MYC and E2F, well-known cancer 
drivers, were found upregulated.

MicroRNA Profiling
Finally, we analyzed the microRNA profile in 24 of the 
ACC samples, compared to normal adrenal, finding that 

86 microRNA were significantly different between the 
two datasets (listed in in Additional file 2: Table 5). Inter-
estingly, there was also a set of tumors that were “normal 
adrenal-like”, clustering with the normal adrenal samples 
(Additional file  1: Fig.  6). However, these did not show 
any overlap with the “normal adrenal-like” samples from 
the RNA expression array.

Discussion
We report a cohort of patients with advanced/meta-
static adrenocortical cancer (ACC) whose tumors have 
undergone genomic and expression analyses. Unlike the 
previous cohorts that included primarily tumors har-
vested at the time of an initial presentation [8, 13, 16], all 
of the patients included in this analysis presented with 
advanced/metastatic disease or developed metastases. 
Consequently, all of the samples were obtained from 
patients at the time of subsequent metastasectomies, 
part of an aggressive management strategy that our team 
adopted in the management of patients with ACC [39]. 
While the ability to undergo a metastatectomy could 
select patients with somewhat more indolent disease, 
and thus not perfectly reflect the spectrum of advanced 
ACC, our clinical experience was that even patients with 
aggressive metastatic lesions could benefit. We were 
interested in determining whether the tumors from these 
patients, enriched for metastatic capacity, would offer 
clues as to putative genes that might have critical roles 
in disease progression. Instead we found the mutational 
profiles of our samples similar to those previously pub-
lished, with few known cancer genes mutated and only 
TP53 (26%) and beta-catenin (CTNNB1, 14%) as putative 
cancer drivers mutated in more than 10% of samples.

As in the majority of cancers, we found copy number 
gains and losses in many of our samples. We observed 
a CNV profile that was very similar to that seen in the 
Assie et  al. samples [16], and in metastatic tumors [18] 
but distinct from that of the TCGA reported in Zheng 
et  al. [8]. This likely reflects the fact that our sample is 
almost exclusively composed of metastatic ACCs and the 
TCGA study comprised 60% stage I and II tumors [8, 16, 
18] (Fig. 1 and Additional file 1: Fig. 2).

We also identified 4981 putative somatic mutations 
in 3814 genes with a median mutation rate of 3.38 per 
megabase (Mb) in exonic + 3 bases (range 0.50—18). 
These values are somewhat higher than those in a pre-
vious study that reported a mean somatic mutation 
rate in coding sequences of 0.60 mutations per Mb [16], 
likely due to the inclusion of some noncoding variants 
and possibly to the more advanced presentation of our 
patient population. Differences in the mutational bur-
den amongst different clinical presentations have been 
previously reported in other tumors [40]. The mutational 
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signature was characterized by a predominance of C > T 
with a lower frequency of C > A and T > C transitions. The 
major predicted signatures were the C > T at CpG sites 
associated with aging (SBS1), found in all cancers, and a 
mismatch repair deficiency signature (SBS6). But despite 
the number of mutations, as a whole, our data and that 
in the previous analyses finds that that rate of mutations 
in ACCs is similar to that in other cancers, indeed even 
lower (Fig. 3). There are no common mutations in genes 
that would suggest a personalized therapy that would 
benefit a meaningful percentage of patients. Although 
a TCGA analysis identified MEN1 and PRKAR1A as 
putative cancer genes in ACC, the low frequency of 
mutations—4.7% and 2.3% for MEN1 and PRKAR1A, 
respectively—render their importance in this disease at 
best marginal [30]. Furthermore, we found in the cur-
rent and in the previous analyses that the majority of the 
mutations were in genes not implicated in the etiology 
or maintenance of cancer. Specifically, amongst the 38 
genes that were mutated in more than 9% of samples in 
any of the three studies, only four of the 38 genes can be 
found in Tier 1 of the 576 COSMIC Cancer Gene Census 
(CCGC), with three amongst the 147 CCGC Tier 2 genes 
[38, 41]. Thus, 82% of the genes with mutations likely 
have no role in the etiology or biology of ACC; while the 
role of the other 18%, if any, remains to be proven. Finally, 
we found the transcript length for the 38 most frequently 
mutated genes in the 3 ACC datasets to be statistically 
longer than the transcript length for the average of all 
coding genes, and for the COSMIC cancer census genes, 
an observation that raises questions as to the importance 
of many of the mutations, and whether their occurrence 
reflects in part the length of their transcripts and hence 
the probability of incurring a mutation (Fig. 3c).

Twenty-three genes mutated in our cohort were vali-
dated and as previously reported, the two most frequently 
altered genes were TP53 and CTNNB1, mutated in 26% 
and 14%, respectively. The data for TP53 suggested LOH 
in the majority and while an incidence rate of 26% repre-
sents a substantial fraction, it is lower than the majority 
of other cancers, something of a surprise in a cancer for 
which TP53 has been generally regarded as important—
and is thought to be etiologic in children who inherit a 
mutant TP53 [42, 43]. This is especially surprising as 
our subjects all had advanced or metastatic disease, and 
TP53 mutations have been reported to be higher in more 
aggressive disease for several cancers including ACC [34, 
35, 44]. Interestingly, our analyses in part supports this 
bias by demonstrating that while TP53 mutations are 
associated with worse outcome in the patients that com-
prise the TCGA data, composed primarily of tumors at 
initial presentation, the same was not true in our patient 
population. While we lack evidence to explain this 

discrepancy one could postulate that the aggressive pres-
entations/biology of tumors in our patients were driven 
by more than the mutation of a single gene, and instead 
had a much more diverse expression/mutational profile.

As regards CTNNB1, the very modest rate of 14% 
mutations in our cohort and 16% across all ACCs is 
notably higher than in many cancers and may suggest a 
putative role in a subset of ACCs. It is also noteworthy 
that expression of CTNNB1 is high in the normal adre-
nal and comparably high in ACCs, but also high across 
all tumors, precluding higher expression as an auxiliary/
alternate mechanism. Other than TP53 and CTNNB1, 
the mutational analysis revealed a high 18.6% incidence 
of HGC6.3 mutations in our cohort, notably higher than 
the 0% in the other ACC cohorts and in all cancers. The 
importance of this remains uncertain and we would note 
that, unlike CTNNB1, HGC6.3 remains uncharacterized, 
and is not in the COSMIC Cancer Gene Census (CCGC) 
[45].

Sequence data can inform in two ways. If mutations in 
a given gene or pathway are seen in a large enough frac-
tion of a given tumor histology, it brings attention to that 
gene/pathway as having a possible critical role in the dis-
ease under study—with BCR-ABL in CML and BRAF in 
melanoma the two best examples [46, 47]. Alternately, 
when employed in everyday clinical practice, the hope 
is that such information will identify potentially drug-
gable targets—the rationale for a “precision oncology” 
strategy—now widely applicable but lacking rigid scien-
tific support [48, 49]. With three large data sets compris-
ing nearly 200 patients with ACC now available, the data 
are robust enough to have identified key drivers. How-
ever, our data and that in the previous cohorts cannot be 
interpreted as having identified genes of much import to 
ACC, certainly not critical in its etiology or maintenance, 
nor identified druggable targets. Indeed, none of the five 
genes identified in the TCGA analysis as ACC-associ-
ated—TP53, CTNNB1, ATRX, MEN1, and PRKAR1A—
can be argued to be truly “druggable”.

The clinical presentation of these cancers is all too 
often characterized by a very aggressive clinical picture, 
comprising very large tumors; invasion and destruc-
tion of surrounding tissue; large vessel involvement; 
metastasis to liver, lungs and bones; and intractability to 
chemotherapy. These are biologic properties that argue 
against a simple mutation-driven model as the cause of 
this cancer [50]. Instead it argues for other etiologies 
and given the plethora of clinical properties, epigenetic 
alterations must be entertained as a viable alternative 
[51, 52]. While we recognize some may argue this could 
be mediated by mutations, and the TCGA analysis identi-
fied “chromatin histone modifiers as pathways/biological 
processes affected by associated consensus driver genes” 
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in ACCs [30], this allegation needs stronger supporting 
data given the plethora of genes that are implicated in 
epigenetic modifications—a very large number that also 
allows for much redundancy of function. The totality of 
the data also argues strongly against the notion that a 
mutational analysis can identify critical targets that may 
be addressed medically. Success in the case of the lat-
ter implicates such mutated genes as critical for ACC. 
To think that many such “individual” critical genes exist 
ignores the reality that ACC has an incidence of ~ 1 per 
million and cannot have a myriad of etiologies. Thus, 
these data argue against giving patients with ACC false 
hope that a “precision oncology” approach will identify 
what makes their tumor unique and bring any meaning-
ful information that will improve treatment outcomes.

We recognize less than 200 tumors comprise the cur-
rent analysis, but for a disease with an incidence of ~ 1 per 
million this is a large number that is likely very represent-
ative of the disease spectrum. The likelihood something 
important has been missed with these three analyses is 
small. Furthermore, although the totality of the data 
comes from three separate studies, strong concordance 
emerges, with a higher incidence of mutations in our 
cohort. The latter may reflect the more aggressive nature 
of the disease in our patients with aggressive metastatic 
presentations but given the lack of cancer-associated 
mutations, it most likely reflects a higher overall level of 
genomic instability—again with genomic integrity identi-
fied as “a pathway/biological process affected by associ-
ated consensus driver genes” in the TCGA analysis [30]. 
Furthermore, aggregating ATRX, SETD2, the mismatch 
repair and homologous recombination genes, and other 
genes involved in DNA repair, but excluding TP53, we 
find 36 mutations in samples obtained from 21 (49%) of 
the 43 patients suggesting impaired DNA repair may be 
an important theme in these aggressive ACCs an obser-
vation that could explain the higher incidence of muta-
tions. However, we would again note that the mutations 
in ACC occurred in genes with longer transcript length, 
an observation that underscores the random nature of 
these mutations by suggesting a size driven and not func-
tion driven mutational profile.

Conclusions
In conclusion, our data and published results suggest 
that the mutational profile in ACC does not explain 
carcinogenesis, biology, or resistance to therapy. Addi-
tionally, actionable mutations are not found in the 
large majority of ACCs. As observed with other can-
cers, DNA repair alterations may yet identify a sub-
set sensitive to DNA damaging agents, and this needs 
to be explored more fully. Epigenetic alterations may 

represent a more fertile ground for investigation, par-
ticularly given the earlier reports demonstrating gene 
silencing via hypermethylation and its impact on prog-
nosis. Much remains to be discovered about ACC.
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org/10.1186/s1292 0-020-00809 -7.

Additional file 1. Figure 1: Plots compares targeted region coverage for 
43 ACC tumors and the H295 ACC cell line (red dot) vs. the 25 matched 
normal samples (SureSelectXT v4 targeted regions). A Dot plots showing 
comparable read depth for normal and tumor samples (p = 0.73). Mean 
depth was 115 reads, normal (113 +/- 5.6, n = 25) and tumor (116 +/- 
5.0, n = 44). B Line graph shows results for individual samples. Figure 2: 
Comparative copy number gains and losses. 17 of the 25 ACC tumors with 
paired normal DNA. The y-axis represents the percentage of samples with 
gain/loss. [ngCGH + Nexus segmentation (eight tumors removed due to 
excess noise)]. Qualitative comparison of the NCI data with the data of A 
Assie et al. [16] and Gara et al. [18] and with B Zheng et al. [8] Figure 3: 
Comparison of gene expression in tumors (ACC) and the normal adrenal 
(NA). Note wide range of expression for the ACC group. A Upregulated 
DEG B Downregulated DEG. There was a wide variation in the range of 
expression amongst the tumors. In the case of IGF2, for example, a gene 
whose expression has been previously reported to be high in ACCs both 
IGF2 high and low populations are seen as two different sub-groups. 
Figure 4: A Heat-map and 2-way unsupervised hierarchical clustering 
of our 57 ACC steroid-phenotype-low and –high and +/- proliferation 
samples based on the 136 K4 genes measured in our dataset. Eighteen 
samples, termed mixed, separated based on steroid phenotype but not 
on proliferation phenotype. All were C1A aggressive subtype. B Heat-map 
and 2-way unsupervised hierarchical clustering of the TCGA ACC samples 
based on 151 K4 genes (Table S2 in Zheng et al. [8]) that separate steroid-
high from steroid-low (K4_2). Figure 5: Kaplan-Meier analysis of cDNA 
array data based on the K4 gene signature indicative of steroid phenotype 
low and high, or with (+) or without proliferation signature. As seen in the 
accompanying statistical analysis, the curves did not significantly differ in 
the samples derived from metastatic ACCs analyzed at the NIH. Figure 6: 
microRNA analysis, ACC vs. normal adrenal (NA). Figure shows 86 differen-
tially expressed microRNA (DEM) with 17 upregulated, 69 downregulated 
DEMs (σ/σmax >0.2, p < 0.05, q = 0.10, >2-FC, one sample per patient, 
miRPlus probes removed). Four “normal adrenal-like” samples (8T, 16T, 36T 
and 49T) cluster with the normal adrenals but none of these correspond 
to the three “normal adrenal-like” samples based on mRNA profile.

Additional file 2. Table 1: (Part 1) List of Most Mutated Genes validated 
in >10% of 23 T/N pairs and >10% of all 43 ACC patients. (Part 2) List of 
Validated Driver Mutations in <10% of 43 ACC Patients. Table 2: A, Altera-
tions in Chromatin Remodeling Genes or Genes Controlling Epigenetic 
Processes. B, Alterations in DNA Repair Genes. Table 3: 769 Differentially 
Expressed Genes (DEG), upregulated (289) and downregulated (480) in 
ACC compared to NA. Table 4: IPA prediction of upstream regulators 
based on microarray expression data comparing 57 ACC samples vs. 5 
normal adrenal samples. Table 5: Top Differentially Expressed MicroRNAs 
(DEM), up- or down-regulated in ACC compared to NA.
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