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Abstract: The urban environments represent challenging areas for handheld device pose estimation
(i.e., 3D position and 3D orientation) in large displacements. It is even more challenging with low-cost
sensors and computational resources that are available in pedestrian mobile devices (i.e., monocular
camera and Inertial Measurement Unit). To address these challenges, we propose a continuous pose
estimation based on monocular Visual Odometry. To solve the scale ambiguity and suppress the scale
drift, an adaptive pedestrian step lengths estimation is used for the displacements on the horizontal
plane. To complete the estimation, a handheld equipment height model, with respect to the Digital
Terrain Model contained in Geographical Information Systems, is used for the displacement on the
vertical axis. In addition, an accurate pose estimation based on the recognition of known objects is
punctually used to correct the pose estimate and reset the monocular Visual Odometry. To validate
the benefit of our framework, experimental data have been collected on a 0.7 km pedestrian path in an
urban environment for various people. Thus, the proposed solution allows to achieve a positioning
error of 1.6–7.5% of the walked distance, and confirms the benefit of the use of an adaptive step
length compared to the use of a fixed-step length.

Keywords: pose estimation; localization; handheld device; pedestrian navigation; urban mobility;
augmented reality

1. Introduction

In the context of pedestrian navigation and handheld device pose estimation for urban
mobility, localization and orientation would gain from an accurate global pose estimation using
Global Navigation Satellite Systems (GNSS), Inertial Measurement Unit (IMU) and cameras [1–3].
Such systems generally operate well in outdoor open environments. However, urban environments
comprising closely spaced buildings (i.e., urban canyon) still represent challenging areas for GNSS,
which suffer from attenuation, reflection, and blockage effects [4–6]. It is even more challenging using
low-cost Micro Electro Mechanical System (MEMS) sensors and low computational resources, which
are typically embedded in pedestrian mobile devices [7]. Moreover, the hand can move freely even
when the pedestrian’s centre of mass is static, making it difficult to estimate an accurate pose.
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In order to assist the pedestrian navigation during large displacements in urban environments,
e.g., through on-site augmented reality applications on handheld mobile device, our aim is to provide
a continuous and accurate pose estimate. In such context, we propose to integrate human motion
estimation, i.e., step length estimation, using a handheld IMU proposed in the field of Pedestrian Dead
Reckoning (PDR), to scale the monocular Visual Odometry (VO). To complete the pose estimation, we
propose to use an estimation of the holding in hand of mobile devices coupled with data content in
Geographical Information System (GIS). Although embedded technologies in general public devices
become more efficient, the choice was made to propose a solution that can be fully embedded with a
minimal hardware setup and a low memory requirement, and without any connection with networks,
any deployment of new infrastructures, to be totally autonomous.

Thus, our first contribution is to achieve a continuous pose estimation with a mobile device held
in hand during large displacements in urban environments. Our second contribution is to present
an adaptive method, based on the use of an IMU and a monocular camera, that takes advantage
of human motion estimation and data content in Geographic Information Systems to dynamically
solve the scale ambiguity and suppress the scale drift in the monocular Visual Odometry. Finally,
our third contribution is to propose a solution that does not require pedestrians to make specific and
unnatural movements or to revisit the same place, as is the case with Simultaneous Localization And
Mapping (SLAM) techniques [8–10].

The Section 2 conducts a state of the art on pose estimation and Visual Odometry scale estimation.
The Section 3 presents the coupling process between PDR and VO, i.e., the scale estimation based
on step length estimation, and the position estimation on the vertical axis using a hand-held model
of the equipment and GIS data. The Section 4 details the hardware setup used in our experiments,
the acquisition scenario and the establishment of reference waypoints and tracks to evaluate our
method. The assessment by comparison between a foot-mounted INS aided by GNSS phase
measurements and the proposed method using a handheld device is presented in the Section 5. Finally,
we conclude that human motion analysis can be informative as an additional clue and constraint
to scale the monocular Visual Odometry and to improve the pose estimation with general public
handheld devices.

2. Related Work

In this section, we briefly summarize the solutions for handheld device pose estimation in urban
environments using a camera or/and an IMU. In the literature on urban localization, one approach
is to use a camera and a database comprising images associated with their global poses, namely
appearance-based localization [3,11,12]. The pose of the camera is determined by searching an image
containing a part of the input image in the database. This is typically performed by using Content-Based
Image Retrieval techniques. However, the accuracy of this approach strongly degrades under
appearance changes. In addition, such a huge database is not always available, not easy to prepare, and
also may not be applicable to mobile devices for pedestrians due to limited computational resources.

In the field of pedestrian navigation, Pedestrian Dead-Reckoning approaches have been
investigated for the urban localization [13,14]. The pose is incrementally determined by computing
the displacement between the poses after the initial global pose is acquired with other approaches
such as appearance-based localization. Sensor fusion is an alternative approach and has also been
investigated to compensate for the drawback of each sensor [15–18]. The fusion was initially introduced
to compensate for weaknesses in appearance-based approaches due to failure under fast rotational
motions (i.e., motion blur and large displacement in the images) [15,19,20]. A gyroscope in the IMU has
an advantage that it can accurately track sensor angular rates at high frequency for short time intervals.
An accelerometer in the IMU is useful during static phases to compensate for global orientation
estimation by using the gravity measurement.

Monocular Visual Odometry is a frame-to-frame relative pose tracking approach using a
camera for the incremental pose estimation [21–23]. In unknown environments, the camera pose
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is incrementally determined by, first, computing feature correspondences between two consecutive
images, and then, computing the relative pose from the correspondences. However, one problem
is to solve for scale ambiguity in the estimated poses [23]. The relative poses can fundamentally be
estimated up-to-scale if known landmarks are used into the VO [8] or an initial translation of a camera
is assumed to be known [24]. These approaches solve the initial scale estimation but still face the
problem of scale drift that occurs in large displacements and degrades the localization accuracy [25].
As reported in [26], both direct and indirect VO approaches cannot avoid the scale drift when only a
monocular camera is available, and the tracking errors are quickly accumulated over time. The drift can
be punctually corrected by using appearance-based localization, using some known landmarks [3,27]
or knowledge of existing 3D city models [28]. Ref. [29] presents a method for resolving the scale
ambiguity and drift by using the slant distance obtained from a skyline matching between the camera
and images synthesized using a 3D building model. The correction of the scale factor shows a 90%
improvement of the positioning solution compared to a solution that does not correct the scale drift.
These methods require to be located in an area where the 3D model is available and known with
precision, whereas it is generally not. Loop closure, when revisiting the same place, is also used to
correct the drift [25]. However, this approach is not applicable in the context of pedestrians navigating
from point A to point B, without passing through the same place again.

Since the unit of the accelerometer in the IMU is metric, it is also useful to estimate the scale
in the VO [30–32]. To estimate the scale, one approach is to compute the double integration of the
acceleration after removing the gravity elements. However, the double integration is sensitive to noise
because the error is quickly accumulated, even though the error is small during a short time interval.
To further improve the accuracy and stability of metric scale estimation, additional methodologies
need to be investigated. An alternative approach is to estimate the scale with an Extended Kalman
Filter, that includes the scale factor in the state vector. As reported in [31], the method is also sensitive
to a dynamic bias which is difficult to estimate.

Others scale estimation approaches exist but there is a hard constraint that the sensors need to
be rigidly fixed to the pedestrian. For example, Ref. [33,34] have the sensors attached to a helmet.
This constraint is not valid in the context of handheld AR.

As a recent approach dedicated to pedestrians, the pedestrian face is used as a known object to
estimate the scale [32]. On a mobile device (e.g., a smartphone), two cameras are usually installed:
a user-facing camera and a world-facing camera. In the context of handheld AR, the user-facing camera
captures the user’s face, while performing the VO by using the world-facing camera. When a relative
pose of the two cameras is calibrated, the metric scale for the VO can be computed from the face. This
setup is reasonable for handheld devices, however, this approach requires that the pedestrian be static
while the hand is moving. It should also be noted that VO using a stereo camera does not have these
scale issues because the scale can be uniquely determined from the disparity between two cameras [26].

Other approaches, close to ours, use a pedometer and an average step length for scale estimation
in monocular VO [35,36]. As the pedestrian has to avoid others pedestrians, bikers, cars, elements in
the scene and to wait at pedestrian crossings, the step lengths are not constant during the walk and a
average step length does not correspond to pedestrian movement in urban environments. This is why
we propose to use a dynamic step length estimation to scale monocular VO.

3. Scaled Monocular Visual Odometry

In this paper, we propose a novel approach for pose estimation with sensors held in hand based on
monocular Visual Odometry and Pedestrian Dead-Reckoning. A human motion analysis from inertial
data, i.e., a step length estimation, is used to dynamically solve the scale ambiguity and suppress the
scale drift. The overview of the proposed method is illustrated in Figure 1. The proposed method can
be divided into three main processes: “PDR” part, “VO” part and “Coupling” part. Since the “PDR”
part and “VO” part are independent, our approach can be referred as a loosely coupled approach. The
variables needed to develop the proposed method are all detailed in their corresponding following parts.
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Figure 1. Block diagram of the proposed approach.

The “PDR” part is dedicated to the processing of IMU measurements. The same origin is defined
for the IMU sensors and the IMU measurements are given in the Body frame, labeled by b. We estimate
pedestrian step lengths with sensors held in hand, while the pedestrian walks naturally [37,38].
The process outputs a step length stepk in meter at every instant of step tstepk . The details are given
in Section 3.1.

The "VO" part is dedicated to monocular VO for relative pose estimation based tracking. The origin
of the camera frame is the optical center of the camera and the visual measurements are given in the
Camera frame, labeled by c. In this part, because the scale estimation is independent of the image
processing, any VO or vSLAM method can be applied if it outputs a complete pose estimate [23,39].
The implemented Visual Odometry framework is detailed in Section 3.2.

The “Coupling” part is dedicated to the scale determination by fitting trajectories from the “PDR”
part and the “VO” part. This part finally solves the scale ambiguity in monocular VO. The scaled pose
in monocular VO is the final output of the proposed solution. The final pose estimate is given in the
Navigation frame (i.e., the North-East-Down (NED) frame), labeled by n. In the proposed solution,
we need to consider the frequency difference between sensors and the timing of the scale estimation.
The details are given in Section 3.4.

3.1. Step Length Estimation Process

Classically, inertial signals are integrated according to a strap-down mechanization to compute
the recursive positions of an IMU. This is possible only if the accumulated error caused by low-cost
inertial sensors is frequently calibrated or reset, such as using Zero velocity UPdaTes (ZUPT) [14]. As a
moment of zero velocity does not always occur in the context of hand-held device-based pedestrian
navigation, ZUPT is not easily achievable. Also, the location of the pedestrian is normally represented
as a pedestrian’s center of mass on a 2D map. This is obviously different from the location of the device
held in hand, because the hand performs free motions even when the pedestrian’s center of mass is
static. Therefore, instead of double-integrating the measured accelerations, a step length model is
adopted to derive step lengths as pedestrian’s displacements for handheld devices. We summarize the
procedure of pedestrian step length estimation proposed in [37,38]. It is claimed that this step length
estimation is performed with a 2.5% up to 5% error on the walked distance. The different steps of the
procedure are presented in Figure 2 and the notations are detailed hereafter.

IMU
Walking 
phase 

detection

Walking 
frequency 
estimation

Carrying mode 
classification

Step 
detection

Step length 
estimation

{Static,
Walking}

{Texting,
Swinging}

PDR

Figure 2. Detailed steps of “PDR” block.
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To estimate step lengths, IMU signals acquired with sensors held in hand are analyzed as follows.
A first motion classification is operated to determine the walking phases or the static phases of the
pedestrian. A peak detection and a thresholding on the energy are applied on gyroscope signal ωgyro

and accelerometer signal facc to determine the events tstepk when the pedestrian’s foot comes in contact
with the ground at kth step. The step frequency is also computed as fk. A second motion classification
is operated by analyzing the variance of the IMU measurements to determine the device’s carrying
mode (Static and Walking in Texting or Swinging mode) according to [38]. Then, a generic model is used
to compute the step lengths stepk according to [37]. It is based on the user’s height hped and on a set of
three parameters {a, b, c} trained on 12 subjects.

stepk = hped × (a× fk + b) + c (1)

3.2. Monocular Visual Odometry

Because step length estimation is independent of monocular Visual Odometry, any existing
methods can be used. Here, we introduce our implementation based on the following standard
procedure [22]. As a pre-processing, a standard camera calibration, using a checkerboard [40] and
modeling the camera as a pinhole camera [41], is performed for a fixed resolution to express the
camera’s coordinates in a normalized space [42]. This enables to correct image distortions and to
determine the intrinsic parameters matrix K of the camera.

In the VO, to determine the unknown pose at time (t), the known poses at (t− 1) and (t− 2)
are used. The different steps of the vision procedure are detailed in Figure 3 and the notations are
detailed hereafter.

Camera SURF 
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filtering Triangulation Pose 
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Figure 3. Detailed steps of "VO" block.

Knowing the intrinsic parameters matrix K of the camera and the correspondences between xi
and Xn, expressed in homogeneous coordinates symbolized with a tilde (˜), the pose of the camera’s
optical center can be computed. It is expressed as a rotation matrix Rc

n, giving the rotation from the
global coordinate system to the camera one, and a translation vector tc

n giving the translation from the
origin of the global coordinate system to the one in the camera coordinate system C. The output of the
“Vision” part in Figure 3 are Rn

c (t), the rotation from the Camera frame to the Navigation frame at time
(t) and tn

c (t), the translation from Camera frame to the Navigation frame tn
c (t) with a dimensionless

scale factor s(t) at time (t).
For the relative pose estimation between images, feature points xi are extracted by SURF

detector [43]. A sparse feature points extraction is operated to improve the reliability by suppressing
redundantly extracted points. Then, extracted feature points in consecutive images are matched using
the Sum Square Difference (SSD) distance to select unique correspondences. A filtering stage, using
a geometric constraint such as epipolar constraint, is then applied with the M-estimator SAmple
Consensus (MSAC) algorithm [44] to exclude outliers. A triangulation stage is operated only on
inliers that are visible in the two images at times (t − 1) and (t − 2), and in the current image at
time (t) to estimate the 3D points Xn in the Navigation frame. To perform pose estimation using a
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calibrated camera, PnP algorithms constitute one of the most suitable solutions [45]. The camera pose
is computed using the following formulation:

x̃i = K
[

Rc
n | tc

n

]
X̃n (2)

tc
n = −Rc

nCn (3)

where Cn is the position of the camera’s optical center in the Navigation frame. The successive positions
of the camera’s optical center are used for the scale estimation. It should be noted that we did not
use any map optimization, such as pose graph optimization and bundle adjustment typically used in
visual SLAM because they are computationally expensive. We simply implemented monocular Visual
Odometry and did not keep the map in the memory as Dead-Reckoning.

3.3. Digital Terrain Model and Handheld Height

To complete the position estimation on the horizontal plane, the position on the vertical axis is
determined in urban environments using data contained in 3D Geographical Information System
(GIS), i.e., the Digital Terrain Model (DTM) and an estimation of the hand height holding a mobile
device with respect to the pedestrian height. The DTM is a set of points referenced in planimetry
(X,Y) and altimetry (Z). With an interpolation method, this provides the elevation of the ground level
relief in digital form [46]. In the context of the use of an augmented reality applications for mobility
assistance, the screen of the equipment held in the hand is considered maintained at a height hhand
to see information. In order to estimate the handheld device position on the vertical axis, the height
of several pedestrians hped, as well as the screen center height hhand on which an augmented reality
display would be proposed, were measured. These measurements are presented in Table 1.

Table 1. Measurements of pedestrian height and handheld equipment height.

Pedestrians M1 M2 W1 W2 W3

Gender Male Male Female Female Female

hped 1.87 m 1.80 m 1.69 m 1.69 m 1.60 m
hhand 1.67 m 1.60 m 1.55 m 1.50 m 1.40 m

hped − hhand 0.20 m 0.20 m 0.14 m 0.19 m 0.20 m
hhand/hped 89% 88% 91% 88% 87%

Thus, knowing the distance between the center of the screen and the optical center of the
camera, the height of the equipment held in the hand can be experimentally defined as a ratio
of the pedestrian height:

hhand ∼ 0.9× hped (4)

It should be noted that the height variations ∆hhand(t), i.e., the variations of the DTM, is used to
estimate the scale factor of the displacement along the vertical axis in the following section. In addition,
since the variations in the DTM are very small, displacements on the vertical axis could be ignored to
simplify the scale-factor calculation.

3.4. Scale Determination

Because steps and images are not sampled at the same times, an interpolation is needed.
Then using the knowledge of pedestrian step lengths and the frequencies of both the visual
measurement and the pedestrian’s step, a linear interpolation is operated to determine the pedestrian
displacement between the instants of two consecutive images, as illustrated in Figure 4. The scale of
the VO during the step k + 1th is computed by using the kth step length based on the interpolation.
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The step length estimation stepk provides the magnitude of the pedestrian displacements on the
horizontal plane. With the assumption that the displacements of the handheld device are mainly on
the horizontal plane, displacements on the vertical axis are not taken into account.

Figure 4. Step length interpolation.

Therefore, to estimate the scale s(t), a comparison is made between DVO(t), i.e., the magnitude
of the displacement of the camera’s optical center Cn on the horizontal plane estimated by the VO
at times (t− 1) and (t), and Dstep(t), i.e., an interpolation at times (t− 1) and (t) of the estimated
pedestrian step length on the horizontal plane stepk between the instants of step (k− 1) and (k).

DVO(t) = ‖Cn(t)− Cn(t− 1)‖ (5)

Dstep(t) = stepk ×
∆timage

∆tstepk

(6)

The scale factor s(t) is then defined as:

s(t) =
Dstep(t)
DVO(t)

(7)

Thus, at each relative pose estimated by the VO, the scale is computed and used to correct the
displacement of the handheld device on the horizontal plane in the Navigation frame. The final outputs
are Rn

c (t), the rotation matrix from the Camera frame to the Navigation frame at time (t) and tn
c (t),

the translation vector from the Camera frame to the Navigation frame at time (t).
It should be noted that during the whole process, several steps can fail. In the “PDR” part, there

might be some miss or false step detections. In the “VO” part, there might be false correspondences
between features even if the matching process should limit it.

3.5. Known Object Recognition-Based Pose Estimation

To punctually suppress the drift and correct the relative pose estimate based on the scaled
monocular Visual Odometry, the detailed knowledge of existing sparse known objects contained in 3D
GIS is used. A known object allows to estimate absolute pose when one is detected in video frames [47].
The mean positioning accuracy is claimed to be 25 cm on the horizontal plane when a known object was
detected in video frames. It should be noted that the track estimated with the monocular VO is highly
dependent on initialization and reinitializations. Therefore, an inaccuracy in the known object-based
pose estimation results in a bias in the orientation estimate of the trajectory. As the last view before a
known object detection loss is a grazing view, which is the most degraded and the less accurate case
for the known object-based pose estimation, the absolute pose estimated when the pedestrian is in a
static phase in front of a known object since a few seconds is preferred to re-initialize the monocular
VO. That corresponds to the most accurate case for the known object-based pose estimation. Figure 5
presents an illustration of our global approach for continuous pose estimation with a handheld device
in urban environments. It comprises three main stages:

1. The Known Object Detection;
2. The pose estimation;



Sensors 2019, 19, 953 8 of 18

(a) The Scaled Monocular Visual Odometry (relative pose estimate).
(b) The Known Object-Based Pose Estimation (absolute pose estimate).

3. The AR visualization.

Camera 3D GIS

Known object 
detection

Scaled Monocular 
Visual Odometry

Known Object Based 
Pose Estimation

Augmented 
Reality

Not detected Detected

Figure 5. Global approach for continuous pose estimation in urban environments.

4. Experiments

4.1. Hardware Setup

According to the hardware setup needed to develop the proposed approach, the handheld device
used in the experiments is composed of a monocular camera and an IMU rigidly attached together,
as illustrated in Figure 6.

Figure 6. Hardware setup: the ULISS platform (below) and the Garmin VIRB camera (top).

This hardware configuration gives access to raw data without the filters commonly applied
to mobile device signals. To synchronize the IMU signals and the monocular camera recordings,
timestamps from the GPS receivers embedded in both devices were used. The details of the devices
are as follows:

A Garmin camera “VIRB 30 Ultra” (https://virb.garmin.com), set up with a fixed focal length,
was used for image acquisition. The resolution of the camera was 1920× 1080 pixels and was chosen
to correspond to a standard resolution of smartphone’s acquisition. The video was acquired at 60 Hz
frame rate. According to the computational resources in the device, the video was down-sampled at

https://virb.garmin.com
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10 Hz to reduce the computation time. The image resolution could also be resized, but this has not
been done for the implementation of our solution.

A dedicated platform named ULISS [48] was used for measurements. It comprises a tri-axis
Inertial Measurement Unit and a tri-axis magnetometer sampled at 200 Hz, a barometer, a High
Sensitivity GPS receiver and an antenna. They are all low-cost sensors similar to those embedded in
mobile devices owned by pedestrians.

4.2. Digital Terrain Model

The DTM, used in the experiments, was computed by the French National Geographical Institute
(IGN) (professionnels.ign.fr/mnt). The resolution of the mesh is 1 meter with a decimetric accuracy
for the altitude [49]. Other DTM, provided by public data (e.g., Open Street Map, Google Earth, etc.)
could also be used. In our implementation, DTM data are processed using the OBJ format.

4.3. Scenario

A 0.7 km walk, which includes passages with an open view and buildings with important specular
reflections, was performed by three different people in urban environments with the acquisition device
held in hand. Details of the different pedestrians are given in Table 2. The pedestrian activity was in
Texting mode at all times, i.e., the pedestrian walked while looking at the screen of the handheld device.

Table 2. Acquisition measurements.

Pedestrians W1 M1 W2

Gender Female Male Male
hped 1.69 m 1.87 m 1.80 m

Acquisition duration 550 s 486 s 574 s

4.4. Estimation of Reference Waypoints and Tracks

During acquisitions, pedestrians walked on absolute reference waypoints marked on the ground
(i.e., with a crossed-out white circle) and made a stop of several seconds over them, as illustrated
in Figure 7. Their locations were measured with a centimetric accuracy using a geodetic dual-frequency
GNSS receiver (http://www.septentrio.com/) in differential mode. The starting and finishing positions
of the acquisition were also determined using a differential GNSS solution.

To assess pedestrian track estimates, reference tracks need to be established during acquisitions.
As described in Table 3, in some urban spaces, GNSS-based solutions were not accurate and not
available all the time. When the pedestrian walks in an open environment, the standard deviation
of the positioning error was less than one metre. When the pedestrian walks in urban canyons, the
standard deviation of the positioning error was up to 21 m for differential GNSS and up to 30 m for
standalone GPS. These results represent the difficulty of urban location using such sensors, and is far
from the accuracy required for an assessment.

Table 3. GNSS measurements.

Pedestrians W1 M1 W2

Differential GNSS positioning availability 90.7 % 94.5 % 81.2 %
Standalone GPS positioning availability 86.3 % 78.9 % 54.8 %

Thus, to estimate an accurate and continuous reference track, the PERSY (PEdestrian Reference
SYstem) platform [50] was mounted on the foot, on the same side as the handheld device was used
during the data acquisition, as illustrated in Figure 7. The PERSY platform outputs location relative to a
starting position and claims to have a 0.3% positioning mean error of the distance traveled. Quasi-static

professionnels.ign.fr/mnt
http://www.septentrio.com/
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phases of the acceleration and the magnetic field are used to mitigate inertial sensor errors. GNSS
phase measurements are added to the strap-down EKF to improve the positioning accuracy.

 

Acquisition device 

(ULISS + Garmin) 

PERSY 

Reference 

waypoint 

(crossed-out 

white circle) 

Figure 7. Handheld device (ULISS + Garmin), foot-mounted PERSY for reference track and
reference waypoint.

Figure 8 presents the relative PERSY reference track (in green) and the absolute reference
waypoints (in white). Environmental specificities that may introduce difficulties in the monocular VO
are also identified (in red).
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Figure 8. Absolute reference waypoints and relative PERSY reference track of the 0.7 km walk in
urban environments.
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5. Evaluation

5.1. Activities Classification and Step Length Estimation

Figure 9a presents the results of the activity classification for a walk in urban environments. It can
be observed that the walking phases with the device held in hand in Texting mode (in green), and
the moments when the pedestrian is static on each of the different reference waypoints (in pink) are
correctly classified. Figure 9b presents the step lengths estimated, thanks to the walking frequency
analysis and the knowledge of the pedestrian’s height. It also can be observed that the step frequency
and the step lengths are not constant during the walk. This is due to the fact that the pedestrian has
to avoid others pedestrians, bikers or cars, and to wait at pedestrian crossings. When the pedestrian
walks normally, an amplitude of 40 cm is observed for the step lengths estimation, i.e., mainly between
1 m and 1.4 m. This validates the fact that the use of an average step length is not appropriate for an
accurate scale estimation.
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 (
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(b)

Figure 9. (a) Activities classification: Static (pink), Texting (green); (b) Step length estimation.

Table 4 presents the median step length of each pedestrian, as well as the standard deviation of
their step lengths.

Table 4. Median step lengths and step lengths standard deviation.

Pedestrians W1 M1 W2

Median step length 1.06 m 1.18 m 0.99 m
Step lengths standard deviation 0.20 m 0.14 m 0.29 m

5.2. Estimated Trajectory

To perform the proposed scaled monocular VO, the initial pose in the Navigation frame must
be estimated. For this process, position from GNSS and orientation from the IMU [51] were used.
Then, to punctually suppress the drift and reinitialize the pose in the Navigation frame, the known
object-based pose estimation proposed in [52] was used.

Figure 10 presents the relative PERSY reference track (in green) and the track estimated with the
scaled monocular VO (in blue). From these results, it is observed that the estimated track is close to the
relative PERSY reference track. This means that the proposed approach, using adaptive pedestrian
step lengths estimates, allows to correctly scaled the monocular VO and to estimate the localization
of a device held in hand by pedestrian while walking in urban environments. A visualization of the
position estimation is also available on Youtube (https://youtu.be/3bSFrtF2lwU).

https://youtu.be/3bSFrtF2lwU
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Figure 10. Scaled monocular Visual Odometry track, absolute reference waypoints and relative PERSY
reference track of the 0.7 km walk in urban environments.

To assess the performance of the proposed approach, comparisons are made between the positions
estimated with the scaled monocular VO and the relative PERSY reference tracks. Figure 11 presents
the “Horizontal Positioning Error” and Figure 12 presents the “Cumulative Distribution Function” of
the positioning errors for the three different pedestrians.
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Figure 11. Scaled monocular Visual Odometry Horizontal Positioning Error compared to relative the
PERSY reference track.
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Figure 12. Scaled monocular Visual Odometry Cumulative Distribution function of the positioning
errors compared to relative the PERSY reference track.

Because the relative PERSY reference track is not perfect due to slight inaccuracies that accumulate
during the walk, an assessment of the positioning accuracy is also proposed in comparison to absolute
reference waypoints. Thus, Table 5 presents the positioning errors between the scaled monocular VO
and the absolute reference waypoints before a known object-based reinitialization.

A comparison with a scaling of monocular visual odometry by fixed-step length is also proposed
in Table 5. A fixed-step length is defined in relation to the size of each pedestrian. The walking speed is
also defined as fixed for all phases where pedestrians walk, and as zero for phases where pedestrians
are static. It is observed that the proposed solution allows a positioning error of 1.6–7.5% of the walked
distance, where the use of a fixed-step length only allows a positioning error of 7.1–12.7% of the walked
distance. This comparison highlights the benefit of the proposed solution compared to the use of a
fixed-step length.

Table 5. Scaled monocular Visual Odometry positioning errors and percentage of positioning error
with respect to the walked distance compared to absolute reference waypoints and mean positioning
error compared to relative the PERSY reference track. Results are given for the use of an adaptive step
length (left) and for the use of a fixed-step length (right).

Pedestrians W1 M1 W2

On waypoint 44-1 (after 120 m) 2.84 m | 27.97 m 3.58 m | 13.17 m 4.46 m | 35.16 m
(2.3% | 23.3%) (2.9% | 10.9%) (3.7% | 29.3%)

On waypoint 77-1 (after 550 m) 6.60 m | 101.06 m 21.10 m | 78.74 m 15.11 m | 167.7 m
(1.2% | 18.3%) (3.8% | 14.3%) (2.7% | 30.5%)

On finish (after 700 m) 22.43 m | 54.96 m 11.77 m | 49.80 m 52.56 m | 89.19 m
(3.2% | 7.8%) (1.6% | 7.1%) (7.5% | 12.7%)

Mean positioning error 16.59 m | 26.58 m 7.33 m | 20.59 m 12.58 m | 45.09 m

As a general assessment of the proposed approach, it can be observed that there are positioning
errors during the walk. There are mainly due to the fact that the estimation of the 3D world points
coordinates is not perfect in the monocular VO, particularly in urban canyons and open areas, where
extracted feature points correspond to elements that are several hundred meters away from the camera.
However, these errors can be corrected if a known object is detected. In addition, due to important
specular reflections, the implemented monocular VO does not allow to accurately estimate the changes
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in the orientation. This results in an error in the orientation estimate, which increases the positioning
error at the end of the walk. This could be solved by using more sophisticated VO frameworks such
as [53].

It should be noted that when the pedestrian makes small displacements, the proposed approach
estimates a smooth trajectory, whereas the use of an average step length would have distorted the
scale and the position estimate. Figure 13 presents a focus on an area where the pedestrian makes
small displacements. A visualization is proposed on the horizontal plane and in a 3D environment
containing 3D models of the known object and buildings around it.
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Figure 13. Example of a situation where the pedestrian makes small displacements: (a) vicinity of the
station 44, (b) vicinity of the station 77.

6. Conclusions

In the context of pedestrian navigation, urban environments constitute challenging areas for both
localization and handheld device pose estimation. Accurate position and orientation estimation are
even more challenging, using only low-cost sensors available in general public devices, i.e., monocular
camera and Inertial Measurement Unit.

To address these challenges, we propose a general approach, based on monocular Visual
Odometry, to continuously estimate the pose of a handheld device. Our approach does not require any
connection or any deployment of new infrastructures. To solve the scale ambiguity and suppress the
scale drift in monocular Visual Odometry, an adaptive pedestrian step lengths estimation is used for
the displacement on the horizontal plane. To complete the estimation, a handheld equipment height
model, with respect to the Digital Terrain Model contained in Geographical Information Systems,
is used for the displacement on the vertical axis. In addition, known objects allow to correct the pose
estimate and reset the monocular Visual Odometry when one is detected in video frames.

A long walk of about 0.7 km with an IMU, that integrates low-cost sensors, combined with
a camera held in hand has been conducted by three different pedestrians in urban environments
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with sparse known objects. An assessment is conducted using absolute reference waypoints, whose
coordinates have been precisely determined with a Differential GNSS solution in an off-line phase.
The assessment is completed by comparing results to a relative reference track obtained with a
foot-mounted INS aided by GNSS phase measurements. The proposed approach enables to estimate the
pose of a handheld device in urban environments, which is needed for augmented reality applications.
Furthermore, this also allows to accurately estimate the pedestrian displacements without any use of
GNSS positioning, which strongly deteriorates in urban and indoor environments. A comparison is
also proposed between the use of an adaptive step length and the use of a fixed-step length to scale the
monocular visual odometry. The proposed solution allows to achieve a positioning error between 1.6%
and 7.5% of the walked distance, and confirms the benefit of the proposed solution compared to the
use of a fixed-step length.

We plan that part of future works will be dedicated to more accurately estimating the pose,
by fusing the presented global approach with PDR and barometric height in a tightly coupling process,
mainly to improve the pose estimate in case of handheld device’s fast rotational motions. The proposed
global approach will also be extended to other known objects in order to reduce the distance between
two absolute pose estimates.
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