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Functional Neurological Disorder (FND), also known as conversion disorder, is characterized by neurolog-
ical symptoms that are incompatible with any known structural disorder and best explained by a biopsy-
chosocial model. Evidence-based treatments for FND are limited, with cognitive behavioral therapy (CBT)
and physiotherapy being the most effective interventions [1]. In recent years, functional neuroimaging
studies have provided robust evidence of alterations in activity and connectivity in multiple brain net-
works in FND. This body of evidence suggests that neurocircuitry-based interventions, such as non-
invasive brain stimulation techniques (NIBS), may also represent an effective therapeutic option for
patients with FND.
In this systematic review, we outline the current state of knowledge of NIBS in FND, and discuss lim-

itations and future directions that may help establish the efficacy of NIBS as a therapeutic option for FND.
� 2021 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

FND: From a psychological explanation to a neurocircuitry disease
model

Functional neurologic disorder (FND), also known as conversion
disorder, is characterized by the presence of ‘one or more symptoms
of altered voluntary motor or sensory function which clinical presen-
tation must provide evidence of incompatibility between the symp-
toms and the recognized neurological or medical condition’,
according to the Diagnostic and Statistical Manual of Mental Disor-
ders 5th edition (DSM–5) [2]. FND comprises a myriad of different
symptoms, including motor symptoms (from hyperkinetic- move-
ment disorders- to loss of motor function- paresis), cognitive
symptoms, sensory pathology (including vision, hearing, etc.) and
seizures. Functional seizures are one of the most common clinical
manifestations of FND. Little has been known regarding the under-
lying pathophysiology of FND. The original conversion disorder
hypothesis suggested that psychological factors (i.e., traumatic
and/or stressful events) are converted into neurological symptoms
[3]. This has been abandoned in favor of a more comprehensive
biopsychosocial framework that considers predisposing, precipi-
tating and perpetuating risk factors [4–7].

A growing number of neuroimaging studies in patients with
FND has provided evidence of dysfunction in activity and connec-
tivity in brain networks implicated in cognitive and motor control,
emotion regulation, self-awareness and agency [8,9]. Clinical stud-
ies have led to the identification of positive neurological signs
specific for these disorders (e.g., Hoover’s sign) [10–12], facilitating
the diagnostic process. Furthermore, epidemiological studies have
shown that a history of trauma or provoking stressor are not nec-
essary but are considered risk factors for FND [13]. This improved
understanding of the pathophysiology of FND has not yet been
translated into effective treatments. Currently, evidence-based
treatments available for FND include physical and psychological
therapies, particularly cognitive-behavioral therapy (CBT)- which
represents the most effective evidence-based treatment for
patients with FND [1,14–16]- along with reassurance and a com-
passionate explanation of the diagnosis, which are also critical
for recovery [17,18]. Interestingly, efficacy of CBT and motor
retraining in patients with FND has been associated with changes
in the activity and connectivity of several brain regions implicated
in FND [19,20]. This evidence suggests that interventions aimed at
targeting neurocircuitry dysfunctions, such as non-invasive brain
stimulation (NIBS), may be a promising therapeutic strategy for
FND.

Transcranial magnetic stimulation (TMS) and transcranial
direct current stimulation (tDCS) are two NIBS interventions
increasingly studied for clinical use. Both techniques are safe
and well-tolerated when delivered according to existing guideli-
nes [21–24] as they do not require general anesthesia, and both
have fewer potential side effects when compared with other
neuromodulatory techniques such as electroconvulsive therapy
(ECT). ECT was the first electrical stimulation technique used
to treat neuropsychiatric disorders, including FND [25], however
ECT- related side effects and lack of spatial specificity of this
intervention limits its efficacy [see Box 1 for overview of neuro-
modulatory techniques]. Both TMS and tDCS have demonstrated
modulation of brain networks and change in clinical and behav-
ioral domains relevant to FND, in both healthy controls and
patients with neuropsychiatric disorders [26–33]. In this study,
we review the literature on investigations of NIBS as a therapeu-
tic intervention in patients with FND and discuss the implica-
tions that study design, stimulation protocols, patient
population and treatment outcomes have in determining the
efficacy of NIBS for FND.
2

Methods

A systematic literature search was performed using PubMed for
reports published until July 20, 2021. Two sets of search terms
were used: one to identify articles on TMS and FND, and the other
to identify articles on tDCS and FND. The terms used in each search
can be found in Appendix A and Appendix B.

For study on TMS, our initial search was further refined by
selecting those articles that used TMS and repetitive TMS (rTMS)
– including also accelerated stimulation protocols such as inter-
mittent theta burst stimulation (iTBS) - as a treatment tool for
any FND phenotype. To ensure accuracy, the literature search
was performed at four different time points by the first author
(IG). We excluded review/update articles, manuscripts that were
not in English, and non-therapeutic studies (including reports that
used TMS as a diagnostic tool for FND and/or other disorders as
well as those that used TMS to measure cortical excitability). We
excluded studies that used other neuromodulation treatments
(tDCS, vagus nerve stimulation-VNS, ECT). Another article was
excluded as presented duplicate subject data [34] that was incor-
porated in a later report already included in our review [35]. We
also examined previously published reviews [14,36–40] and iden-
tified three further studies [41–43] that met our inclusion criteria,
which were included in the final data collection. Two of these 3
articles were not originally published in English [41,43] and the
third one was an abstract not available through PubMed and local-
ized through a different search engine, WebofScience [42]. Thus,
data from these articles were extracted from reviews [36,38,44],
instead of the original publications. The selection process is illus-
trated in Fig. 1.

The same procedure was followed to identify publications on
tDCS in FND (Fig. 2). We excluded articles not in English, those that
used tDCS for pathologies other than FND and reports that did not
evaluate tDCS as a therapeutic intervention. Our search led to a sin-
gle article that used tDCS as a treatment tool for a patient with
functional seizures [45]. Additionally, we identified another article
describing potential therapeutic benefit of one tDCS session in
FND, although the study was not designed to test the efficacy of
this intervention [46].

Of note, our search was not limited by age range. No studies
were identified that use/studied TMS/rTMS or tDCS in children
with functional neurological disorder diagnosis. However, both
neurostimulation techniques have been studied in children and
adolescents with other neuropsychiatric disorders and determined
to be feasible and safe [47–50].
Results

Following our methodology, we divided our results in 2 sections
to describe in detail each NIBS technique studied in our review
(TMS and tDCS) separately.
1. TMS in FND

We identified a total of 21 studies that investigated the efficacy
of TMS/rTMS in FND patients (Fig. 1). Study characteristics are
summarized in Table 1.

1.1. Study design

Of the 21 studies identified, 4 were randomized, controlled tri-
als (RCTs) that aimed to assess the efficacy of TMS as a potential
treatment for FND, 8 were open label studies /case series and 9
were individual case reports. A total of 82 patients participated
in the 4 RCTs (n = 21 [51], n = 33 [52] , n = 17 [53] and n = 11



Fig. 1. TMS articles’ selection process flowchart.
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[54]), while a total of 138 patients were enrolled in open label
studies. A total of 11 patients were included in the individual case
reports.

Of note, two of the RCTs identified used sham TMS as the con-
trol intervention [53,54], while root magnetic stimulation (RMS)
[52] and low-intensity stimulation (below motor threshold) [51]
were used as control interventions in the other two RCTs.
Fig. 2. tDCS articles’ select

3

1.2. Stimulation parameters

The majority of the TMS studies reviewed used low-frequency
(<1Hz) rTMS –considered inhibitory– (9 studies: 3 RCTs and 6 case
reports). Five studies (1 RCT, 2 case series and 2 case reports) used
high-frequency (>5Hz) rTMS –generally considered excitatory–;
and 6 studies (5 case series and 1 case report) used single pulse
ion process flowchart.



Table 1
- TMS- study characteristics’ description.

Table 1.1. Randomized Trials

Parameters of stimulation Results

Study (author/
year)

FND
Phenotype

Design N Anatomical
Target

Frequency* Intensity
(% MT)

Total
pulses/
session

# Sessions Outcome Measures Outcome Time point 1** Outcome Time
point 2***

Randomized Controlled Trials
Pick et al. [65] Paresis

(unspecified
laterality)

Randomized
Inactive treatment
controlled
(rTMS
above/below MT)
Single blinded

21 MC rTMS
1Hz

Active
arm:
120%
RMT
Inactive
arm: 80%
RMT

120
pulses

2 sessions
4 weeks apart

CGI by patient
CGI-
InvestigatorFIM/
FAM (Psychosocial
functioning)
Barthel Index
(Disability)

Both groups showed improvement-
non- significant further
improvement in the active vs
inactive treatment groups
Before and immediately after 2nd
TMS session- 67% active group vs
20% inactive group reported ‘‘much
improvement”

3 months after the
first TMS session -
44% active group
vs 20% inactive
group reported
‘‘much
improvement”
2 subjects lost of
follow-up

Taib et al. [53] Movement
disorder
-tremor
(unilateral
and
bilateral)

RandomizedSham
controlled
(sham rTMS)
Double-blinded
2nd phase open
label

17 MC(hand+leg
areas)
.Contralateral
in unilateral
tremor
.Bilateral in
bilateral
tremor

rTMS
1Hz

90% MT 800
pulses

Phase 1
(controlled trial):
5 sessions in 1 day
(either arm)Phase
2 (open label):
3sessions in 3
weeks
(rTMS+1 hour
hypnosis)

PMDRS
CGI-Investigator

Statistically significant
improvement in PMDRS tremor
subscores and CGI-I in active group
only, at 1 month after study
inclusion.

Maintained
decrease in
PMDRS in active
rTMS group at M2,
M6 and M12.No
change in PMDRS
or tremor subscore
at M6 and M12 in
control
intervention group

Garcin et al. [52] Movement
disorder
-unspecified
(all
unilateral)

RandomizedSham
controlled
(RMS)
Single blinded
Cross-over

33 TMS: MC-
Contralateral
(legs +arms
area)
RMS: Spinal
Roots-
Homolateral
(cervical +
lumbar)

rTMS
0.25HZ250
microsec
(each
pulse)

120-
150% MT

Average
50
pulses
(30-80
pulses)

2 sessions on
consecutive days
(interval
minimum 18
hours) in cross-
over design by
group

CGI by
patientNeurological
evaluation
(blind)
FMD score

Both groups showed improvement
(60% of subjects were improved by
day 3)
No difference between TMS and
RMS groups.

Sustained
improvement in
56% of all subjects
at 1 year
Recurrence in 12
subjects at 6
months who
responded to
single TMS booster
session.

Broersma et al.
[54]

Paresis
(all
unilateral)

Randomized
REMP-controlled
Single Blinded
Cross-over

11 MC
Contralateral

rTMS
5Hz
2 sec train
ITI 4sec

80% MT 9,000
pulses

10 sessions in 2
weeks
.Cross-over:
separated
conditions by 2
monthsRepetition
of same protocol
(10 sessions in 2
weeks)

.Dynamometry

.Subjective change
in muscle strength.

Significant increase in objective
muscle strength in active group; no
significant difference in sham group
after 1st 10 sessions (for 8 subjects
completing both treatments,
increase was larger after active
rTMS).
No difference in subjective change
between the placebo and active
rTMS group

No data available

Frequency: if data not included, information was not provided in the original article
**Time Point 1: Assessments performed during the TMS treatment course
***Time Point 2: Assessments performed as follow up after TMS treatment- goal to assess durability of improvement
AC: Anterior Cingulate; CGI: clinical global impression; FMD: Functional Movement Disorders; FIM/FAM: Functional Independence Measure/ Functional Assessment Measure; ITI: inter-train interval; MC: (primary) Motor

Cortex;
MT:Motor Threshold; M2,M6,M12: month; PMDRS: Psychogenic Movement Disorders Rating Scale; REMP: real electromagnetic placebo; RMS: Root Magnetic Stimulation; RMT: Resting Motor Threshold.

I.G
onsalvez,P.Spagnolo,B.D

w
oretzky

et
al.

Epilepsy
&

Behavior
R
eports

16
(2021)

100501

4



Table 1.2
Open Label Studies

Table 1.2. Open Label Studies

Parameters of stimulation Results

Study
(author/year)

FND Phenotype Design N Anatomical
Target

Frequency* Intensity
(% MT)

Total
pulses/
session

# Sessions Outcome
Measures

Outc Time point 1** Outcome Time point
2***

Open label
Spagnolo

et al. [56]
Movement
disorder
-unspecified

Open label 6 Left DLPFC
Individualized
fMRI imaging
guided

iTBS 120%RMT 3600pulses total of 6 sessions
2 visits- 24h
interval
3 iTBS sessions
each visit,
>20min between
sessions

Functional MRI
data
S-FMDRS

Decr functional connectivity
betw the left amygdala and
DLPF nificant FMDRS
decr within each stimulation
visit
(pre post treatment)

Significant FMDRS
decrease between
baseline (pre TMS) and
24h after last
stimulation

Peterson et al.
[62]

Functional
seizures

Open label 7 Right TPJ rTMS
10Hz
5 sec trains
ITI 30sec

110% MT 3000pulses 30 sessions in 3
weeks
2 sessions/day-
15min between
sessions

Functional
seizures count

Decr in weekly functional
seizu frequency in all subjects
thro ut treatment.

All participants
sustained improvement
up to 3 months post-
treatment.
4 out of 7 subjects
remained seizure free at
3 months.

McWhirter
et al. [58]

Upper limb
weakness
(all unilateral)

Open label
10 MC

Contralateral
Single
pulses
Up to
0.3Hz
Sets of 4–5
pulses 3–4
sec
interval

120-150%
MT
depending
on subject
tolerance

46-70
single
pulses

1 session .Measures of
disability (SF-12
and MRS).Self-
reported symptom
severity
(5-point Likert
Scale)
.Grip strength
hand
dynamometer
.Tapping
frequency

Sign nt reduction in self-
repo mptoms severity in 4
out subjects.No
diff ces in objective
mea s.

Improvement not
sustained
After 3 months all
subjects’ symptoms had
recurred

Shah et al.
(2015)

Movement
disorder
-unspecified
(bilateral)

Open label
Phase1:TMS
MC;
assessment
at 2weeks;
Phase2:TMS
PMC if no
change after
last
assessment.

6 Phase1:
MC- Dominant
Phase2:
Dorsal PMC-
Dominant

Single
pulses
0.33Hz
150 sec

90% MT 50 pulses Phase1: 5
sessions
Phase2:10
sessions total

WHOLQOL-BREF
Imp ment in physical
sym s after both phase 1 and
phas
Imp ment in psychological
sym s only after phase 2.
No c ges in the social
relat hip and environmental
dom in either phase.

Data only available in 2
subjects who reported
sustained improvement
after ‘‘many months”

Garcin et al.
[57]

Movement
Disorder
-unspecified
(9 unilateral;
15 bilateral)

Open label 24 MC
Contralateral-
unilateral FMD
Bilateral-
bilateral FMD

Single
pulse
0.25Hz

120% MT 20 pulses
(average)

1 session .AIMS (modified).
Burke-Fahn-
Marsden scale
(walking disability
subscore).CGI-
Improvement
(by patient)

75% bjects improved by
>50% mediately after TMS
(a th ith complete resolution
of m symptoms)

Sustained improvement
in 71% of subjects at 1-
year follow-up (4
subjects returned to
work).
10 subjects relapsed
during f/u period but all
improved again after
boost TMS

(continued on next page)
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Table 1.2 (continued)

Table 1.2. Open Label Studies

Parameters of stimulation Results

Study
(author/year)

FND Phenotype Design N Anatomical
Target

Frequency* Intensity
(% MT)

Total
pulses/
session

# Sessions Outcome
Measures

Outcome Time point 1** Outcome Time point
2***

Dafotakis
et al. [43]
[Nicholson
[38], Gar-
cin [44]]

Movement
Disorder
-tremor
(3 unilateral;
8 bilateral)

Open label 11 MC
Laterality not
specified

Single
pulse
30pulses
0.2Hz

120%MT-15
pulses
140%MT-15
pulses

30 pulses 1 session Kinetic Motion
Analysis

Immediate reduction of
symptoms in 97% of subjects

Sustained recovery in 4
subjects at 8-12months
Remaining subjects had
recurrence

Chastan and
Parain [60]

Paresis
(paraparesis 40;
monoparesis 26;
quadriparesis 2;
hemiparesis 2)

Open label 70 MC
.Contralateral
in unilateral
paralysis
.Bilateral in
bilateral
paralysis

Single
pulse
30 pulses
4-5 sec
interval

100% max
stimulator
output
(2.5 Tesla)

30 pulses 1-2 sessions in
1day
(2nd session
performed if 1st
resulted in
incomplete
improvement)

None reported Effective in 89% of subjects (total
recovery in 59 subjects)
immediately or within hours
after rTMS.

Sustained improvement
in most patients.
Recurrence in 8 subjects
at 6 months; 6 received
and responded to rTMS
booster sessions

Schönfeldt-
Lecuona
et al [35]

Paresis
(3 unilateral;
1 bilateral)

Case Series
4 PMC

.Contralateral
to paralytic
limb
.Laterality not
specified for
subject with
bilateral
paresis

rTMS 15Hz
2 sec train
ITI 4 sec

110%
MTx2weeks
90%MTx4-
12weeks

4000
pulses

25-70 sessions in
5-14 weeks as
dictated by
symptomatic
recovery

None reported 3 of 4 cases improved by week 2-
3 and recovered or improved
significantly by week 5-12

Sustained improvement
after 1 year

Frequency: if data not included, information was not provided in the original article
**Time Point 1: Assessments performed during the TMS treatment course
***Time Point 2: Assessments performed as follow up after TMS treatment- goal to assess durability of improvement
AC: Anterior Cingulate; AIMS: Abnormal Involuntary Movement Scale; CCI: clinician’s clinical impression; CGI: clinical global impression; DLPFC: Dorsolateral Pre-Frontal Cortex; FMD: Functional Movement Disorders; ITI:

inter-train interval;
MC: (primary) Motor Cortex; MRS: Modified Rankin Scale; MT: (resting) Motor Threshold; PMC: Premotor Cortex; PMDRS: Psychogenic Movement Disorders Rating Scale; SF-12:
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Table 1.3
Case Reports

Table 1.3. Case Reports

Parameters of stimulation Results

Study (author/
year)

FND Phenotype Design N Anatomical
Target

Frequency* Intensity
(% MT)

Total pulses/
session

# Sessions Outcome
Measures

Outcome Time point 1** Outcome Time point 2***

Case Reports
Bottemanne et al.

[66]
Tetraparesis
Mixed Tremors
Functional
Seizures

Case
report

1 MC rTMS
1Hz

150% 300 pulses 20 sessions
2 sessions/day
10 days

MRC Symptoms improved
between 8th and 12th
session, with paresis
improving first.

At 2 months - resolution of all
functional neurological
symptoms

Naro et al. [61] Functional
myoclonus

Case
report

1 Left PMC rTMS
1Hz

115% RMT 1,200 pulses 30 sessions
6 weeks
5 sessions/ week

EEG
EMG

Magnitude and
frequency of the
myoclonus were
strongly reduced based
on EMG data

Patient-reported improvement
in myoclonus severity after 2
weeks of rTMS treatment. This
improvement consolidated at
the end of the rTMS paradigm
and persisted up to 2 months
later.

Blades et al. [63] Functional
seizures,
Functional
dystonia
-head and neck
Dissociative PTSD

Case
report

1 Primary
target: AC
Secondary
target: SMA
+ PMC
Laterality
not
specified

rTMS
1Hz

Not reported Not reported 36 sessions in 2
months.multiple
locations in each
session: 36
cingulate, 2 PMC
(right+left)
, and 32 SMA

BDI-2
GAD-7
PHQ-9
BAI
TWSTRS

Improvement in
speech, motor
twitching, mood and
global change after all
TMS treatments

Sustained improvement after 2
months leading to return to
active duty.

Agarwal [55] Functional
seizures

Case
report

1 Right TPJ
1 cm lateral
to CP4

iTBS
‘‘excitatory”
No other
specifics
given

80% MT 600 pulses 10 sessions in 7
days
2sessions/day

PNES scale
HAM-D
HAM-A

Decrease functional
seizures frequency and
in all scales
immediately after
treatment.

Sustained improvement in all
scales one week after treatment
and functional seizures
remission 2 weeks after
treatment.

Yeo et al. [64] Visual loss Case
report

2 Central
occipital
cortex

rTMS
10Hz
10 trains
10 sec
trains

Not specified
‘‘increasing
amplitude
until
phosphenes
and
tolerance of
facial
twitching”

Not specified
[1000 pulses by
TMS parameters]

Case 1: 3
sessions over 3
months Case 2: 6
sessions over 1
year
(frequency not
specified)

None
reported

Improvement in sight
in both cases

Complete recovery at 12
(sudden recovery after 8
months) and 15 months in each
case (improvement attributed to
head injury)
.

Portaro et al. [67] Flaccid
paraparesis

Case
report

1 MCBilateral
(hand+leg
area)

rTMS
1Hz

100%
maximum
output

100 pulses 36 sessions in 12
weeks

Psychological
evaluation
Gait analysis

Improvement in mood,
weakness, pain and gait
immediately after
rTMS.

No data available

Gaillard et al. [41]
(in French)
[Schonfeldt-
Lecuona et al.
[36]]

Quadriplegia Case
report

1 MC
Bilateral
limb areas

rTMS
1Hz

Not Reported 1,000pulsesxregion
total 4,000 pulses

40 sessions in 8
weeks initially-
then 2sessions/
week
*total duration of
treatment not
specified

CCI-CGI Progressive
improvement (CGI-
I = 1.5), two subsequent
recurrences responded
to booster treatment
(CGI-I = 2.5 and 2
respectively)

Recurrence at f/u (timeline not
specified) with medical
complications (phlebitis, PE and
pressure soars)

(continued on next page)
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TMS. Lastly, 2 studies (a case report and a proof-of-concept study)
used iTBS – an accelerated excitatory protocol using short bursts of
stimulation at high frequencies [55,56].

We observed great heterogeneity among studies in terms of
duration of the stimulation session, total number of sessions and
total duration of the study (including the time period between
pre- and post- treatment measurements). Four studies entailed a
single session and applied single pulse TMS [42,43,57,58], while
the remaining studies using either high or low frequency rTMS
used multiple sessions, ranging from 2 [59,60] up to 70 sessions
[35]. There was a wide range of pulses depending on the fre-
quency: 12–70 pulses in one session of single pulse TMS, 30–
4,000pulses in low frequency rTMS, and 1,000–9,000 in high fre-
quency rTMS. The 2 studies using iTBS applied a total of 600 pulses
and 3600 pulses respectively. Some studies reported patients
receiving additional TMS session(s) between end of treatment
and follow-up visit due to incomplete response, which could
impact the outcome at the follow up timepoints [41,52,60].

1.3. Stimulation targets and study population

The majority of the studies included in our review evaluated
TMS effects on functional motor disorders (FMD) with negative
symptoms (paresis, weakness, paralysis, myoclonus) (see Table 1).
In these trials, the primary motor cortex contralateral to the symp-
tom (bilateral in the case of bilateral motor symptoms) repre-
sented the most frequently selected anatomical target, with the
exception of 2 studies in which the premotor cortex – contralateral
to the affected limb [35,61] – and the vertex [42] were stimulated.

Five studies investigated TMS efficacy on FMD with hyperki-
netic motor symptoms (2 RCTs, 1 pilot study and 2 case series –
Table 1), and they all used the primary motor cortex as the stimu-
lation site, except for one study using an individualized, functional
neuroimaging-guided stimulation target within the left dorsolat-
eral prefrontal cortex [56]. Although the TMS protocol used was
different between studies (single pulse TMS, low frequency rTMS
and iTBS), all reported positive outcomes that persisted through
their follow-up timepoint.

Three further studies evaluated the efficacy of TMS on func-
tional seizures. Peterson et al (2018) [62] and Agarwal et al
(2019) [55] used right temporo-parietal junction (TPJ) as the
anatomical stimulation target, whereas Blades et al (2020) [63]
used the anterior cingulate cortex as the target. Although all three
studies used different TMS protocols (rTMS excitatory, rTMS inhi-
bitory and iTBS excitatory respectively) and different parameters
of stimulation, all three reported positive outcomes with signifi-
cant improvement after treatment and sustained improved in
symptoms at subsequent follow-up timepoints.

There were two studies on other FND phenotypes: one case
report that described a case of aphonia, which targeted the left pre-
frontal cortex and right motor cortex with an inhibitory protocol
[59] and another report with 2 cases of visual loss, which stimu-
lated (excitatory rTMS) the central occipital cortex[64].

1.4. Outcome measures

Study outcome measures varied significantly among studies.
Some studies used validated outcome scales (e.g., clinical global
impression scales [CGI]) to measure change in symptom severity,
while others provided a descriptive report. Study outcomes were
measured immediately after patients received rTMS and at
follow-up in the majority of the studies (Table 1). The interval
between the last stimulation session and the follow-up was highly
variable among studies, ranging from 24 hours to 12 months. None
of the studies consistently incorporated the core outcome mea-
sures outlined by the FND-COM group– Clinical Global
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Impression-Improvement scale (CGI-I): core FND symptoms
change; Patient Health Questionare-15 (PHQ-15): other physical
symptoms; Hospital Anxiety and Depression Scale/ Beck Depres-
sion Inventory (HADS/BDI): psychological symptoms; Short
Form-36 Health Survey Questionnaire/ Work and Social Adjust-
ment Scale (SF-36/WSAS): life impact; Health economics: health-
care resource use [65] – although it is worth noting that many
studies were published prior to the FND-COM group
recommendations.

Several studies also assessed secondary outcome measures
related to mood, pain, functioning, and cognitive complaints. Imag-
ing and/or physiological measures (e.g., functional MRI, EEG) to
evaluate target engagement were not included in the studies iden-
tified, with the exception of a recent pilot study which used
resting-state functional connectivity data to identify an individual-
ized stimulation target and evaluate neurocircuitry engagement
[56].
1.5. Efficacy measures

Two of the 4 RCTs evaluated TMS efficacy in terms of objective
improvement in muscle strength between subjects receiving active
versus sham TMS [53,54]. In the other two RCTs, efficacy was mea-
sured as between-group differences in subjective improvement
based on patient- and/or investigator-rated CGI scale. Garcin and
colleagues [52] found improvement in both active and control
(RMS) groups, with no statistical difference between them. Simi-
larly, Pick et al.[51] found subjective improvement within both
active and inactive treatment groups. Efficacy from open label
studies and case series were reported as a decrease in symptom
severity and frequency, as well as complete resolution of symp-
toms in some cases [55,59,64,66]. In addition, nineteen out of 21
studies included reported results from follow-up assessments. Of
these studies, only 2 described no TMS effects on study outcomes
at follow-up [54,67], and 16 reported prolonged effects of TMS
on primary and/or secondary study outcomes. However, it is
important to note that time at follow-up varied greatly among
studies (from 24 hours to 1 year after last TMS session). In some
of the studies with positive follow-up outcomes, patients received
further TMS sessions if exhibiting symptoms at follow-up
[52,57,60], thus affecting the validity of follow-up data at a later
timepoint.
2. tDCS in FND

We identified 2 studies investigating the effects of tDCS on FND
(Fig. 2). Study characteristics are summarized in Table 2. The first
study is a case report describing the effects of 30 sessions of anodal
(excitatory) tDCS stimulation over the F3 EEG position (left dorso-
lateral prefrontal cortex-DLPFC), over 15 consecutive working
days, with a duration of 30 minutes per session. Interestingly,
the stimulation target was selected using a FDG-PET(fluorodeoxy
glucose-positron emission tomography) guided approach; which
in this case showed hypometabolism in the frontal region [45].
The authors reported reduction in functional neurological symp-
toms as well as mild improvement in psychiatric symptoms. Symp-
tom improvement was observed for 8 weeks after treatment,
although the patient required additional tDCS sessions within
those 8 weeks due to incomplete response.

As mentioned above, we included a further case-control study
that aimed to measure improvement in interoceptive sensitivity
and spatial attention and used tDCS as a neurocircuitry probe
[46]. The authors investigated the effects of one anodal tDCS ses-
sion (20 minutes) over the posterior parietal cortex on intero-
ceptive sensitivity (by a heart rate detection task) and spatial
9

attention (using the Posner paradigm [68]). There was a signifi-
cant decrease in interoceptive sensitivity in the FND group after
the tDCS session, while no significant difference was found in
the healthy control group. The authors suggest a potential trans-
lation of these positive results to a hypothetical therapeutic
effect of tDCS in FND. The authors also demonstrated a negative
correlation between interoceptive sensitivity and scales measur-
ing alexithymia, depression, and anxiety in the active but not in
the control group. There was no effect of tDCS on spatial atten-
tion in either group, which could be due to the study’s small
sample.
Discussion

In this systematic review we examined a total of 23 studies
investigating the therapeutic potential of tDCS and rTMS for
FND: 21 used TMS/rTMS and 2 used tDCS. These studies were small
in sample size, variable in design, and differed in terms of stimula-
tion protocols, FND phenotype, and outcome measures.

In terms of stimulation paradigms, most studies used rTMS,
with sessions ranging between 10 and 20 minutes. The majority
of the studies used high frequency stimulation, but overall the fre-
quency varied from 1 to 20 Hz. The intensity, measured as a per-
centage of resting motor threshold, ranged from 80% to 140% and
the motor threshold was usually determined visually and only in
a few cases using electromyography (EMG), which is more accurate
and reproducible. The total number of pulses, an essential param-
eter for rTMS efficacy [69], varied between 600 and 2000 in most
trials.

A further critical source of variability was represented by the
stimulation target. In the majority of studies, the motor cortex
was selected as target site, despite lack of motor cortex abnormal-
ities in patients with FND based on a large body of neurophysiolog-
ical and neuroimaging studies (for a review see Spagnolo, Garvey
and Hallett, 2021 [56]). Current evidence suggests that functional
neurological symptoms are associated with abnormalities in activ-
ity and connectivity in motor-limbic circuitry (i.e., amygdala,
insula, supplementary motor area) as well brain areas implicated
in agency (right temporoparietal junction – rTPJ– and precuneus)
[60,61]. Therefore, modulation of these areas via NIBS may repre-
sent a novel and effective therapeutic strategy for FND. Further-
more, studies targeting these regions via NIBS may allow to
directly probe a causal link between dysfunction in distinct brain
networks and clinical and behavioral manifestations of FND. Neu-
roimaging studies alone do not provide such causal connections.
As our understanding of the neurobiological basis of FND grows,
NIBS may play a pivotal role in facilitating the translation of this
knowledge into neurobiologically-informed therapeutic interven-
tions for FND.

In addition to the rationale for choosing a given brain region,
the procedure to identify the specific stimulation site within said
region needs to be considered. The majority of previous TMS stud-
ies in FND selected the target areas using scalp landmarks or skull
coordinates based on an EEG electrode system. These approaches
can lead to inaccurate targeting compared to MRI-based neuronav-
igation methods [70] and do not account for the complex func-
tional organization of the brain and for disease-specific
alterations in neurocircuitry. Neuroimaging-guided target selec-
tion currently represents the gold standard for NIBS studies, as this
method allows for an accurate and reproducible identification of
the stimulation site. Importantly, mounting evidence indicates that
clinical response to NIBS, particularly rTMS, relates to the func-
tional connectivity between the cortical stimulation site and distal
brain regions, which are part of the same neurocircuitry. For exam-
ple, in patients with depressive disorders, the connectivity



Table 2
- tDCS – study characteristics’ description.

Study
(author/year)

FND
Phenotype

Design N Location Current Electrode
size

Duration # Sessions Outcome
Scales

Outcome Time point 1* Outcome Time point 2**

Leroy et al.
2019

Functional
Seizures

Case report 1 PET-guided
Anode F3
Cathode FP2

2 mA Anode
35cm2
Cathode
35 cm2

30 min 30 sessions
in 15
working
days

.AIMS

.Seizure
episodes
.MADRS
.TAS

Proggresive decrease of
involuntary movemenrs
beginning at week 2 of
treatment.
Mild improvement in psychiatric
symptoms overall.
After 5 weeks:
.AIMS < 63%; PNES < 80%
.MADRS < 20%; TAS < 8%

Booster treatements for 1 week at
5 wks post-treatment due to
incomplete response.
Improvement remained stable
over 8 weeks

Demartini
et al. 2019

FMS
.Tremor
.Parkinsonism
.Dystonia
.Weakness

Randomized
Double
blind
Cross-over
Sham
+ healthy
control

9FMS
7Healthy
controls

Anode:R-PPC
Cathode:
Supraorbital
(laterality not
specified)

1.5 mA Anode
25cm2
Cathode
35 cm2

20 min 1 tDCS
1 sham
tDCS
(2 day
minimun
interval)

.Heartbeat
Detection Task
(interoceptive
sensitivity)
.Posner
Paradigm
(spatial
attention)
.HAM-A
.HAM-D
.TAS-20

Significant decrease in
Interoceptive sensitivity in the
FND group vs healthy control
No significant change in spatial
attention task after intervention
in either group

No follow up

*Time Point 1: Assessments performed during the tDCS treatment course.
**Time Point 2: Assessments performed as follow up after tDCS treatment- goal to assess durability of improvement.
AIMS: abnormal involuntary movement scale; FMS: functional movement symptoms; HAM-A: Hamilton Rating Scale for Anxiety; HAM-D: Hamilton Rating Scale for depression; mA:milliampere; MADRS: Montgomery-Asberg
Depression Rating Scale; PNES: psychogenic non-epileptogenic seizures; PPC: posterior parietal cortex; TAS:Toronto Alexithymia Scale; tDCS: transcranial direct current stimulation.
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between the stimulation target in the left dorsolateral prefrontal
cortex and the subgenual cingulate cortex has been shown to pre-
dict clinical response to rTMS. These observations have prompted
the investigation of a novel, individualized connectivity-based tar-
geting strategy, which allows to tailor the stimulation target to
each patient. This approach has already been used in several stud-
ies, including a study in patients with Alzheimer’ disease and a
recent study in patients with FMD [56,71].

Interpretation of the results of rTMS and tDCS is also limited
by the size and characteristics of the sample. The majority of
the reviewed trials consisted of small sample sizes with clini-
cally heterogeneous populations. Patients enrolled in these stud-
ies were affected by different phenotypes within the FND
spectrum, such as FMD and functional seizures; and within
the FMD group, studies evaluated patients with both positive
and negative motor symptoms, raising the question whether
NIBS in FND should be approached considering the specific
FND phenotype. Studies on the neurobiology of FND usually
consist of small samples of patients with similar FND symptoms
[9,72]. Therefore, our current understanding of the neurobiology
of FND is based on samples that at least share some phenotypic
resemblance. Note that this may be overcome if, as suggested
above, anatomical targets can be individualized based on func-
tional neuroimaging, allowing for more flexible anatomical tar-
get and protocol selection.

A further source of variability is represented by psychiatric
comorbidities. Functional seizures, for example, are associated
with high frequency and severity of depression, anxiety, post-
traumatic stress, dissociation, and somatic distress [73]. Many of
these comorbid disorders have well-established neurocircuitry
dysfunction that may converge (or not) with the proposed neuro-
circuitry dysfunction in FND, such as brain areas involved in emo-
tion regulation and cognitive control [74]. Understanding the
overlap in neurocircuitry alteration between FND and comorbid
conditions could potentially further reinforce target selection. This
suggestion should be cautiously considered, as evidence already
exists that well-proven therapies for comorbid psychopathology
do not automatically translate into improvement in FND symp-
toms [75] and vice versa [76].
Future directions

Our review of the extant literature on NIBS for FND shows that
efficacy and real indications for the use of tDCS and rTMS in this
patient population need confirmation. Many critical questions
remain unanswered, including the optimal stimulation parame-
ters, the appropriate patient population, and the opportunity to
combine other treatments. Larger studies are needed, and these
should be based on specific, testable pathophysiological hypothe-
ses and robust electrophysiological effects. Physiological measures,
including EEG, PET and functional MRI, should be included in such
studies to provide evidence of target engagement, that is that the
stimulation protocol selected is able to modulate activity and/or
connectivity in the selected site and related neurocircuitry. Fur-
thermore, combining these measures with clinical outcomes can
provide mechanistic insights and better characterize the neurocir-
cuitry underlying FND.

To fully uncover the therapeutic potential of NIBS for FND,
other aspects should also be considered and investigated. First,
it will be important to assess the effects of NIBS combined with
other therapeutic strategies. For instance, engagement in speci-
fic activities (for example, FND-specific physical therapy or CBT)
or tasks (e.g., cognitive tasks, cue exposure tasks) immediately
before, during or after neurostimulation has the potential to
directly engage the neurocircuitry targeted by NIBS, thus rein-
11
forcing neuroplastic effects, as suggested by studies in
depressed patients [74,75]. For example, CBT for functional
seizures utilizes distraction, relaxation techniques, exposure to
avoided or feared situations and development of more flexible
thinking patterns [1]. Exposing patients to this learning around
the time of neurostimulation would therapeutically exploit the
neuroplastic changes induced by NIBS and could potentially
solidify or amplify therapeutic gains from CBT. A similar
approach may be considered for a treatment protocol pairing
FND-informed physical therapy with NIBS [77]. Having the
experience of moving a limb again, recovering speech, or
decreasing a positive sensory symptom through neurostimula-
tion could serve as a powerful ‘‘catalytic inducer of change,”
especially if coupled with behaviors and/or cognitions that help
reinforce the positive experience. An equivalent mechanism has
been described in phantom limb pain phenomena, where
stimulating the motor cortex [78] or the sensory cortex [79]
contralateral to the amputated limb can ‘‘reset” altered percep-
tion. A related approach using a virtual reality-delivered mirror
and exposure therapy protocol, without neurostimulation, has
been described in FND [80]. These studies support the hypoth-
esis that exposure to a rectified motor or sensory experience
(which may be facilitated by neurostimulation) offers therapeu-
tic potential. More recently, this hypothesis was tested by
Bottemanne and colleagues [76], who used a biofeedback proto-
col coupled with rTMS in which a patient visualized motor
activity of her upper limbs during stimulation of the primary
motor area, with promising results. It is also critical to consider
the cognitive pre-conditioning that may occur before neurostim-
ulation treatment (patients hear ‘‘TMS will most likely help
you”). The therapeutic effect of a suggestion is well documented
and participants in TMS studies and actual treatment are
known to gain confidence in recovery due to guidance from
study staff [64]. A placebo effect should be further examined,
and therapeutically exploited in FND if beneficial, as it has been
shown to be an influencing factor in treatment response in TMS
studies for different pathologies [81–84]. Investigation of the
added benefit of NIBS to proven therapies for FND would
require properly designed powered sham-controlled studies.

Finally, future studies should use a reliable and widely validated
set of outcomes measures, as recommended by the FND-COM
group, to assess treatment response and to facilitate comparisons
between NIBS studies using different stimulation targets or proto-
cols [65]. These outcomes should be evaluated immediately after
patients receive NIBS and at follow-up intervals to establish both
the acute and long-term effects of NIBS.
Conclusions

In conclusion, the efficacy of rTMS and tDCS as potential treat-
ments for FND still needs to be confirmed. Existing NIBS studies in
FND are heterogeneous in design. Many critical questions regard-
ing development of future NIBS treatment protocols remain unan-
swered, such as what the optimal stimulation parameters are, who
the appropriate patient population should be, and how to combine
NIBS with other treatments. More work and larger studies are
needed, but these studies should be based on our current under-
standing of the neurobiology of FND and should be designed to
assess both clinical and brain-level effects. Physiological measure-
ments (functional MRI, EEG) should be associated with clinical out-
comes, to provide evidence of target engagement, as well as to
better characterize the neurocircuitry underlying FND. Ultimately,
the future of NIBS for FND and other psychiatric disorders depends
on the design of studies that will provide answers for these crucial
questions.
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Box 1
TMS and tDCS: an overview:
Transcranial Magnetic Stimulation (TMS) is a non-invasive
technique that uses an electromagnetic coil to generate elec-
trical activity in targeted brain regions through the applica-
tion of magnetic pulses. It is used to study brain physiology
and plasticity when delivered as a single pulse TMS, or to eli-
cit neuromodulation and neuroplasticity throughout train of
pulses, repetitive TMS (rTMS) [85,86]. Neurostimulation with
rTMS increases cortical excitability when delivered via high
frequency stimulation (�5 Hz) or intermittent theta burst
stimulation (iTBS- a variation of high frequency rTMS) or
decreases cortical excitability when delivered via low fre-
quency (1 Hz) rTMS or continuous theta burst stimulation
[87–89]. All these variants of stimulation frequencies could
translate into prolonged excitability that outlasts the stimula-
tion period [85,90–92]. The different coil shapes and the
strength of the field determine which brain structures the
stimulation can reach. Classical figure-of-eight coil targets
brain regions at a depth of 3–4 cm while newer coils (H-coil)
could reach areas 5–7 cm deep [93]. Muscle pain surrounding
the area of the stimulation along with self-limited scalp pain
and headache following the stimulation are the main side
effects reported in rTMS [86]. The most serious concern is
the potential risk of inducing an epileptic seizure, which
translates into a minimal risk once following proper screen-
ing processes (by medical professionals) and TMS guidelines
[23,94]. In terms of therapeutic applicability, TMS has been
approved by the FDA for the treatment of major depressive
disorder (2008) [95], migraine (2013) [96] and most recently
OCD (2018) [97], and will likely continue to expand as TMS
continues to show benefit for the treatment of many other
disorders including post-traumatic stress disorder (PTSD)
[98] substance use disorders [99], schizophrenia [100], cogni-
tive abilities in Alzheimer’s Disease (AD) [101], etc.

Transcranial direct current stimulation (tDCS) is a non-
invasive technique that uses a low-amplitude direct current
(0.5–2 mA) through a pair of saline-soaked electrode pads
placed directly over the scalp and connected to a battery
device. It appears that tDCS modifies cortical excitability
through subthreshold modulation of neuronal membrane
potentials [102,103], and also can induce lasting plasticity
changes [104]. Direction of cortical modulation (facilitation
vs inhibition) depends on duration, intensity, and polarity of
stimulation [105]. In addition, effects of tDCS could be altered
depending on electrode positioning and configuration as well
as skull thickness and composition [106]. tDCS’s most com-
mon side effects are skin irritation and a sensation of burning
[107].

It is important to note that both TMS and tDCS are overall safer
and better tolerated than medications, especially in specific popu-
lations such as pregnant or women of child-bearing age, older
adults, and those subjects with medical conditions impacting the
absorption, distribution, or metabolism of drugs. To date, tDCS is
not an FDA-approved treatment for any pathologies.
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Appendix A .- terminology used for TMS study search

(‘‘functional neurological disorders”[Text Word] OR ‘‘functional
neurological symptom disorders”[Text Word]) OR ‘‘conversion dis-
12
order”[Text Word]) OR ‘‘hysterical symptoms”[Text Word]) OR
‘‘psychogenic symptoms”[Text Word]) OR ‘‘psychogenic disor-
ders”[Text Word]) OR ‘‘functional weakness”[Text Word]) OR ‘‘psy-
chogenic weakness”[Text Word]) OR ‘‘conversion paralysis”[Text
Word]) OR ‘‘psychogenic paralysis”[Text Word]) OR ‘‘functional
movement disorder”[Text Word]) OR ‘‘functional movement disor-
ders”[Text Word]) OR ‘‘psychogenic movement disorder”[Text
Word]) OR ‘‘psychogenic movement disorders”[Text Word]) OR
‘‘functional gait”[Text Word]) OR ‘‘psychogenic gait”[Text Word])
OR ‘‘functional neurological paresis”[Text Word]) OR ‘‘psychogenic
paresis”[Text Word]) OR ‘‘conversion paresis”[Text Word]) OR
‘‘functional motor”[Text Word]) OR ‘‘psychogenic motor”[Text
Word]) OR ‘‘conversion motor”[Text Word]) OR ‘‘PNES”[Text
Word]) OR ‘‘psychogenic nonepileptic seizures”[Text Word]) OR
‘‘nonepileptic seizures”[Text Word]) OR ‘‘dissociative seizures”
[Text Word]) AND (((‘‘TMS”[Text Word] OR ‘‘transcranial magnetic
stimulation”[Text Word]) OR ‘‘rTMS”[Text Word]) OR
‘‘neuromodulation”[Text Word])
Appendix B .- terminology used for tDCS study search

(‘‘functional neurological disorders”[Text Word] OR ‘‘functional
neurological symptom disorders”[Text Word]) OR ‘‘conversion dis-
order”[Text Word]) OR ‘‘hysterical symptoms”[Text Word]) OR
‘‘psychogenic symptoms”[Text Word]) OR ‘‘psychogenic disor-
ders”[Text Word]) OR ‘‘functional weakness”[Text Word]) OR ‘‘psy-
chogenic weakness”[Text Word]) OR ‘‘conversion paralysis”[Text
Word]) OR ‘‘psychogenic paralysis”[Text Word]) OR ‘‘functional
movement disorder”[Text Word]) OR ‘‘functional movement disor-
ders”[Text Word]) OR ‘‘psychogenic movement disorder”[Text
Word]) OR ‘‘psychogenic movement disorders”[Text Word]) OR
‘‘functional gait”[Text Word]) OR ‘‘psychogenic gait”[Text Word])
OR ‘‘functional neurological paresis”[Text Word]) OR ‘‘psychogenic
paresis”[Text Word]) OR ‘‘conversion paresis”[Text Word]) OR
‘‘functional motor”[Text Word]) OR ‘‘psychogenic motor”[Text
Word]) OR ‘‘conversion motor”[Text Word]) OR ‘‘PNES”[Text
Word]) OR ‘‘psychogenic nonepileptic seizures”[Text Word]) OR
‘‘nonepileptic seizures”[Text Word]) OR ‘‘dissociative seizures”
[Text Word]) AND (((‘‘tDCS”[Text Word] OR ‘‘transcranial direct
current stimulation”[Text Word])
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