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A B S T R A C T   

Machine learning and linear regression models using CGM and participant data reduced HbA1c estimation error 
by up to 26% compared to the GMI formula, and exhibit superior performance in estimating the median of 
HbA1c at the cohort level, potentially of value for remote clinical trials interrupted by COVID-19.   

1. Introduction 

A better understanding of how data from continuous glucose moni
tors (CGMs) correspond to hemoglobin A1c (HbA1c) is necessary to link 
CGM data to long-term health outcomes in people with diabetes.1,7 

Clinical studies in which patient HbA1c measurements have been 
interrupted by COVID-19 rely on estimates of HbA1c from CGM data. 
The Glucose Management Indicator (GMI) is the accepted method for 
using CGM-derived mean glucose to estimate lab-tested HbA1c. How
ever, GMI often produces large estimation errors in patients with HbA1c 
> 8%.3 Improving the accuracy of HbA1c estimation could reduce the 
need for in-person HbA1c testing and allow for the continuation of 
research studies during which HbA1c testing has been interrupted by 
COVID-19. We hypothesize that the accuracy of HbA1c estimation can 
be improved by accounting for additional patient information and using 
machine learning (ML) methods. 

2. Materials and methods 

CGM, HbA1c, and demographic data were aggregated from four 
cohorts described in studies listed by the Type 1 Diabetes (T1D) Ex
change, along with an additional cohort described in a study on a life
style intervention for teenagers with T1D, for a total of five cohorts.4–9 

Lab-tested HbA1c values were accompanied by at least five days (and up 
to 90 days) of CGM recordings (Table 1). Multiple HbA1c values could 
be included from each participant so long as they were preceded by 
sufficient CGM data. Demographic data included age, race, gender, and 
ethnicity. Due to data sparsity, HbA1c values <5.5% or >11.5% were 
excluded, as were participants whose self-identified race was neither 
white nor Black. 

The statistics calculated for the CGM data associated with each 
HbA1c were mean, standard deviation, coefficient of variation, and 
percent of time in: hypoglycemia [<54 mg/dL], clinical hypoglycemia 
[54–69], target range [70–180], conservative target range [70–140], 
above target range [181–250], and far above target range [>250]. 

Using HbA1c as the response variable and all available CGM glucose 
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statistics and demographics as the features, the following models were 
trained: L1-regularized regression (LASSO),10 LASSO containing two- 
way interactions between all features, and random forest (RF) 

regression.11 For comparison, ordinary least squares (OLS) regression of 
HbA1c on mean glucose and race (OLSmgr) was fit.7 

After restricting HbA1c measurements to those for which an addi
tional HbA1c had been measured for the same participant at least 
70 days prior, all of the models were re-trained with prior HbA1c as an 
additional feature. For the full and restricted sets of HbA1c values, 5-fold 
cross-validation (CV) was used to tune the parameters of each model and 
to identify the top performing model. The performance of each model 
was compared to GMI at the level of each HbA1c value along with the 
median and interquartile range (IQR) of HbA1c for each participant 
cohort. The paired Wilcoxon signed-rank test was applied to the esti
mation errors measured using out-of-sample root-mean-squared error 
(RMSE) averaged across folds, each of which contained distinct partic
ipant data. For a practical comparison of model performance, the pro
portions of participants for whom the model estimate was within 0.5 and 
1 percentage point of true HbA1c were calculated. 

Table 1 
For each cohort, the minimum, first quartile, median, third quartile, and 
maximum number of days of CGM data available for each participant. Most 
participants in cohorts 1 and 2 have approximately one week of CGM data, 
whereas most participants in cohorts 3, 4, and 5 have two or more weeks of CGM 
data.     

Number of days of CGM data available 

Cohort # N Median HbA1c Min Q1 Median Q3 Max 

1 495  9.3  5  7  7  7  8 
2 238  8.6  5  6  6  7  15 
3 782  8.4  5  11  35  56  84 
4  1886  7.2  5  12  40  77  90 
5 811  7.1  5  66  83  88  90  

Fig. 1. For each HbA1c value rounded to the nearest whole number, the plots show the proportion of model estimates that were within 1 percentage point (top) and 
0.5 percentage points (bottom) of true HbA1c, with 95% confidence intervals for each proportion. Non-overlapping confidence intervals indicate statistical sig
nificance at the 0.05 level. The left plots compare GMI to an OLS model accounting for race and mean glucose (OLSmgr) and a random forest (RF) model accounting 
for many CGM metrics and demographics (Machine learning). The right plots compare GMI to OLSmgr fit with prior HbA1c and a LASSO model accounting for prior 
HbA1c along with the same covariates as the RF model (Machine learning). The sample sizes indicate the number of HbA1c values that fall in each rounded 
HbA1c bucket. 

Table 2 
For each cohort, the true median and IQR of participant HbA1c values, along with the raw error observed when estimating these two quantities using GMI, OLSmgr, 
and the random forest (RF) model without accounting for prior HbA1c values. Compared to GMI, the OLSmgr and RF models more accurately estimate median HbA1c 
in cohorts with median HbA1c > 8%, with approximately similar performance in the remaining cohorts. Across cohorts, the OLSmgr and RF models estimate the IQR of 
participant HbA1c values approximately as accurately as GMI.    

Median HbA1c IQR HbA1c 

Cohort # N True value GMI error OLSmgr error RF error True value GMI error OLSmgr error RF error 

1  495  9.3  +0.8  +0.4  +0.2  1.5  +0.2  +0.1  +0.4 
2  238  8.6  +0.4  +0.1  − 0.1  1.1  +0.1  0.0  +0.2 
3  782  8.4  +0.9  +0.3  0.0  1.9  +0.6  +0.4  +0.5 
4  1886  7.2  0.0  − 0.2  − 0.1  1.1  +0.2  +0.2  +0.1 
5  811  7.0  − 0.1  − 0.3  − 0.2  0.9  +0.2  +0.2  +0.3  
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3. Results and discussion 

4212 HbA1c measurements from 1182 participants were collected. 
The top performing ML model that did not use prior HbA1c was the RF 
model, which produced an average error of 0.67 percentage points 
(SD = 0.03), 19% lower than the GMI average of 0.83 percentage points 
(SD = 0.02) (p < 0.001). OLSmgr had an average error 8% higher than 
the RF model. Respectively, the HbA1c estimates of the RF model and 
GMI were within 1 percentage point of true HbA1c for 87% and 81% of 
participants, and within 0.5 percentage points for 60% and 54% of 
participants. The stronger performance of the RF model was especially 
pronounced at HbA1c values of 9% and 10% (Fig. 1). In cohorts with 
median HbA1c > 8%, the RF and OLSmgr model estimated the median 
HbA1c of participants more accurately than GMI, with similar accuracy 
in the remaining cohorts (Table 2). Across cohorts, the models estimated 
the IQR of HbA1c with similar accuracy. 

2352 HbA1c measurements from 872 participants were paired with 
an additional HbA1c measured at least 70 days prior. The best per
forming ML model that accounted for prior HbA1c was LASSO, with an 
average error of 0.49 percentage points (SD = 0.01), 26% lower than the 
GMI average of 0.67 percentage points (SD = 0.01) (p < 0.001). OLSmgr 
fit with prior HbA1c had an average error 0.4% higher than the LASSO 
model. Respectively, the HbA1c estimates of the LASSO model and GMI 
were within 1 percentage point of true HbA1c for 95% and 89% of 
participants, and within 0.5 percentage points for 74% and 64% of 
participants. The stronger performance of the LASSO model was espe
cially pronounced at HbA1c values of 9% and 10% when measuring 
error within 1 percentage point, and at 9% when measuring error within 
0.5 percentage points (Fig. 1). Performance at the cohort level was 
similar to that of the models excluding prior HbA1c (Table 3). 

The simple OLS model estimating HbA1c from mean glucose, race, 
and prior HbA1c performs nearly as well as the LASSO model with access 
to many additional features, suggesting that the performance of GMI 
could be dramatically improved by accounting for only two additional 
features and without sacrificing interpretability. That ML models cannot 
substantially outperform linear regression suggests that HbA1c cannot 
be perfectly estimated from standard demographic features or summary 
BG metrics. Without access to more granular CGM data12 or patients' red 
blood cell characteristics,13 we suspect that no ML model can perform 
substantially better than a simple OLS model accounting for mean 
glucose, race, and prior HbA1c. 

In order to increase the sample size and make the models applicable 
in clinical settings with imperfect patient adherence, the present anal
ysis allowed the inclusion of participants with as few as 5 days of data or 
HbA1c measurements as recently as 70 days before evaluation. We 
expect that application to patients with more days of data would only 
improve performance. Furthermore, we note that our data was restricted 
to patients who identified as Black or white (Hispanic or non-Hispanic), 
so additional data from patients who identify with other race groups 
would make our models applicable to a wider patient population. 
Finally, we note that all participants had type 1 diabetes, so the results 

may not generalize to patients with type 2 diabetes. 
To mitigate the challenges of applying this work in a clinical setting, 

we have made the code available online.14 The linear models presented 
are no more difficult to implement than GMI and still improve perfor
mance. A potential use of the model, in an ongoing investigation of the 
effect of CGM use on glucose management, is to interpolate HbA1c 
measurements missed due to disruption caused by COVID-19. Using the 
pre-COVID HbA1c measurements will allow the investigators to deter
mine whether the algorithm proposed here or GMI provides more ac
curate estimates. 

4. Conclusions 

ML models using CGM and participant data reduced HbA1c estima
tion error by up to 26% compared to the GMI formula. The performance 
gains of the models were pronounced at higher HbA1c values; for 
example, for participants with HbA1c values close to 9%, the ML models 
were up to 24% more likely than GMI to estimate HbA1c within 0.5 
percentage points. 

In clinical trials, while the accuracy of the HbA1c is important, one 
major concern is the change in HbA1c. Our model's improved accuracy 
at high HbA1c values offers an advantage over GMI, which un
derestimates high values of HbA1c and may thus systematically under
estimate reductions in HbA1c. The performance limitations of GMI for 
high values of HbA1c are likely due to the fundamental limitations of 
modeling a non-linear phenomenon with a single variable linear model. 
Our non-linear and multi-variable linear models overcome this limita
tion. Future investigation should determine whether HbA1c estimation 
error can be further reduced by accounting for longitudinal data on the 
association of CGM data and HbA1c, and whether similar ML models 
perform substantially better than GMI for patients with type 2 diabetes. 
Further, the ML models could be trained to predict other measures of 
long-term glucose control, such as glycated albumin.15,16 
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Table 3 
For each cohort, the true median and IQR of participant HbA1c values, along with the raw error observed when estimating these two quantities using GMI, OLSmgr, 
and the LASSO model when accounting for a prior HbA1c value. Cohort sizes are smaller than in Table 2 because not all participants had a prior HbA1c value. Cohort 3 
is excluded from the table since none of its participants had an additional HbA1c value. Compared to GMI, the OLSmgr and LASSO models more accurately estimate 
median HbA1c in cohorts with median HbA1c > 8%, with approximately similar performance in the remaining cohorts. For cohorts 2, 4, and 5, the OLSmgr and LASSO 
models estimate the IQR of participant HbA1c values approximately as well as GMI, with slightly worse accuracy in cohort 1 that is likely attributable to random 
variation.    

Median HbA1c IQR HbA1c 

Cohort # N True value GMI error OLSmgr error LASSO error True value GMI error OLSmgr error LASSO error 
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