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ABSTRACT: Exogenous chemical exchange saturation transfer (CEST)
contrast agents such as glucose or 2-deoxy-D-glucose (2-DG) have shown
high sensitivities and significant potential for monitoring glucose uptake in
tumors with MRI. Here, we show that liposome encapsulation of such agents
can be exploited to enhance the CEST signal by reducing the overall apparent
exchange rate. We have developed a concise analytical model to describe the
liposomal contrast dependence on several parameters such as pH,
temperature, irradiation amplitude, and intraliposomal water content. This
is the first study in which a model has been constructed to measure the
exchange properties of diamagnetic CEST agents encapsulated inside
liposomes. Experimentally measured exchange rates of glucose and 2-DG
in the liposomal system were found to be reduced due to the intermembrane
exchange between the intra- and extraliposomal compartments because of
restrictions in water transfer imposed by the lipid membrane. These new theoretical and experimental findings will benefit
applications of diamagnetic liposomes to image biological processes. In addition, combining this analytical model with
measurements of the CEST signal enhancement using liposomes as a model membrane system is an important new general
technique for studying membrane permeability.

■ INTRODUCTION

Over the last 10 years, many chemical exchange saturation
transfer (CEST) studies have explored different approaches to
enhance the sensitivity of contrast agent detection by either
optimizing the exchange rate (kex) of the exchangeable protons
in the agent with water or by increasing the number of
exchangeable protons per molecule of the contrast agent. A key
advantage of this technique, compared to other imaging
modalities, such as position emission tomography (PET), is
that it avoids the use of radiolabeled tracer molecules. In
principle, small, diamagnetic molecules such as amino acids or
sugars can be used for CEST. However, the detection
threshold is in the millimolar range, which limits the clinical
potential for these agents.1

Glucose and glucose analogues are generally biocompatible
and possess several exchangeable hydroxyl protons. Moreover,
the increased uptake of glucose into tumors has been
successfully exploited by 18F-labeled fluoro-deoxy-D-Glucose
(FDG) PET imaging for over 30 years. Glucose and its
analogues are, therefore, obvious candidates for development
into CEST contrast agents. Nonradiolabeled D-glucose has
been used at physiologically acceptable quantities to image
glucose accumulation in mouse xenografts and successfully
discriminate between distinct tumor phenotypes using CEST
techniques (termed GlucoCEST).2−4 However, drawbacks of

the technique include low sensitivity, short duration of the
signal, and the potential for adverse side effects in response to a
large bolus injection of glucose such as hyperglycaemic coma
in diabetic patients or deep vein thrombosis.3,4 2-Deoxy-D-
glucose (2-DG) is an analogue of glucose in which the 2-
hydroxyl group is replaced by hydrogen, resulting in several
interesting biological consequences. 2-DG enters cells via the
same transporters as glucose, mainly GLUT1 and GLUT3 in
the brain.3 Once inside the cell, it is phosphorylated by
hexokinase to form 2-deoxyglucose-6-phosphate (2-DG6P),
which is only minimally accepted as a substrate by glucose-6-
phosphate dehydrogenase and glucose-6-phosphate isomerase,
preventing metabolism via both the oxidative pentose
phosphate pathway and the glycolytic pathway, respectively.3

2-DG6P and its metabolites have poor cell permeability and,
thereby, become trapped and accumulate intracellularly, much
like FDG and its metabolic products.5 The utility of 2-DG as a
CEST agent has been investigated in a number of animal
studies,3,5,6 and doses of up to 0.3 g/kg have been administered
in humans with limited adverse side effects.7
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We hypothesized that the current challenges of sensitivity
and toxicity opposing the clinical translation of gluco- and 2-
DG-CEST could be overcome by encapsulating high
concentrations of the monosaccharides in the aqueous interior
of liposomes. The design of liposomal systems encapsulating
paramagnetic shift reagents in the aqueous interior (termed
lipoCEST) has given rise to the highest sensitivity CEST
contrast agents, so far reported. In these systems, the presence
of the unpaired electrons on the paramagnetic agent induces a
shift of the water proton frequency inside the liposomes away
from that of the surrounding water, the nature of which
depends on the structure and concentration of the shift
reagent. Using liposome concentrations as low as 90 pM and
by selectively irradiating the intraliposomal water pool, which
acts as a reservoir containing a huge number of exchangeable
protons (ranging from millions to billions of water molecules),
greater MR sensitivity can be attained.8−10 Liposomes can also
encapsulate vast quantities of hydrophilic molecules with
exchangeable protons in the aqueous interior, allowing high
local concentrations of DIACEST contrast agents to be
delivered and shielding patients from potential off-target
effects and toxicity of these agents.9,10

For applications in cancer imaging and cancer chemo-
therapy, liposomes with a diameter of 100−200 nm passively
target tumors by passing through the fenestrations in
disorganized tumor vasculature and then accumulate there
due to poor lymphatic drainage (a process termed the
enhanced permeability and retention (EPR) effect).11

Furthermore, peptides and antibodies with a high affinity for
surface proteins and glycoproteins expressed by target cells can
be covalently anchored to the liposome surface to achieve
highly cell-selective delivery of contrast agents.12 Thus,
selective liposomal delivery to tumors serves to reduce the
toxicity of such imaging and chemotherapeutic agents to
noncancerous cells and tissues, and liposomal formulations
such as DOXIL (PEGylated liposomal doxorubicin) are now in
clinical use.13

It is necessary, however, to understand the behavior and
CEST signal characteristics of these new compounds prior to
their use in vivo. The surface charge, size, and mechanical
properties of the liposome itself can be fine-tuned to optimize
pharmacokinetics, biodistribution, and encourage the accumu-
lation of the contrast agent within the tissue of interest. The
chemical exchange between glucose hydroxyl protons and
water protons belongs to the fast-intermediate exchange
regime.14 However, according to the chemical exchange
theory, to generate substantial CEST contrast, the exchange
rate with water must be slow enough that the slow-to-
intermediate exchange condition is not violated (i.e., frequency
offset Δω ≥ kex).

1 Because the water exchange across the
membrane is very slow compared to the exchange rates in
glucose, we hypothesized that the CEST effect will be
quenched.8,9 Therefore, the sensitivity of GlucoCEST would
be enhanced if the exchange between glucose hydroxyl protons
and bulk water protons could be reduced. In turn, a more
gradual release of glucose from liposomes in vivo could be used
to produce a sustained CEST contrast and circumvent
metabolic processes and other off-target effects.
The aim of this work was to investigate the dependency of

the CEST signal generated by liposomes encapsulating high
concentrations of glucose or 2-DG on several variables such as
pH, lipid composition, temperature, and RF irradiation power.
The differences between glucose vs. 2-DG and the free

monosaccharides vs. liposome-encapsulated monosaccharides
were also analyzed. A better understanding of the effects of
these parameters on the resultant CEST signal enabled the
construction of a full six-site exchange model for quantifying
the exchange rate between monosaccharides and intra-
liposomal water as a function of the intraliposomal and
extraliposomal water magnetization. This information can be
used, in turn, to characterize the liposomal system encapsulat-
ing monosaccharides and to optimize the experimental
parameters to achieve superior saturation efficiency. In
addition, these liposomal systems might be employed as a
novel way to estimate the exchange rate of water across lipid
bilayers.
A variety of experimental and computational approaches

have previously been used to study the permeability of water
across membranes, including molecular dynamics,15 electro-
chemical sensors, monitoring changes in osmolarity,16

measurement of the self-quenching of liposomal carboxyfluor-
escein,17 and NMR experiments using water relaxation times to
determine the exchange of water between magnetically
different sites across a bilayer.8−10 The latter approach has
been used with CEST spectra instead of NMR proton spectra
to improve its sensitivity.18,19 In particular, the intermembrane
exchange rates were calculated by fitting MTRasym spectra as
a function of presaturation time. Depending on the size of the
vesicles, the rate across the lipid bilayer was found to range
between 13 and 221 Hz.18 However, these approaches have
limitations: techniques that rely on stopped-flow measure-
ments cannot be used to study very fast rates of permeation,
and lipoCEST measurements rely on the encapsulation of
paramagnetic shift reagents. The liposomal systems described
in this work will be useful and straightforward systems to
explore the effects of different lipid compositions and
biologically relevant molecules on the water permeability of
membranes.

■ THEORY
For a system consisting of liposomes in water encapsulating
monosaccharides such as glucose or 2-DG (Figure 1), the
phospholipid bilayer entraps a high concentration of
monosaccharide in the aqueous interior cavity. Monosacchar-
ides do not permeate the lipid bilayer, whereas the
extraliposomal water enters the intraliposomal space via the
membrane and exchanges with the intraliposomal water. To be
able to study the secondary effect of the water exchange across
the bilayer on the primary exchange of monosaccharides with
intraliposomal water, we considered two systems: a free
monosaccharide solution in water and monosaccharides
encapsulated inside liposomes. The exchange rate kex from a
solute to water can be measured from a magnetization transfer
experiment by selectively irradiating at the frequency offset
(Δω) of the glucose or 2-DG exchangeable protons with
respect to the bulk water and observing the reduction of the
water signal intensity as a function of saturation time or
saturation power. When prolonged saturation periods are used,
the saturated protons are replaced by nonsaturated water
protons, which, in turn, can be saturated and exchanged
providing an amplification process for the small solute signal,
giving rise to detectable decreases in the water signal.

Five-Site Exchange for Pulsed RF Irradiation. In a first
step, a five-site exchange model between water and glucose can
be established (i.e., pool A, is the abundant water and pools B,
D, E, F consist of the OH groups on monosaccharides
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encapsulated inside the liposomes, which are in chemical
exchange with water). Because the resonance frequency of the
water protons inside (intraliposomal) and outside (bulk) the
liposomes is the same and there is no significant difference
between the relaxation constants (i.e., longitudinal or trans-
verse relaxation) of the liposomal system encapsulating sugars
comparative to the system of free sugars in water, both the
intra- and extraliposomal water represent pool A for this
system. The only difference between free and encapsulated
monosaccharides is, therefore, the presence of the lipid
membrane. By measuring the exchange rates separately for
both systems, we can evaluate the effect of the intermembrane
exchange on the total exchange rate between monosaccharides
and water at different conditions.
After a prolonged period of RF saturation on resonance with

glucose or 2-DG hydroxyl protons, the system reaches steady
state and this simplifies the dynamics of the magnetization of
this 5-pool system, which is described by the Bloch−
McConnell (BM) equations.20 Here, a pulsed CEST experi-
ment will be used, as opposed to a continuous one. In such a
pulsed CEST experiment, saturation pulses are separated by
periods without RF irradiation, and depending on whether we
assume chemical exchange during the delay or not, there are
two analytical models, which can be used to describe the decay
of the z-component of the magnetization. Under the
assumption that the signal during off-resonance irradiation of
duration tp evolves at a rate R1ρ (the relaxation rate along the
effective field) and recovers with R1A during the interpulse
delay td, the steady-state Mwz

ss is given by21

ω
ω

Δ
=

̅ Δ + −ρ

M
M

R
R R

( )
( )DC (1 DC)

A

A

wz
ss

0

1

1 1 (1)

where DC is the duty cycle defined as = +DC
t

t t( )
p

p d
. For

shaped RF pulses, R1ρ is described by the average ρR1 , defined
previously.21

Six-Site Chemical Exchange for diaCEST Liposomes.
Although a five-site model may allow an indirect effect of the

lipid bilayers on the water exchange properties, the complete
system can only be described through a full six-site exchange
model. This model can be described as follows: the hydroxyl
protons in monosaccharides are in chemical exchange with the
intraliposomal water, which represents a five-site exchange (eq
1). Then, the intraliposomal water for which magnetization has
been saturated through CEST effects from −OH protons of
glucose or 2-DG enters the extraliposomal space and, thereby,
transfers saturated protons to bulk water via the lipid
membrane with a rate known as the intermembrane exchange
rate. For the derivation of the extraliposomal magnetization, a
system of six differential BM equations coupled with the
intermembrane exchange rate is considered. At steady-state
conditions, the differential terms become zero, and we also set
the transverse magnetization terms coupled with the
intermembrane exchange rate to zero without the loss of
generality. Then, the solution of a system consisting of six
linear equations gives the extraliposomal water magnetization
as a function of the intraliposomal magnetization (see
Supporting Information (SI), Section I for derivation)
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The measured signal from the liposomal sample is the sum of
the intraliposomal and extraliposomal water magnetizations
weighted by their equilibrium magnetizations M0

intra and M0
extra.

To calculate the intermembrane exchange rate, we fit the sum
Mwzextralip

ss +Mwzintra
ss at various B1 irradiation amplitudes for both

glucose or 2-DG encapsulated inside the liposomes. Finally, we
compare the exchange rates of the monosaccharides calculated
using a six-site model with the already established five-site
model.

Calculation of Liposomal Volume. A mathematical
model developed by Xu et al.22 can be used to calculate the
total interior volume of liposome samples. The model requires
the following parameters: particle diameter and size distribu-
tion (measured by dynamic light scattering (DLS)), the bilayer
thickness (d), the average surface area per lipid on the bilayer-
aqueous phase interface, and the lipid concentration (30 mM
for all samples). The literature values used for d were measured
by surface force apparatus and refractive index at 21 °C and
were 4.6 nm for 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC) and 5.1 nm for 1,2-distearoyl-sn-glycero-3-phospho-
choline (DSPC).23 The average area per lipid (A) for both
DPPC and DSPC bilayers was found to be 47.3 Å2 when
measured at 25 °C in the gel state, which is approximately
equal to the headgroup steric limit of about 48 Å2.24,25 X-ray
diffraction studies have shown that increases in chain length of
disaturated phosphatidylcholines (chain lengths 16−24) have a
negligible effect on A which is in agreement with the head
groups already being pushed to the steric repulsive limit, thus
the extra van der Waals attractions contributed by additional
methylene groups are not able to compress the head groups
any closer together.24,25 Inputting these parameters for our
liposomal samples produces calculated internal volumes in the
range of 10−13%. The remaining 87−90% volume is assumed
to be the extraliposomal water. The interior volume for each
liposome sample and the parameters used to calculate the

Figure 1. Schematic for diaCEST liposome encapsulating glucose.
Narrow bandwidth RF pulses saturate hydroxyl protons, which
undergo exchange with intraliposomal water protons. Water
molecules bearing saturated protons can permeate the lipid
membrane and transfer a saturated proton to a bulk water molecule.
The magnitude of generated contrast depends on several variables
such as liposome size, lipid composition, pH, temperature, and
irradiation power.
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values employing the model by Xu et al.22 are listed in the
Supporting Information (Table S1).

■ EXPERIMENTAL SECTION

NMR Experiments. Proton magnetic resonance spectra
(1H NMR) were recorded at 600 MHz on a Bruker Avance
spectrometer at room temperature with suppression of water.
Glucose and 2-DG samples were made up at 500 mM in water
with 20% phosphate-buffered saline (PBS) (Sigma), and the
pH was adjusted with 1 M HCl or NaOH solution.
Preparation of Monosaccharide Encapsulating Lip-

osomes. 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine
(DSPC) were purchased from Anatrace, Inc. (Maumee,
Ohio) and Avanti Polar Lipids (Alabaster, AL), respectively.
Liposomes were formed via the thin-film hydration method
with sonication. Lipid was dissolved in CHCl3, and the solvent
was removed under reduced pressure to form a thin film. Thin
films were hydrated with solutions of 0.5 M glucose or 0.5 M
2-DG in deionized (DI) water with varying percentages of
freshly prepared PBS buffer at the reported pH and
subsequently sonicated. Sonication was carried out for 10
min at a temperature higher than the relevant lipid melting
transition temperature (using a VWR ultrasonic cleaner) to
give polydisperse liposomes. The overall lipid concentration in
liposome samples was made up to be 30 mM, and the pH was
controlled via the addition of 1 M HCl or NaOH solution. The
liposomes were sized by extrusion, which was carried out using
a LIPEX 10 mL extruder with a thermobarrel (Northern Lipids
Inc.) to create unilamellar vesicles. The liposomes were passed
through polycarbonate membranes with a pore size of 0.4 μM
followed by 0.2 μM to give liposome samples with low
polydispersity (approaching 0.1) and diameters in the range
146−184 nm. Minimal lipid loss was observed during
extrusion, therefore lipid concentrations were assumed to
remain constant. Liposomes were dialyzed into 0.25 M NaCl
solution with various PBS concentrations at the relevant pH.
Dialysis solutions were changed 3 times over a 32 h period.
Characterization of Liposome Samples. Size. The

hydrodynamic size distribution of each liposome sample,
following dialysis into PBD/water, was measured via dynamic
light scattering (DLS) with a 633 nm He−Ne laser light
source, (Malvern Ltd. Zetasizer Nano Series ZS, Worchester,
U.K.) according to the recommendations of the manufacturer.
Samples were prepared by diluting 5 μL of aliquots of the
liposome sample in 1 mL of DI water that was previously
passed through a 0.45 μM poly(vinylidene difluoride) syringe

filter. DLS measurements were taken in triplicate at 25 °C
using clear 1 mL ζ-potential cuvettes. The mean diameter and
polydispersity index (PdI) are reported for liposomal samples
in Table 1.

Determining Monosaccharide Concentrations of Lip-
osomal Samples. Overall concentrations, exterior glucose
and 2-DG concentrations for liposome formulations were
obtained using the Glucose GO Assay Kit supplied by Sigma-
Aldrich. This is an enzymatic, colorimetric assay intended to
measure glucose concentration, however glucose oxidase is
reported to catalyze the oxidation of 2-DG at a rate which is
approximately 12% of that for glucose.26 Linear calibration
curves for glucose or 2-DG were constructed in combination
with each assay performed. Test and calibration solutions were
made up to a total volume of 0.5 mL. Calibration solutions
were made using 0−40 μL of a 1 mg/mL solution of
monosaccharide diluted to a total volume of 0.5 mL in DI
water. Test solutions for overall monosaccharide concentration
for liposomal samples consisted of the liposomal sample (5
μL), 3% Triton X-100 (5 μL), and DI water (490 μL). The
assay reagent conditions were found to cause monosaccharide
leakage from liposomes; therefore, to measure exterior
monosaccharide concentrations of liposome samples, a small
aliquot of sample was centrifuged at 4000 rpm for 5 min. The
supernatant (5 μL) was then carefully removed and diluted in
DI water (495 μL) to create the exterior concentration test
solution. The assay reagent (1.0 mL) was added to each
calibration or test solution and agitated for 30 min at room
temperature via shaking on an IKA KS130 basic platform
shaker at 320 rpm. After this time, 6 M H2SO4 (1.0 mL) was
added to terminate the reaction. The absorbance at 540 nm
was measured for the test, and calibration solutions and
unknown concentration values were derived using the
calibration curves. More details on how the Glucose GO
Assay Kit was adapted to measure overall and exterior glucose
and 2-DG concentrations of liposome preparations is provided
in the Supporting Information, Section III.

MRI Protocol. All samples were imaged on a 9.4 T Agilent
MRI scanner using a transmit/receive RF coil with 33 mm
inner diameter (Rapid Biomedical, Germany). CEST measure-
ments were acquired using a single-shot spin-echo (SE) echo
planar imaging (TR = 65.3 ms, TE = 4.07 ms, FOV = 20 × 20
mm2, slice thickness = 5 mm, matrix size = 64 × 64) with a
saturation train prior to the readout consisting of 151 Gaussian
pulses at 11 irradiation amplitudes: 16.61, 32.36, 49.82, 66.85,
83.46, 100.06, 116.66, 133.27, 149.87, 183.51 Hz, (pulse
length = 50 ms, FA = 300, 600, 900, 1200, 1500, 1800, 2100,

Table 1. Liposome Sample Bilayer Composition, Monosaccharide Contents, Diameter, Hydrodynamic Size Distribution,
Overall and Exterior Monosaccharide Concentrations and pH

liposome
sample

lipid bilayer
(30 mM)

monosaccharide
encapsulated Z-ave (d, nm) (std dev) PdI (std dev)

overall [monosaccharide] (mM) (of which
exterior (mM)) pH

1 DPPC glucose 180 (0.7) 0.10 (0.003) 24 (0.3) 7
2 DPPC 2-DG 178 (1.7) 0.14 (0.01) 36 (0.3) 7
3 DPPC glucose 168 (3.2) 0.23 (0.01) 33 (1.7) 6
4 DPPC glucose 155 (1.8) 0.15 (0.01) 32 (2.3) 7
5 DPPC 2-DG 151 (2.6) 0.18 (0.01) 24 (0.7) 6
6 DPPC 2-DG 184 (1.0.) 0.11 (0.05) 34 (1.1) 7
7 DSPC glucose 147 (2.4) 0.11 (0.01) 30 (2.0) 6
8 DSPC glucose 146 (1.5) 0.10 (0.01) 29 (1.0) 7
9 DSPC 2-DG 152 (2.8) 0.11 (0.01) 35 (1.2) 6
10 DSPC 2-DG 164 (2.6) 0.18 (0.02) 34 (1.4) 7
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2400, 2700, 3000°, 90% duty cycle). The sequence was
repeated for 77 frequency offsets ranging between ±6.08 ppm
with steps of 0.16 ppm (64 Hz). Frequencies were altered from
positive to negative to compensate for potential B0 field drifts
during the acquisition.
MTRasym and Exchange Rate Measurements. Ana-

lytical solutions of the BM equations describing a five-site
exchange system (eq 1) or a six-site exchange system (eqs 2
and 3) were fitted in MATLAB to calculate the exchange rates
using the optimization function lsqcurvefit. The peak assign-
ment of the hydroxyl protons in glucose or 2-DG was done by
means of NMR and the frequency offsets, and relative proton
concentrations were provided as fixed parameters to the fit. In
addition, the longitudinal relaxation rate of water in the
presence of monosaccharides was measured from a separate
acquisition, and it was used for fitting. For the five-site
exchange model, the normalized water magnetization at 77
frequency offsets ranging between ±6.08 ppm was fitted at 11
irradiation amplitudes (see MRI Protocol) using eq 1 in which
R1A,, Δω, f b, and ω1 were provided to the fit. For each hydroxyl
proton group in monosaccharides as assigned by NMR (i.e.,
0.66, 1.28, 2.08, and 2.88 ppm), an additional R̅ex term was
added to ρR1 in eq 1. Glucose and 2-DG have in total 4
different exchanging resonances; therefore, 4 R̅ex terms were
added to eq 1. The mathematical equation, which relates ρR1
with R̅ex, was described in the previous work and is provided in
the SI Section 1.
Finally, the same Z-spectra (i.e., 77 frequency offsets ranging

between ±6.08 ppm) were fitted using a six-site exchange
model for comparison (eqs 2 and 3). To calculate the
intermembrane exchange rate, the sum Mwzextralip

ss + Mwzintra
ss was

fitted at 11 irradiation amplitudes. More precisely, Mwzextralip
ss is

substituted by eq 2 and the intraliposomal magnetization by eq
1 (see S17). For the fit, the equilibrium intraliposomal and
extraliposomal water magnetizations were set as 15 and 85%,
respectively. R1A, Δω, f b, and ω1 were also provided to the fit

as well as the frequency offsets and the relative proton
concentrations of the hydroxyl groups in glucose or 2-DG. The
error was calculated at the 95% confidence interval around the
mean value.
The data are presented either in the form of normalized Z-

spectra as a function of the saturation pulse frequency or as the
magnetization transfer ratio asymmetry MTRasym, which is
defined as the difference in signal on either side of the water
peak, which is centered at 0 ppm.

■ RESULTS AND DISCUSSION

Proton Assignment in Glucose and 2-DG. Figure 2
shows the high-resolution NMR spectra for glucose and 2-DG
in the aqueous solution at 500 mM and at various pH values.
The peak assignments were performed by measurement of the
downfield shifts compared to the water signal produced by the
presence of −OH protons in glucose and 2-DG and by
comparison to published values.27 The spectrum of glucose
shows the resonances of the −OH protons, which correspond
to signals at 0.66 ppm (O6H), 1.28 ppm (O2,3,4H) and the
anomeric −OH protons at 2.08 ppm (O1H(α)) and 2.88 ppm
(O1H(β)) (it is important to note that in the NMR data,
positions are relative to tetramethylsilane and the resonance
frequency of water is set at 4.75 ppm. However, in the Z-
spectrum, the water frequency is referenced as 0 ppm, and the
frequency offsets of the exchangeable protons groups are
relative to 0 ppm). The spectrum of 2-DG displays similar
resonances as glucose but with the presence of only two −OH
protons at 1.28 ppm. Figure 2 demonstrates that pH does not
alter the resonant frequencies of the hydroxyl protons with
respect to water. Similar NMR spectroscopy experiments were
carried out with solutions of glucose and 2-DG at varying
concentrations at pH 7 resulting in similar findings (SI Figure
S1). Thus, the hydroxyl peak assignment remains constant at
different concentrations and pH and was in line with
previously published results.27

Figure 2. 1H NMR spectra of 0.5 M monosaccharides in DI water with 20% PBS at various pH values, (a) 0.5 M glucose at pH values 5.8, 6.1, 6.4,
6.7, and 7.0, (b) 0.5 M 2-DG at pH values 6.4, 6.7, and 7.0. The suppressed water and anomeric C−H signals are labeled, and asterisks mark
impurities present in the commercially available 2-DG.
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Exchange Rates of Free Monosaccharides at Various
pH Values. Figure 3 displays the exchange rates of the
hydroxyl protons in glucose (a, c) and 2-DG (b, d) at different
pH values ranging between 6 and 7.4 at 25 and 37 °C. For
quantification of the exchange rates, Z-spectra were collected at
11 irradiation amplitudes and fitted as detailed in the
Experimental Section. Because of the large number of fitting
variables, we fixed the known parameters such as the frequency
offsets and the relative proton concentrations to improve the
accuracy of the fitting algorithm.
The exchange of different hydroxyl groups in 35 mM glucose

and 2-DG belongs to the intermediate-fast exchange regime,
and the experimentally measured exchange rates were found to
be in the range of a few hundred Hz up to 10 kHz depending
on the pH and temperature of the sample (SI Tables S2−S5
and SI VII). At pH 7, the exchange of glucose and 2-DG
hydroxyl protons was occurring too rapidly so the detection of
peaks in CEST spectra was no longer possible.
At physiologically relevant conditions (i.e., pH 7.4 and 37

°C), the exchange rates in glucose were measured as: 2.49 kHz
(0.66 ppm), 6.29 kHz (1.28 ppm), 9.11 kHz (2.08 ppm), and
8.00 kHz (2.88 ppm) (SI Table S3), whereas at pH 6 and 37
°C were: 2.01 kHz (0.66 ppm), 0.95 kHz (1.28 ppm), 0.19
kHz (2.08 ppm), and 0.50 Hz (2.88 ppm) (SI Table S3). For
both monosaccharides, the exchange rate increased with an
increase in temperature and pH. At 25 °C and pH 6−6.5, the

protons at 0.66 and 1.28 ppm exchange faster, whereas at pH
7.0 and 7.4, the exchange of the anomeric protons becomes the
fastest. No significant differences were detected for the
exchange rates of glucose and 2-DG at physiologically relevant
conditions; however, at pH 6.25 and 6.5, the exchange of
anomeric protons was found to be significantly different
between the two monosaccharides (SI Tables S3 and S5).
Data were also collected from 0.25 M solutions of

monosaccharides at 25 and 37 °C and at pH 6.0 and 7.0 to
assess whether there was any discrepancy between the
measured exchange rates due to back-exchange of protons
from water to monosaccharides, which might become
important with the increase in the concentration (SI Tables
S6 and S7). Note that 0.25 M of glucose or 2-DG is
approximately equal to the concentration of encapsulated
monosaccharide inside the liposomes after dialysis (we use the
calculated internal volume and measured overall monosac-
charide concentration to estimate this internal concentration).
As our results show (Figure 3e,f), the exchange rates are in the
same order of magnitude but are significantly larger for 0.25 M
2-DG and glucose at pH 7.0 and 37 °C when compared to 35
mM monosaccharide solutions under the same conditions. In
addition, the same trend was observed for the measured
exchange rates at 25 °C. From these results, we can conclude
that the effect of back-exchange of water protons becomes
important at concentrations as high as 0.25 M by over-

Figure 3. Experimentally measured exchange rates for 35 mM free glucose scanned at 37 °C (a) and 25 °C (b) at various pH values in the range
6−7.4. The same procedure was performed for 35 mM of 2-DG scanned at various pH values in the range 6−7.4 and at 37 °C (c) and 25 °C (d).
0.25 M of glucose and 2-DG at pH values 6 and 7 (e, f) are shown for comparison.
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estimating the exchange rates of different hydroxyl groups
depending on their relative concentration fractions.
Comparison of Chemical Exchange between Mono-

saccharides in Free Solutions and Encapsulated
Monosaccharides Inside Liposomes. Figures 4 and 5
show the MTRasym spectra from liposome samples 1 and 2
encapsulating glucose and 2-DG, respectively, and the
MTRasym obtained from free monosaccharides solutions
with the same overall concentration and pH. The liposome
encapsulating monosaccharide spectra (Figures 4a,c and 5a,c)
appear to display peaks, which are more pronounced at low
powers of up to 1.57 μT, whereas the free monosaccharide
spectra appear to have no visible peaks.
The presence of peaks in the liposomal samples is indicative

of reduced chemical exchange rate compared to the free
solution of monosaccharide with the same overall glucose

concentration and scanned under the same conditions. This
was further confirmed by comparing the measured exchange
rates using a five-site exchange model. At pH 7.0 and 37 °C,
the exchange rates for the different hydroxyl groups in
liposomes encapsulating 2-DG (formulation 2) were measured
to be equal with: 1.20 kHz (0.66 ppm), 1.67 kHz (1.28 ppm),
0.29 kHz (2.08 ppm), and 1.39 kHz (2.88 ppm) (SI Table
S13). In addition, for gluco−liposomes (formulation 1), the
exchange rates were measured as follows: 1.43 kHz (0.66
ppm), 1.57 kHz (1.28 ppm), 0.75 kHz (2.08 ppm), and 0.69
kHz (2.88 ppm) (SI Table S9). In summary, chemical
exchange of glucose inside liposomes is quenched by one
order of magnitude, if we looked at the experimentally
calculated exchange rates at 25 °C from Tables S16 and S17,
which is further confirmed by the measured exchange rates in

Figure 4.MTRasym spectra for gluco−liposome samples taken from formulation 1 (a, c) and free glucose at the same pH and concentration (d, b)
scanned at 25, 28, 31, 34, and 37 °C at power levels of 1.5 μT (a, b) and 5.0 μT (c, d).

Figure 5.MTRasym spectra for 2-DG liposome samples from formulation 2 (a, c) and free 2-DG at the same pH and concentration (b, d) scanned
at 25, 28, 31, 34, and 37 °C at power levels of 1.5 μT (a, b) and 5.0 μT (c, d).

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.9b02280
J. Phys. Chem. B 2019, 123, 7545−7557

7551

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b02280/suppl_file/jp9b02280_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b02280/suppl_file/jp9b02280_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b02280/suppl_file/jp9b02280_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b02280/suppl_file/jp9b02280_si_001.pdf
http://dx.doi.org/10.1021/acs.jpcb.9b02280


Tables S2 and S10. However, when the temperature is risen,
this difference becomes half.
When calculating the exchange rates for liposome samples,

we have assumed that a large majority of monosaccharide
remains inside the liposomes throughout CEST MRI data
acquisition. To confirm that this is the case, we conducted
release over time studies at 37 °C (Supporting Information,
Section VI) on 100% DPPC liposomes encapsulating 30 mM
2-DG (formulation L3, Table S20). As liposomes incorporat-
ing PEG-lipids to coat the surface are known to be stabilized
and to have a significantly longer in vivo half-life,28 we also
prepared liposomes with 3% DPPE-PEG2000 encapsulating
glucose (L1) or 2-DG (L2, Table S20). Our results showed
that after incubation at 37 °C for 2 h, the duration of the
longer experiment, approximately 15% of the encapsulated 2-
DG was released from the unshielded liposomes L3. By
comparison, 1.4% of encapsulated glucose and 10% of the

encapsulated 2-DG were released from the PEGylated
liposomes L1 and L2, respectively (Supporting Information,
Figure S2). For the range of overall concentrations exhibited
by liposomal formulations 1−10, this always equates to less
than 5 mM monosaccharide concentration exterior to the
liposomes, which is approximately equal to the CEST
detection limit for free glucose and 2-DG. Thus, we concluded
that this quantity of leakage is negligible. In addition, the
Glucose GO Assay Kit was used to check the overall and
exterior glucose and 2-DG concentrations of liposome
preparations, following the protocols described in the
Supporting Information, after scanning. For samples that
were scanned for less than 2 h, no substantial leakage was
detected. Consequently, we have assumed that a model of five-
site exchange or six-site exchange can be used to describe the
liposomal system.

Figure 6. Experimentally measured exchange rates for DPPC vs DSPC liposomes encapsulating glucose (a−d, formulations 3, 4, 7, and 8) or 2-DG
(e−h, formulations 5, 6, 9, and 10) at pH 6 or 7 and at 25 °C (a, c, e, g) or 37 °C (b, d, f, h) using either a five-site exchange model (a, b, e, f) or a
six-site exchange model (c, d, g, h).
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In principle, the CEST contrast arising from the gluco−
liposomal samples is due to the chemical exchange of glucose
hydroxyl protons with the intraliposomal water and physical
exchange between the intraliposomal and extraliposomal water,
which falls under the slow exchange regime.19 As discussed
earlier, the sample fraction made up by intraliposomal water is
only 10−13% (87−90% is bulk extraliposomal water), thus the
rate at which water enters/exits the intraliposomal space
determines the ability of glucose to saturation-label bulk water
protons. Consequently, 13% of the water M0 is in direct
exchange with glucose, whereas the remaining 87−90%
interacts with glucose at a rate-limiting factor. Thus, the
chemical exchange is severely reduced because of water
compartmentalization compared to the free system of glucose
in water. In the hypothetical case of a completely isolated
system where the membrane would not allow water to diffuse
across it, chemical exchange labeling would be confined to the
small fraction of the sample water that is encapsulated inside
the liposomes.
Effect of Physicochemical Properties of Liposomes

on the Measured Exchange of the Encapsulated
Contrast Agent. To further investigate the effect of the
intermembrane exchange rate on the exchange of the
encapsulated contrast agent, additional experiments were
carried out with liposomes formed with two commercially
available lipids, DPPC and DSPC. DSPC has two C18 saturated
acyl chains compared to the two C16 saturated acyl chains of
DPPC. This chain extension of only 2 carbons causes a drastic
increase in the lipid phase transition temperature (Tm) from 41
°C for DPPC to 55 °C for DSPC.17

From previous studies, it is evident that the membrane
permeability and the phase transition profile are closely linked.
Below the Tm of a lipid, the transfer of water across the bilayer
is rate limiting and studies calculated that the water
permeability at 26.5 °C is 0.5 × 10−4 cm s−1, which increases
to 26 cm s−1 at 45 °C.29,30 We hypothesized that the more
rigid bilayer formed by DSPC compared to DPPC will further
reduce the transfer time of saturated protons from encapsu-
lated monosaccharide to the bulk water due to alterations in
physical water exchange across the bilayer. Figure 6 displays
the measured exchange rates of DPPC and DSPC liposomes

2−10 encapsulating glucose or 2-DG. Exchange rates were
measured for each liposomal system at pH 6.0 (formulations 3,
5, 7, and 9 Table 1) and pH 7 (formulations 4, 6, 8, and 10
Table 1) as well as at 25 and 37 °C (SI Tables S8−S15).
The MTR asymmetry spectra for DPPC and DSPC

liposomes encapsulating monosaccharides are also displayed
in Figure 7. According to our results, the chemical exchange
rates of DPPC liposomes encapsulating monosaccharides at
pH 6.0 were found to be reduced compared to the results at
pH 7.0, as was expected. However, the calculated intermem-
brane exchange rates of DPPC and DSPC liposomes are within
the errors. Thus, the effect of different lipid membranes can
only be inspected by measuring the chemical exchange rates of
monosaccharides encapsulated inside liposomes. According to
the literature, at 37 °C, the exchange rate of water across a
DPPC bilayer is equal to 4.4 Hz, whereas for the same
conditions, it was found to be equal to 1.48 Hz for DSPC
lipids.16 In addition, studies showed that the exchange rate of
water across a DPPC bilayer reduces linearly with a reduction
in temperature, whereas for DSPC lipids, it deviates from
linearity.16 Thus, the exchange rates of monosaccharides
encapsulated inside liposomes should be reduced when the
scanning temperature is reduced from 37 to 25 °C. Finally, it is
worth noting that when comparing the results of the DPPC
liposomal samples encapsulating monosaccharides with those
of free sugar solutions at pH 6.0 and 7.0, liposome formulation
is more “efficient” in quenching the signal for fast exchanging
species (i.e., the exchange rates at pH 7.0 were more reduced
compared to the ones at pH 6.0).
The temperature-induced changes to water exchange across

the lipid bilayer were explored using DPPC liposomes 1
(encapsulating glucose) and 2 (encapsulating 2-DG), which
were split up into 5 equivalent batches with exactly the same
overall glucose or 2-DG concentrations. Each liposome batch
and a free monosaccharide control were scanned at a single
temperature to avoid cumulative release of liposomal contents,
which would occur if a single sample was scanned at all
ascending temperatures. Data were collected at 25, 28, 31, 34,
and 37°C and are displayed in the form of MTRasym spectra
(Figures 4 and 5).

Figure 7. MTR asymmetry spectra of DPPC vs DSPC liposomes at 25 or 37 °C. MTRasym spectra from DPPC and DSCP liposomes
encapsulating glucose at 1.5 μT (a, c, e) and 5.0 μT (b, d, f) presaturation power at 25 and 37 C. The MTRasym from 2-DG DPPC, DSPC
liposomes at 37 C are also shown for comparison.
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According to our results (Figures 4, 5, 8 and SI Tables S16−
S19), chemical exchange increases with an increase in

temperature both in the liposomal system and in free 2-DG
and glucose. This is in line with previously published results in
which changes in temperature resulted in an increase in the
exchange rate of water across the bilayer by about 2−3 orders
of magnitude30 and to flatten spectra obtained from free 2-DG
and glucose at 37 °C.2,4 Below their Tm, lipids exist in an
ordered gel phase, but as they approach their Tm, they assume
an intermediate pretransition state (also termed the ripple
phase), and finally at temperatures above the Tm, they enter a
disordered fluid state associated with trans-gauche isomer-
ization.30 Differential scanning calorimetry, electron spin
resonance, and Laurdan fluorescence experiments have
demonstrated that the pretransition phase can be characterized
by up to 20% of the lipid population existing in the fluid state,
and that DPPC bilayers enter this state at temperatures as low
as 32 °C.31,32 The measured differences in the exchange rates
of the liposomal system at various temperatures can, thus, be
partly attributed to these alterations in bilayer fluidity, i.e.,
higher temperatures result in an increased bilayer fluidity,
which enhances physical exchange of water across the
membrane and the transfer of saturated magnetization protons
from monosaccharides to the extraliposomal bulk water.
However, changes in temperature can also affect the
longitudinal and transverse relaxation times of water, which
further enhances the CEST contrast. In particular, a change
from 25 to 37 °C produces an increase in T1 from 3 to 4.2 s for
a 9.4 T scanner resulting in more pronounced MTRasym
spectra.

Calculation of Intermembrane Exchange Rate and
Membrane Permeability for Different Lipid Composi-
tions and Temperatures. Tables 2 and 3 present the
measurements of the intermembrane exchange rate and the
membrane permeabilities for different liposome compositions

calculated as =P R
r3

interm where r is the radius of the liposomes

and Rinterm is the intermembrane exchange rate. According to

our results, the physical exchange of water across the bilayer for
DPPC and DSPC lipids is in the slow exchange regime. This is
in line with previous studies in which the intermembrane
exchange rates were calculated in the presence of a
paramagnetic contrast agent.31,32 It is important to note that
small molecules such as glucose and 2-DG were encapsulated
inside the liposomes; however, the general principles presented
here could be applied to other diamagnetic substances, which
possess exchangeable protons. In the same context, another
technique for measuring the intermembrane exchange rate
without the need of paramagnetic contrast agents is based on
restricted diffusion of water molecules within cells termed filter
exchange spectroscopy (FEXI).33 FEXI is promising for
calculating exchange rates up to 40 Hz; however, there is a
lack of mathematical models that combine diffusion and the
chemical exchange of CEST agents encapsulated inside
liposomes. Here, we provide the mathematical equations,
which describe a six-site exchange model in the case of a pulsed
CEST experiment.

Five-Site vs Six-Site Exchange Model. A physical
picture for the exchange rate dependence of the diaCEST
liposomal contrast emerges from our analysis. For a five-site
exchange model, we assumed that the intraliposomal water has
the same magnetic properties as bulk water and a simplistic
five-site exchange model was used to estimate the apparent
exchange rate. When considering this type of analysis, the
physical transfer of water across the bilayer has not been

Figure 8. Exchange rates of gluco−liposomes at different temper-
atures. Experimentally measured exchange rates for gluco/2-DG
liposomes and free 2-DG and glucose scanned at the same conditions
for different temperatures ranging between 25 and 37 °C.

Table 2. Calculation of Intermembrane Exchange Rates and
Membrane Permeability for DPPC and DSPC Liposomes
under Different Conditions

lipid
bilayer pH

temperature
(°C)

intermembrane
exchange rate (Hz)

membrane
permeability

(×10−3 cm s−1)

DPPC 7 25 50 ± 64 0.30
DPPC 6 25 52 ± 59 0.31
DSPC 7 25 39 ± 45 0.23
DSPC 6 25 44 ± 44 0.26
DPPC 7 37 95 ± 134 0.57
DPPC 6 37 61 ± 63 0.36
DSPC 7 37 66 ± 79 0.40
DSPC 6 37 59 ± 67 0.35

Table 3. Calculation of Intermembrane Exchange Rates and
Membrane Permeability for DPPC Liposomes at Various
Temperatures

lipid
bilayer pH

temperature
(°C)

intermembrane
exchange rate (Hz)

membrane
permeability

(×10−3 cm s−1)

DPPC 7 25 45 ± 46 0.27
DPPC 7 28 56 ± 78 0.34
DPPC 7 31 65 ± 13 0.39
DPPC 7 34 79 ± 66 0.47
DPPC 7 37 92 ± 34 0.55
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separated from the chemical exchange in the interior cavity.
We assumed that the restrictions imposed by the lipid
membrane will be indirectly measured by calculating the
exchange rates of the encapsulated monosaccharide. On the
contrary, a six-site exchange model separates the two processes.
This can be done by taking the sum of the intraliposomal and
extraliposomal water magnetizations weighted by their
equilibrium values, which leads to a biexponential function
(see eqs 2 and 3). More precisely, when fitting eqs 2 and 3 to
the experimental data, the intermembrane exchange rate of
water across the bilayer can be measured. According to our
results, the exchange rates of monosaccharides calculated by a
six-site exchange model are significantly larger than the ones
calculated with a five-site exchange model (Figure 6).
However, when using both models, the chemical exchange is
happening slower for the liposomal system comparative to free
monosaccharide solutions. It should be noted that we excluded
any effects of water diffusion from our measurements, and any
alterations in the CEST signal of the liposomal samples were
solely attributed to a difference in the chemical exchange rate.
This was obvious from simulated data generated at different T2
values of the intraliposomal and extraliposomal water magnet-
ization. In particular, the simulated data matched the
experimental results only when the T2 values of the two
compartments were identical. In addition, experimentally
calculated T2 values of the liposomal samples encapsulating
monosaccharides were found to be equal to the T2 values of
free monosaccharides. In turn, a negligible change in T2 implies
no diffusivity changes for the liposomal system.
Our theoretical work was further validated by numerically

solving the BM equations for both models (see SI, Figures S3−
S6). According to our results, the liposomal system produces a
more pronounced CEST effect compared to the solution of
free monosaccharides, and CEST contrast does not change for
intermembrane exchange rates exceeding 100 Hz. Another
finding was that the chemical exchange of monosaccharide
with intraliposomal water produces a much broader CEST
effect in the interior cavity compared to the measured CEST
effect in the extraliposomal space. In particular, CEST contrast
enhancement inside the liposomes is produced by using as
high as 0.25 M concentration of monosaccharide, which, in
turn, reduces the intraliposomal water content to 91%. At the
same time, back-exchange of water protons to monosaccharide
hydroxyl proton could explain why different hydroxyl groups
on the encapsulated sugars are affected in different ways.
Further inspection of our fitting results shows that the
calculated exchange rate was found to be equal with 50 Hz
(0.66 ppm, Table S7), which might be indeed a local minimum
since the fitting reached the boundary conditions. However,
the quality of the fitting is very good (zero residual between
the fitted and experimental data, SI VIII), which might indicate
that calculation of kBA does not produce significant errors for
calculating the exchange rates at 1.28, 2.08, 2.88 ppm. To
confirm that this is the case, we ran the fitting procedure again
with different boundary conditions for the exchange rate at
0.66 ppm, and the calculated exchange rates are as follows: kBA
= 1384 ± 438 Hz, kDA = 2842 ± 296 Hz, kEA = 5583 ± 564 Hz,
kFA = 8742 ± 296 Hz.
It is important to note that for our fitting, we used a least

square approach and we fixed the known or measured
experimental parameters such as the concentration, peak
assignment, T2 of glucose, and fitted only the exchange rates
within a range of 50−10000 Hz. As we noticed the fitting

approach is sensitive to the number of fitting parameters as
well as boundary conditions. However, the calculated exchange
rates are in line with the work conducted independently by
other researchers using similar fitting approaches.34

Limitations. Here, we would like to discuss a few
limitations of our approach. It is evident that the calculated
intermembrane exchange rates are within the errors. Thus, no
conclusions can be drawn when we assess the physical
exchange of water across a DPPC or DSPC bilayer, for
example. However, the difference in water transfer across the
membrane consisting of DPPC or DSPC can be inspected by
calculating the exchange rates of the encapsulated mono-
saccharides. This can be attributed to two reasons: (1) for
intermembrane exchange rates of 100 Hz and above, the
obtained Z-spectra overlap (refer to our simulations in the SI).
Thus, for the bilayers we used here, we reached the limits of
our technique. (2) The frequency offset of the water inside and
outside the liposomes is the same and can only produce a
slight effect on direct water saturation compared to free water
(i.e., the case we scan an empty liposome). The initial
equations derived for a two-site model21 (extended here to a
five-site model) do not function properly close to water, thus it
might not be possible to decouple two exchange processes at 0
ppm when the exchange of the solute (e.g., glucose or 2-DG) is
happening too fast and the water exchange across the
membrane at an intermediate exchange rate.

■ CONCLUSIONS
The potential benefits of liposomally delivered GlucoCEST
and 2DG-CEST reagents include monitoring the uptake and
accumulation of liposomes in tumors35 and probing alterations
in brain 2DG uptake in neurodegenerative diseases.36

However, several challenges remain for clinical translation of
GlucoCEST MRI including low signal, off-target effects, signal
contamination by patient’s motion, and violation of the slow to
intermediate exchange condition for fast exchanging species
such as glucose or 2-DG, especially for low field MRI scanners.
Biocompatible agents such as liposomes have been proposed as
a useful tool for encapsulating and delivering potentially toxic
diaCEST agents to their targets, particularly when the purpose
is to target and kill cancer cells. We hypothesized that
developing a new generation of GlucoCEST contrast agents,
encapsulating high concentrations of monosaccharides inside
liposomes, could overcome and facilitate translation of
GlucoCEST into the clinic.
The measurements presented here of the exchange rates of

encapsulated monosaccharides inside liposomes improve not
only our current understanding of the origin of the measured
signal but also provide guidelines for better optimization of the
CEST contrast. Our goal is to present a mechanistic picture of
the effect of the diaCEST liposomal agents. Thus, we report
the measured exchange rates of the gluco−liposomal system on
a molecular basis by keeping the same intraliposomal water
fraction and amount of encapsulated sugars in all our samples.
In this study, we used a rich multipower dataset for calculating
the exchange rates of monosaccharide hydroxyl pools inside
liposomes. To be able to separate the effects of the chemical
exchange from physical water transfer across the bilayer barrier,
we constructed a six-site exchange model, which describes such
systems in a much more precise way, as previously reported.
Thus, improved estimates of the exchange rates of hydroxyl
protons in liposomes are provided. This also allowed us to
demonstrate that the effect of the slow physical transfer of
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water across the lipid membrane for different lipid composition
and temperatures changes the exchange rates of the
encapsulated monosaccharides inside liposomes. To the best
of our knowledge, this is the first study in which a model has
been constructed to measure the exchange properties of
diaCEST agents encapsulated inside liposomes.37 Our
theoretical development for quantifying the exchange rates of
monosaccharides encapsulated in liposomes will be beneficial
for future GlucoCEST studies, whereas the same principles can
be applied for other diaCEST molecules. Moreover, the
potential benefits of this approach include a more detailed
understanding of the effects of membrane lipid composition on
permeability in both model liposomes used to transport drugs
or contrast agents and in membrane systems designed to
mimic the composition of biological cell membranes. This will,
in turn, have implications for the design of new liposomal drug
carriers as well as a better understanding of drug toxicity,
pharmacokinetics, and the factors governing membrane
fluidity.
Importantly, we have also demonstrated that liposome

encapsulation with DPPC of both glucose and 2-DG gives
higher CEST signals compared with the free sugar solutions.
This increase in signal for the liposomal system occurs due to a
reduction in the exchange rate, which is more pronounced for
2DG liposomes compared to glucose liposomes. We also
observe a 10-fold reduction in the exchange rate when we used
DSPC, a rigid lipid, which quenches the intermembrane
exchange across the lipid bilayer. Currently, glucoCEST is
challenging at clinical field strengths of 3T and lower: the
chemical exchange of both glucose and 2-DG falls in the
intermediate to fast exchange regime (as shown in this paper)
resulting in a substantial signal decrease when translating this
technique from mouse models to humans. These findings are,
therefore, significant, as liposomal encapsulation has the
potential to make GlucoCEST much easier and reproducible
to carry out at clinical field strengths. The enhancement of
CEST signal was observed at both pH 6 and pH 7; however,
the chemical exchange of the encapsulated monosaccharides is
also affected by modulating the pH of the contrast agent,
suggesting that this technique could further be developed to
report on the tumor microenvironment. In future work, we aim
to validate the developed contrast agents in various in vivo
cancer models and compare these experiments with standard
GlucoCEST techniques.
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