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Abstract: Background: The 90K Axiom Buffalo SNP Array is expected to improve and speed up
various genomic analyses for the buffalo (Bubalus bubalis). Genomic prediction is an effective approach
in animal breeding to improve selection and reduce costs. As buffalo genome research is lagging
behind that of the cow and production records are also limited, genomic prediction performance will
be relatively poor. To improve the genomic prediction in buffalo, we introduced a new approach
(pGBLUP) for genomic prediction of six buffalo milk traits by incorporating QTL information from
the cattle milk traits in order to help improve the prediction performance for buffalo. Results: In
simulations, the pGBLUP could outperform BayesR and the GBLUP if the prior biological information
(i.e., the known causal loci) was appropriate; otherwise, it performed slightly worse than BayesR
and equal to or better than the GBLUP. In real data, the heritability of the buffalo genomic region
corresponding to the cattle milk trait QTLs was enriched (fold of enrichment > 1) in four buffalo milk
traits (FY270, MY270, PY270, and PM) when the EBV was used as the response variable. The DEBV as
the response variable yielded more reliable genomic predictions than the traditional EBV, as has been
shown by previous research. The performance of the three approaches (GBLUP, BayesR, and pGBLUP)
did not vary greatly in this study, probably due to the limited sample size, incomplete prior biological
information, and less artificial selection in buffalo. Conclusions: To our knowledge, this study is
the first to apply genomic prediction to buffalo by incorporating prior biological information. The
genomic prediction of buffalo traits can be further improved with a larger sample size, higher-density
SNP chips, and more precise prior biological information.

Keywords: buffalo; pGBLUP; genomic prediction; linear mixed model; enrichment; prior biologi-
cal information

1. Introduction

Genomic prediction is becoming increasingly important for animal and plant breeding
programs because of its effectiveness in improving selection and reducing costs [1–5]. The
application of genomic prediction to humans has also attracted substantial research interest
in terms of human disease prevention and personalized medicine in the last decade [6–8].
Many existing genomic prediction methods rely on either linear mixed models (LMMs) or
sparse regression models. Common examples include the genomic best linear unbiased
predictor (GBLUP) [9–12] and Bayesian Alphabet methods [13–16]. LMMs and sparse
regression models are based on almost diametrically opposed assumptions. Precisely,
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LMMs assume that all genetic variants have nonzero effect sizes and their effect sizes follow
a normal distribution, whereas the sparse regression models assume that a relatively small
proportion of variants affects the phenotype. Several methods considering a hybrid of the
two assumptions have also been developed, and these methods combined the advantages
of both LMMs and sparse regression models [17,18]. In addition, a machine-learning-
based method named KAML was developed by taking full advantage of the efficient
computing of LMMs and the accurate prediction of Bayesian methods [19]. However, most
of these standard methods are based on statistical considerations and often ignore the prior
knowledge of biological information, such as functional annotation, pathways, eQTL, and
the known causal loci. Ignoring biological information is likely suboptimal, as studies have
shown that incorporating the gene annotation coming from public databases or previous
GWAS results can improve genomic prediction accuracy [20–24].

Our main application of interest is in genomic selection of buffalos (Bubalus bubalis),
which is a key species for smallholder producers in developing countries (e.g., India,
Pakistan, and China) [25–30] and an important milk resource for specialized markets.
Parallel with the statistical methodological development, new SNP arrays for animal
programs have also been developed. For example, recently, the 90K Axiom Buffalo SNP
Array was designed and commercialized. Like other livestock high-density SNP chips,
the 90K array for buffalo is expected to improve and speed up various genomic analyses,
which include exploring genetic diversity, analyzing complex traits and diseases, and
aiding genetic selection [25–30]. River-type buffalo have also been genetically selected
for milk production and fertility traits in some countries by traditional methods. It has
been shown that milk yield, milk components, and milk somatic cell counts have enough
genetic variation for selection purposes [31–37]. Here, we ask an important question: Can
we use genomic prediction to speed up the genetic gains for the buffalo population? While
there are different buffalo production systems around the world, the production records
are particularly limited, especially when compared to those of cow. In addition, buffalo
genome research is lagging behind cow genome research, and existing approaches have
to align buffalo SNPs to the bovine genome for further study [28]. Therefore, we ask the
second question: Can we improve the genomic prediction performance for buffalo milk
traits with the limited sample size by incorporating the related cattle QTLs?

Motivated by both methodological interest and the above two application questions,
we propose a statistical approach to incorporate prior biological information in the widely
used genomic best linear unbiased predictor (pGBLUP) to improve genomic prediction. We
first simulated several scenarios to test the stability and advantages of the approach. Then,
we applied the approach for the genomic prediction of buffalo milk traits by incorporating
the known cattle milk trait QTL information from the animal QTL database [38].

2. Materials and Methods
2.1. Statistical Model

The basic idea behind our approach is to fit the effect sizes of all SNPs as random
effects relying on an LMM framework. We divided the SNPs into two groups based on a
priori biological information, and we assumed that these two groups of SNPs have different
effect sizes:

y = Zu + Z1u1 + ε, (1)

where y is an n by 1 phenotype vector, which has been standardized to have mean 0 and vari-
ance 1 to remove the intercept in the equation, Z is an n by m genotype matrix for all SNPs,
Z1 is an n by p genotype matrix for p SNPs that are part of Z, genotype matrix Z and Z1
were standardized as suggested [39], u is an m by 1 vector of small effect sizes for all SNPs,

u1 is a p by 1 vector of additional effect sizes for p selected SNPs, u ∼ N
(

0, σ
2
small
m

)
, u1 ∼

N
(

0,
σ2

large
P

)
, ε ∼ N

(
0, σ2

e
)
. It should be noted that the SNPs in Z1 have both large effects
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and small effects, which can be drawn from N
(

0,
(

σ2
small
m +

σ2
large
P

))
[10,17,18]. Recent

studies found that some regions or genes in the genome were heritability enriched for
complex traits and disease [9,40–44]. In this model, we extracted the biologically functional
information (pathway annotation, specific gene expression, and GWAS loci information)
from a public database (e.g., https://www.animalgenome.org/ (accessed on 10 October
2017)) to serve as priors to determine which set of SNPs belongs to Z1. To determine
whether the “prior information” is meaningful and promising, the fold of enrichment (fe)
was used as in the stratified LD score regression or MQS [42,43]:

fe =
(

σ2
large/

(
σ2

large + σ2
small

))
/(p/m) + 1. (2)

When fe > 1, the genome region based on “prior information” is suggested to be heri-
tability enriched for the complex traits and disease, and SNPs with biological information
will tend to have a large effect size, while SNPs without biological information will tend to
have a small effect size [42,43]. Different from the Bayesian Alphabet methods [13–16,20],
which use a time-consuming MCMC algorithm to determine the SNP effect distribution,
our approach directly designs the SNP effect distribution based on the prior biological
information. We name this approach as the incorporating prior biological information in
genomic best linear unbiased predictor (pGBLUP). Equation (1) can be written as:

y = gs + gl + ε, (3)

where gs = Zu, gl = Z1u1, gs ∼ MVN
(
0, Aσ2

small
)

, gl ∼ MVN
(

0, A1σ2
large

)
, MVN

denotes the multivariate normal distribution, and A and A1 are the realized genetic rela-
tionship matrix (GRM) [39]. σ2

small, σ2
large, and σ2

e are estimated firstly. Then, gs and gl can
be estimated as:

ĝs = Aσ̂smallV−1y,
ĝl = A1σ̂largeV−1y,

(4)

where V = Aσ̂2
s + A1σ̂2

1 + Iσ̂2
e , I is an n by n identity matrix, and the SNP effect sizes can

be estimated as
û = ZT

(
ZZT

)−1
ĝs,

û1 = ZT
1

(
Z1ZT

1

)−1
ĝl .

(5)

In the training dataset, about 80% of all individuals in the simulations, the SNP
effects û1 and û are estimated jointly. In the test dataset, about 20% of all individuals, the
phenotypes can be predicted as:

ŷ = Ztestû + Ztest
1 û1 (6)

where Ztest is the standardized genotype matrix for all SNPs, Ztest
1 is the standardized

genotype matrix for the p SNPs in the test population, and ŷ is the predicted values, known
as the genomic estimated breeding value (GEBV).

2.2. Animal Resources and Genomic Information

German Holstein genomic prediction population [22,45]: The genotype data con-
sisted of 5024 samples and 42,551 SNPs after removing SNPs that had a Hardy–Weinberg
equilibrium (HWE) p-value < 10−4, genotype call rate < 95%, or minor allele frequency
(MAF) < 0.01. All SNP positions were re-coded by the provider for confidentiality, and the
genotypes of the population were used to simulate the phenotype in this study.

Water buffalo data [46]: The genotype data consisted of 412 Italian Mediterranean
buffaloes, which were genotyped by the 90K Axiom Buffalo SNP Array. Then, 60,387 SNPs
were retained after removing SNPs that had an HWE p-value < 10−5, genotype call
rate < 97%, or MAF < 0.05. Six buffalo milk traits (peak milk yield (PM), total milk yield

https://www.animalgenome.org/
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(MY), fat yield (FY), fat percentage (FP), protein yield (PY), and protein percentage (PP))
were recorded and adjusted to 270 days in milk, as suggested by [47]. The estimated
breeding value (EBV) for the six traits was estimated with a univariate animal model using
ASReml 3.0 [48]. The deregressed EBV (DEBV) of the six milk production traits was calcu-
lated according to [49]. The details of the data processing were described by Liu et al. [46].
Both the EBV and DEBV were used as the phenotype in this study.

Cattle milk QTLs: The QTLs of 112 cattle-milk-related traits were downloaded from the
animal QTL database (https://www.animalgenome.org/cgi-bin/QTLdb/index accessed
on 10 October 2017) during October 2017; those traits included milk yield, milk fat, milk
protein, and some other milk component traits. Based on the Bos taurus UMD3.1 genomic
assembly, the genes within 50 kb of the QTL regions were selected as genes associated
with the trait. We only focused on the QTL regions with a length smaller than 40kb, which
had the largest proportion of QTLs. After initial filtering, 2435 genes were selected to be
associated with the milk traits, including some genes associated with several milk traits.
Then, we only kept 396 genes (see Table S1) associated with at least four traits as the
prior biological information for the following real data application study for the genomic
prediction of buffalo milk traits.

2.3. Simulations

We used the real genotypes of the German Holstein genomic prediction population to
simulate the phenotypes with the following steps:

(1) Set the causal segments: The genotype matrix was standardized, and the 42,551 SNPs
were divided into 1000 approximately equally sized segments, with 42 or 43 SNPs
in each segment; s (10/25/50/100/500) segments were randomly selected as causal
segments in our simulation settings, and the 10 SNPs in the center of each segment
were then selected as causal SNPs; thus, the total number of causal SNPs (k) was
100/250/500/1000/5000, while the total number of SNPs in the causal segments was
p ≈ s∗42.5.

(2) Simulate the SNP effects and phenotype: Firstly, all SNPs were simulated with the
small effects following a normal distribution N(0, 0.25/42, 551); the k causal SNPs
were simulated with additional effects following a normal distribution N(0, 0.25/k).
Then, the residual errors were sampled from a normal distribution N(0, 0.5), so that
the total heritability of the simulated trait was 0.5. Based on Equation (1), for each
individual, the phenotype was obtained as the summation of small effects, large
effects, and the residual error.

(3) Five-fold cross-validation: The 5024 individuals were divided into five groups, with
1004 or 1005 individuals in each group. Each time, one group of individuals was
set as the test dataset, while the rest of the groups of individuals were set as the
training dataset (i.e., five-fold cross-validation). We applied the pGBLUP approach in
two ways to predict the performance in the test dataset: only the SNPs in the causal
segments were set in Z1; SNPs in both the causal segments and non-causal segments
were selected in Z1. We also applied the traditional GBLUP method [3] and the BayesR
method [16] to compare the performance. The GBLUP method assumes the effect size
for every variant is sampled from the same normal distribution; the BayesR method
uses an MCMC algorithm to estimate variant effects, which are modelled as a mixture
distribution of four normal distributions, including a null distribution, N

(
0, 0.0σ2

g

)
,

and three others: N
(

0, 0.0001σ2
g

)
, N

(
0, 0.001σ2

g

)
, and N

(
0, 0.01σ2

g

)
, where σ2

g is the
additive genetic variance for the trait.

2.4. Genomic Prediction of Buffalo Milk Traits

As the draft genomic sequence of the buffalo is currently not assigned to chromosomes,
the chromosome and position for all SNPs in the 90K Axiom Buffalo SNP Array were based
on the bovine UMD 3.1 genome sequence [28]. This also facilitated the use of the bovine
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gene annotation information; 1279 SNPs were selected within 10 kb of the 396 cattle-milk-
trait-associated genes and set in Z1 of the pGBLUP model. The fe of “prior information”
for each trait was estimated using all individuals. Then, we applied three methods, the
GBLUP, BayesR, and pGBLUP, to perform the genomic prediction of the six buffalo milk
traits with five-fold cross-validation: the 412 individuals were divided into five groups,
with 82 or 83 individuals in each group; each time, one group of individuals was set as the
test dataset, while the rest of the groups of individuals were set as the training dataset.

2.5. Computation

For the GBLUP and pGBLUP, we used the GCTA [39] to perform REML, fe esti-
mation, and the BLUP (http://cnsgenomics.com/software/gcta/#Download (accessed
on 10 October 2017)). For BayesR, we used BayesR with the default parameters (https:
//github.com/syntheke/BayesR (accessed on 10 October 2017)). For the data clean-
ing and processing, PLINK (https://www.cog-genomics.org/plink2 (accessed in Octo-
ber 2017)) [50] and R (https://www.r-project.org/ (accessed on 10 October 2017)) [51]
were applied.

3. Results
3.1. Predictive Accuracy in Simulations

In our simulation studies, the causal regions were simulated and known. Firstly, we
assessed the performance of different methods when only the SNPs in the causal segments
were set in Z1. Based on the correlation (0.45~0.56) between the predicted values and the
simulated values in the test dataset, BayesR and the pGBLUP greatly outperformed the
GBLUP in the sparse simulation settings (i.e., only 10 causal segments) (Figure 1A,B). If
the simulated SNP effects tended to be polygenic (i.e., 500 causal segments), the three
methods had a similar performance, and the GBLUP even slightly outperformed BayesR
(Figure 1A,B). It should be noted that the pGBLUP had the best predictive performance in
all simulation settings, especially in sparse settings in which only several causal segments
greatly affected the phenotype and the causal segments were accounted for in Z1. The
performance of the pGBLUP depended on the fe of the SNP set in Z1; when the fe decreased
(Figure 1C), the predictive accuracy gain compared with the GBLUP would be reduced
from about 20% to 1% (Figure 1B). The fe estimations were centered on the truth at the
median simulated fe, while they tended to be underestimated at the large simulated fe
(Figure 1C).

Then, we assessed the performance of the pGBLUP when SNPs in both the causal
segments and non-causal segments were set in Z1 to examine the predictability of our
method. We selected 430 SNPs from different numbers of causal segments and non-causal
segments and set them in Z1 when simulating 10 causal segments (Figure 2). When all
SNPs in Z1 were from the non-causal segments, the pGBLUP and GBLUP had similar
performance. Upon increasing the number of SNPs in Z1 from causal segments, the
predictability of the pGBLUP became better and better (Figure 2A) and the fe of the SNPs
set in Z1 also became larger and larger (Figure 2B). The pGBLUP would have the best
performance when all and only the causal segments were accounted for in Z1.

http://cnsgenomics.com/software/gcta/#Download
https://github.com/syntheke/BayesR
https://github.com/syntheke/BayesR
https://www.cog-genomics.org/plink2
https://www.r-project.org/
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Figure 1. Simulation results when only the SNPs in the causal segments are set in Z1. (A) The
correlation between the predicted values and the simulated values in the test dataset using three
methods in different simulation settings. (B) The percentage of predictive accuracy gain for the
pGBLUP and BayesR compared with the GBLUP. (C) Fold of enrichment (fe) estimations using all
individuals with 20 replicates; the red dashed lines represent the true values (from left to right: 51, 21,
11, 6, and 2). The black solid lines in (A,C) represent the median values of the estimations.
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3.2. Genomic Prediction of Buffalo Milk Traits

In our real data application studies, according to the prior biological information of
396 cattle-milk-trait-associated genes, 1279 SNPs within 10 kb of those genes were set in
Z1 of the pGBLUP model. The fe estimations of the selected 1279 SNPs in Z1 are shown
in Figure 3A. When the DEBV was regarded as the phenotype, there was no obvious
enrichment for the selected SNPs, and the 1279 SNPs had fe close to 1 as other SNPs. When
the EBV was regarded as the phenotype, the 1279 SNPs had a small fe for traits FY270,
MY270, PY270, and PM.
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Figure 3. Genomic prediction results for buffalo milk traits. (A) Fold of enrichment (fe) of the
selected 1279 SNPs in Z1 using the DEBV and EBV as the phenotypes; the gold dashed line is
fe = 1. (B) Genomic prediction performance using the EBV and DEBV as the phenotypes; the points
represent the mean correlations between the GEBV and EBV (or DEBV), and the lines represent the
standard errors. PM: peak milk yield; MY270: 270-day total milk yield; FY270: 270-day fat yield;
FP270 = 270-day fat percentage; PY270: 270-day protein yield; PP270: 270-day protein percentage.

Three methods were applied for genomic prediction of buffalo milk traits using the
GEBV and EBV as the phenotypes (Table 1). The heritability estimations of the buffalo
milk traits ranged from 0.702 to 0.793 using the DEBV as the phenotype and from 0.599
to 0.741 using the EBV as the phenotype. The correlations between the GEBV and DEBV
ranged from 0.304 to 0.442, while the correlations between the GEBV and EBV ranged from
0.180 to 0.398. The three methods had similar performance for genomic prediction with
large standard errors, and using the DEBV as the phenotype had better genomic prediction
performance than using the EBV as the phenotype on average (Figure 3B and Table 1).

Table 1. Genomic prediction results of buffalo milk traits using the GEBV and EBV as the phenotypes.
The mean and standard error of the correlation between the predicted and the true values in the
five-fold cross-validation are reported. PM: peak milk yield; MY270: 270-day total milk yield; FY270:
270-day fat yield; FP270 = 270-day fat percentage; PY270: 270-day protein yield; PP270: 270-day
protein percentage.

Trait h2 GBLUP pGBLUP BayesR

DEBV

FP270 0.713 ± 0.112 0.314 ± 0.137 0.307 ± 0.133 0.314 ± 0.139
FY270 0.703 ± 0.119 0.38 ± 0.113 0.374 ± 0.113 0.397 ± 0.136
MY270 0.753 ± 0.112 0.409 ± 0.12 0.405 ± 0.123 0.41 ± 0.134

PM 0.702 ± 0.115 0.405 ± 0.14 0.375 ± 0.104 0.405 ± 0.173
PP270 0.75 ± 0.112 0.397 ± 0.095 0.398 ± 0.092 0.386 ± 0.097
PY270 0.793 ± 0.108 0.442 ± 0.127 0.439 ± 0.132 0.439 ± 0.149
FP270 0.741 ± 0.114 0.327 ± 0.111 0.32 ± 0.108 0.309 ± 0.103
FY270 0.631 ± 0.124 0.345 ± 0.093 0.335 ± 0.091 0.35 ± 0.093
MY270 0.658 ± 0.122 0.354 ± 0.089 0.341 ± 0.077 0.358 ± 0.114

PM 0.599 ± 0.123 0.211 ± 0.22 0.18 ± 0.167 0.217 ± 0.241
PP270 0.726 ± 0.115 0.387 ± 0.107 0.387 ± 0.106 0.353 ± 0.112

EBV

PY270 0.738 ± 0.116 0.398 ± 0.105 0.389 ± 0.101 0.391 ± 0.117
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4. Discussion

We proposed a new genomic prediction approach called the pGBLUP, which incor-
porates prior biological information in the LMM. Several methods incorporating prior
biological information in the LMM were also developed recently using different strategies
from ours: The BLUP|GA [21,22,52,53] and single-step GBLUP accounting for causative
quantitative trait nucleotides (QTNs) [24] model one weighted trait-specific GRM based on
the prior biological information; CVAT [23,54,55] models two genetic variances in the LMM,
while the SNPs in the two genetic components should be disjointly divided by the prior
biological information. Both the BLUP|GA and CVAT selected and tested prior biological
information using some iteration or permutation procedures, while we followed the main
idea from [42,43] and directly used the heritability enrichment (fe) to measure the impor-
tance of the prior biological information. As our simulation results show in Figures 1 and 2,
the predictability of pGBLUP could be improved as the fe of prior biological information
increased. Under the Bayesian framework, the extension of BayesR, BayesRC, was intro-
duced, which incorporates prior biological information in the analysis by defining classes
of variants likely to be enriched for SNPs with prior biological information, which showed
competitive performance in the QTL mapping and genomic predictions [20].

In our simulations, the real genotypes of the cattle were divided into 1000 segments
without considering the linkage disequilibrium (LD), which is not ideal. However, this
should not affect our simulation purpose of illustrating the relationship between the
predictive performance and fe; the pGBLUP and BayesR performed better with larger fe,
which indicated less genes had large effects on the traits, and the GBLUP performed better
with smaller fe, indicating more genes had small effects on the traits (Figure 1). While
ignoring the LD in the simulations may affect the fe estimation, when there were 10 causal
segments, the fe of all SNPs in the 10 causal segments was underestimated (Figure 1C). The
missing fe were shared by the nearby non-causal segments, which could be observed for
the fe overestimation when all SNPs from the non-causal segments had fe > 1 (Figure 2B).
In summary, the fe estimation was a good measurement for the importance and quality
of the prior biological information. If the prior biological information was appropriate,
the pGBLUP would outperform BayesR and the GBLUP; otherwise, it performed slightly
worse than BayesR and equal to or better than the GBLUP (Figure 2A).

We applied the pGBLUP to our published buffalo data [46] with another two popular
genomic prediction methods: the GBLUP and BayesR. Due to the delayed buffalo genome
research, prior biological information is very rare. For buffalo traits, some cattle-related QTLs
were also identified in buffalo [25,28,56–59], while the sample size for the buffalo population
was too small to detect more causal variants. In this study, we incorporated the known cattle
milk trait QTLs [38] for genomic prediction of buffalo milk traits in the pGBLUP. The prior
biological information borrowed from cattle showed median enrichment for FY270, MY270,
PM, and PY270 using the EBV as the phenotype. If the DEBV was used as the phenotype,
the prior biological information only showed small enrichment for FY270, which had the
largest enrichment when using the EBV as the phenotype (Figure 3). The fe estimations
suggested that the prior information has the potential to improve the genomic predictability
for FY270, MY270, PM, and PY270 if the EBV was used as the phenotype and for FY270 if
the DEBV was used as the phenotype. The predictabilities of the three methods did not vary
much (Table 1); BayesR and the pGBLUP did not show an advantage in genomic prediction,
indicating the buffalo milk traits were less artificially selected for genes with large effects
compared with cattle [13,16,52]. The other reasons for the small difference may be due to
the limited sample size of the buffalo population in this study, which was indicated by the
large standard errors of the correlations. In addition, we used a relatively loose threshold for
the HWE test (p-value < 10−5) to remove the variants due to the genotyping errors, which
was also likely to remove the causal variants under selection, thus affecting the performance
of the genomic prediction. The heritability estimations using the DEBV and EBV as the
phenotypes were larger than those using the original records directly [37,60,61], because some
environmental effects were already removed for the DEBV and EBV. As previous research, we
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also noticed that the DEBV as the response variable yielded more reliable genomic predictions
than the traditional EBV [49,62]. When the DEBV was used as the phenotype, the heritability
estimations could reach 0.793 for PY270; the maximum achievable correlation between the
predicted and observed traits was

√
0.793 = 0.891, but the mean correlations using the

GBLUP, pGBLUP, and BayesR were 0.442, 0.439, and 0.439 (Table 1), so there was a large gap
between the maximum achievable correlation and the real correlation. Based on the simulation
results that the simulated heritability was 0.5 and the maximum achievable correlation was√

0.5 = 0.707, the realistic correlation could reach 0.58 (Figure 1A); we believe that the genomic
prediction of buffalo traits can be further improved with a larger sample size, higher-density
SNP chips, and more precise prior biological information.

5. Conclusions

We proposed a genomic prediction approach, the pGBLUP, which has the potential to
improve the genomic prediction performance by incorporating the proper prior biological
information. The pGBLUP uses heritability enrichment to quickly check the importance
of the prior biological information. We also applied the pGBLUP to incorporate the milk-
related QTL information from cows for genomic prediction of buffalo milk traits. We found
that some cattle-milk-related QTLs also played an important role in buffalo milk production
traits. We believe that genomic prediction of buffalo traits can be further improved with a
larger sample size, higher-density SNP chips, and more precise prior biological information.

Supplementary Materials: The following Supporting Information can be downloaded at: https://www.
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