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Abstract
Vitamin D is an important physiologic regulator of bone
and mineral metabolism. In chronic kidney disease, reduced
renal production of calcitriol contributes to secondary hy-
perparathyroidism (SHPT). Consequently, supplementation
with vitamin D sterols is an important treatment for SHPT
and its associated mineral and bone disorders. However,
doses of vitamin D sterols required to suppress parathyroid
hormone (PTH) secretion often promote hypercalcaemia
and hyperphosphataemia. Therefore, there is a trade-off
between reduced serum PTH and increased levels of serum
calcium, phosphorus and calcium–phosphorus product. It
has been suggested that treatment of SHPT with cinacalcet,
a type II calcimimetic, with reduced doses of vitamin D
sterols could enhance achievement of calcium and phos-
phorus treatment targets while maintaining goals for PTH.
Recent clinical trials have evaluated this hypothesis and
demonstrated that treatment with cinacalcet in combina-
tion with reduced doses of vitamin D sterols is an effective
treatment for the management of SHPT.
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Biologic role of calcitriol

Physiologic effects

The chief physiologic role of calcitriol (the active form of
vitamin D) is the maintenance of bone mineralization and
turnover through increased absorption of calcium and phos-
phorus and suppression of parathyroid hormone (PTH) syn-
thesis. Calcitriol increases calcium and phosphorus absorp-
tion from the gut; in excess, it mobilizes calcium from bone;
and, in the parathyroid gland, suppresses PTH synthesis [1].
These effects of calcitriol are mediated through the vita-
min D receptor (VDR), a ligand-activated nuclear receptor
that modulates gene transcription in vitamin D-sensitive tis-
sues through interaction with vitamin D-response elements
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(VDREs) [2–4]. The VDR is localized not only in target
organs involved in mineral homeostasis but also in many
other tissues. Nonclassic vitamin D systems and tissues
include the immune system [5,6], myeloid tissue [7–9],
the heart [10], skeletal muscle [11], the brain, and nerve
tissue [12–14]. This wide distribution of the VDR sug-
gests that calcitriol has physiologic roles other than mineral
homeostasis. These physiologic roles have been extensively
reviewed and, consistent with the nonclassic vitamin D tis-
sues described above, include effects on the haematopoietic
system, immune system, skin, muscle and nervous system
[1,2,15,16]. Evidence also suggests that calcitriol can me-
diate nongenomic actions through a cell surface receptor
distinct from the nuclear VDR [1].

The synthesis of calcitriol (the most potent endogenously
produced vitamin D metabolite) occurs primarily in the kid-
ney but also in a variety of other tissues [17,18]. The renal
production of calcitriol is tightly regulated and is thought to
account primarily for the level of calcitriol in serum under
normal physiologic circumstances [1]. Control of calcitriol
is achieved through the coordinated action of the kidneys,
intestine, bone and parathyroid glands in response to phys-
iologic calcium and phosphorus requirements [1]. Serum
calcium, phosphorus and PTH regulate vitamin D through
activation or suppression of the enzymes involved in its
synthesis, bioactivation and catabolism [17].

Role of calcitriol in the development of SHPT in chronic
kidney disease

A common complication of chronic kidney disease (CKD)
is the development of secondary hyperparathyroidism
(SHPT) [19]. SHPT begins to develop when reduced re-
nal function results in dysregulation of the complex inter-
actions involved in calcium and phosphorus homeostasis.
Reduced renal excretion of phosphorus and synthesis of
calcitriol both contribute to the development of hypocal-
caemia that, in turn, leads to increased serum PTH [19].
Both the parathyroid gland calcium-sensing receptor (CaR)
and VDR are down-regulated in the hyperplastic parathy-
roid gland, resulting in reduced sensitivity to calcium and
vitamin D, respectively [19–22]. This abnormal calcium
sensing leads to elevated serum PTH and abnormalities
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in divalent ion homeostasis, which have been associated
with increased morbidity and mortality [23]. In particular,
increased calcium–phosphorus product (Ca × P) is associ-
ated with vascular calcification [24,25].

In addition to the effects of reduced calcitriol on serum
calcium that contribute to SHPT, a decrease in calcitriol has
a number of direct effects that influence the development
of SHPT. Calcitriol reduces parathyroid gland synthesis of
PTH through the actions of the VDR on two VDREs lo-
cated in the 5′ promoter region of the PTH gene [1,4]. In
animal studies, calcitriol was shown to regulate the CaR
in the parathyroid gland. Compared with controls, rats fed
a vitamin D-deficient diet had reduced parathyroid gland
CaR mRNA content [26]. Administration of calcitriol in-
creased CaR mRNA. Interestingly, rat CaR mRNA was un-
affected by diet-induced changes in serum ionized calcium
[26].

Vitamin D sterol therapy in patients with CKD

Treatment with vitamin D sterols in CKD patients on dial-
ysis has two principle goals. First, it corrects the vitamin
D deficiency that commonly develops as renal function
declines [27], and second, treatment with higher doses of
vitamin D sterols has been demonstrated to decrease serum
PTH [28,29]. Therefore, therapy with vitamin D sterols has
become a primary treatment for SHPT [30]. Because vita-
min D sterols also act to promote intestinal absorption of
calcium and phosphorus and, in excess, mobilize calcium
from bone [1], this effect on PTH comes at the expense of
increased serum calcium, phosphorus and Ca × P. Indeed,
clinical studies have shown that treatment with vitamin D
sterols can increase serum calcium [31–34]. In some in-
stances, increases in serum phosphorus [34] and Ca × P
have been reported [33,34]. Thus, as with other traditional
therapies for SHPT in CKD (such as phosphate binders),
there is a trade-off between reduced serum PTH and in-
creased Ca × P [35,36]. Potentially, hypercalcaemia and
hyperphosphataemia associated with vitamin D sterol use
could result in elevations of calcium and phosphorus and
their product, leading to an increased risk of cardiovascular
calcification and subsequent mortality [24,37]. Moreover,
oversuppression of serum PTH from excessive vitamin D
sterol treatment can result in reduced bone turnover (ady-
namic bone) [38].

The recognition of the hyperphosphataemic and hyercal-
caemic effects of vitamin D sterols has led to the develop-
ment of novel vitamin D sterols, such as paricalcitol, that
retain the ability to suppress PTH secretion with reduced
calcaemic effects [39]. This benefit was demonstrated in a
study comparing paricalcitol with calcitriol in rats [40], yet
only a small benefit was observed in a clinical trial [41].
These findings may be attributed to the fact that, although
the calcaemic effects of paricalcitol may be reduced in com-
parison with calcitriol, they are not absent [36]. In patients
on haemodialysis, paricalcitol treatment was shown to sig-
nificantly increase serum calcium and serum phosphorus
compared with placebo [28].

Observational studies have investigated the effects of vi-
tamin D sterols, such as paricalcitol, calcitriol and alfacal-
cidol (1α-hydroxyvitamin D3) on survival in haemodialysis

patients. In a retrospective epidemiologic analysis of a large
database of haemodialysis patients [42], those treated with
injectable vitamin D sterols (>95% receiving paricalcitol
or calcitriol) were shown to have a 2-year survival advan-
tage of 20% compared with those not receiving vitamin D
sterol treatment (hazard ratio, 0.80; 95% confidence inter-
val, 0.76–0.83). Cardiovascular mortality was also lower in
the vitamin D sterol-treated group (7.6/100 person-years)
compared with the control group (14.6/100 person-years;
P < 0.001). Similarly, in an observational study of 242
haemodialysis patients with stage 5 kidney disease, pa-
tients receiving alfacalcidol had a significantly lower risk
of cardiovascular death compared with nonusers (hazard
ratio, 0.287; P = 0.003) [43]. However, not all studies have
demonstrated a survival benefit associated with vitamin
D sterol treatment. In the observational Dialysis Outcomes
and Practice Patterns Study, no association between vitamin
D sterol use and mortality was observed [44]. The results
of a retrospective study investigating the relative effects
of paricalcitol and calcitriol on survival are also contro-
versial. Patients treated with paricalcitol had a 16% lower
mortality rate than patients treated with calcitriol [45]. It
should be noted that all of these studies are observational,
not randomized, and thus there was a fundamental differ-
ence in patients selected/not selected to receive vitamin D.
In addition, the two groups were not matched with respect
to a number of baseline characteristics, including comor-
bidities and demographics and, pre-study treatment data
were not collected. Thus, that a difference in outcome was
found is not unexpected. Prospective, randomized trials will
be necessary to conclusively demonstrate if there is a sur-
vival benefit associated with vitamin D sterol treatment and
whether the potential reduced calcaemic effects of parical-
citol compared with calcitriol translate into lower mortality
rates.

Combining cinacalcet and vitamin D sterols to
maximize control of SHPT

Because the therapeutic window for treatment with vita-
min D sterols is narrow, it is difficult to determine an op-
timal dose that will sufficiently suppress PTH secretion
without also increasing calcium and phosphorus absorp-
tion. Cinacalcet has a novel mechanism of action, acting
on the CaR to simultaneously reduce serum PTH, calcium,
phosphorus and Ca × P [46]. A new treatment paradigm
has been proposed in which cinacalcet is used in com-
bination with conventional therapies, such as vitamin D
sterols and phosphate binders, for the treatment of SHPT.
Phase 2 and phase 3 registrational studies were designed to
compare cinacalcet in combination with traditional thera-
pies with placebo and traditional therapies. In these studies,
strict protocol-defined rules were followed to maintain the
dose of vitamin D sterols at a constant level throughout
the study period. These trials demonstrated that cinacal-
cet enabled significantly more haemodialysis patients with
SHPT to achieve individual and combined National Kidney
Foundation Kidney Disease Outcomes Quality Initiative
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Table 1. Early-use cinacalcet/vitamin D sterol combination trials: study design

CONTROL OPTIMA

Study design Titration phase: Weeks 1–8; Assessment phase: Weeks 8–16 Dose optimization phase: Weeks 1–16; Assessment phase: Weeks 16–23

Patients (n = 53); PTH controlled (biPTH: 80–160 pg/mL), elevated
Ca × P at baseline

(n = 552); Baseline PTH elevated (iPTH: 300–800 pg/mL)

Objective Evaluate KDOQITM target achievement Compare treatment strategy with conventional therapy for KDOQITM

target achievement

Treatment Cinacalcet: titrate to optimum at 8 weeks; vitamin D sterol
dose reduced at day 1 to levels equivalent to ≤2 µg
paricalcitol

Algorithm to optimize combination of cinacalcet, vitamin D sterols and
phosphate binder or use best conventional methods; vitamin D sterol
dose adjusted according to algorithm to a minimum 2 µg paricalcitol
equivalent

(KDOQITM) targets and that cinacalcet induced simultane-
ous reductions in PTH and Ca × P [47–50].

It has been postulated that treatment with cinacalcet in
combination with doses of vitamin D sterols sufficient for
replenishment might limit the hypercalcaemia and hyper-
phosphataemia associated with vitamin D sterol therapy
while maintaining control of SHPT. The following section
of this review describes the results of two trials that in-
vestigated the effects of reduced-dose vitamin D combined
with cinacalcet therapy on the achievement of KDOQITM

goals: Cinacalcet Open-Label Study to Reach KDOQITM

Levels (CONTROL) [51] and An Open-Label, Random-
ized Study Using Cinacalcet to Improve Achievement of
KDOQITM Targets in Patients With End-Stage Renal Dis-
ease (OPTIMA) [52–55].

The CONTROL study

The CONTROL study was a 16-week open-label trial in
72 adult haemodialysis patients in the United States with
controlled biointact PTH (biPTH) levels (80–160 pg/mL)
and uncontrolled Ca × P (>55 mg2/dL2) (Table 1) [51].
At study entry, all patients were receiving moderate to high
doses of intravenous vitamin D sterols (paricalcitol, doxer-
calciferol or calcitriol; mean ± standard deviation parical-
citol equivalent dose, 14.1 ± 7.8 µg/week) and phosphate
binders. Doses of vitamin D sterols were reduced on day 1
of the dose-titration phase (to 2 µg paricalcitol equivalent
dose per dialysis session) but could be increased during the
8-week titration phase if serum calcium was <8.4 mg/dL or
if biPTH was >270 pg/mL and Ca × P was <70 mg2/dL2

and cinacalcet could not be titrated further. The vitamin
D sterol dose could be decreased after reaching two con-
secutive biPTH values of <80 pg/mL. During the 8-week
titration phase, cinacalcet doses were titrated in step-
wise increments from 30 to 180 mg/d (when biPTH was
>160 pg/mL or when biPTH was 80–160 pg/mL and Ca ×
P was >55 mg2/dL2) to reach treatment targets. Cinacal-
cet dose adjustments were allowed during the assessment
phase, and dose reductions were allowed at any time during
the study. The primary efficacy measures were the achieve-
ment of biPTH ≤160 pg/mL and Ca × P ≤55 mg2/dL2.

Although the dose of vitamin D sterols was reduced, the
introduction of cinacalcet enabled PTH control to be main-
tained (85% achieved their biPTH target versus 91% of
patients at baseline, P = not significant), and Ca × P con-

Fig. 1. CONTROL trial: comparison of standard care with cinacalcet;
(A) percentage of patients achieving KDOQITM targets and (B) dose of
paricalcitol at baseline and endpoint. Note that the biPTH target in this
study was ≤160 pg/mL. The KDOQITM target range is approximately
80–160 pg/mL. ∗P < 0.01, ∗∗P < 0.001. Adapted with permission from
Chertow et al. [51].

trol was markedly improved (72% versus 21% at baseline;
P < 0.0001). Serum calcium and phosphorus levels were
simultaneously reduced by 9.7% and 11.1% from baseline,
respectively. More patients treated with cinacalcet achieved
both biPTH and Ca × P goals at assessment compared with
baseline (47% versus 17%; P < 0.01) (Figure 1A). At the
assessment phase, vitamin D sterol use was discontinued in
21% of patients, and in the other patients, the dose was re-
duced by 49% (to 6.9 µg/week) compared with baseline
(Figure 1B). Taken together, these results demonstrate
that cinacalcet and reduced-dose vitamin D sterols can
simultaneously address all four KDOQITM targets.

The OPTIMA study

The OPTIMA trial was a 23-week, randomized, standard
care-controlled, multicentre, open-label study in 552 dialy-
sis patients in Europe (Table 1) [52–55]. This study used a
predefined algorithm designed to optimize the combination
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Fig. 2. OPTIMA treatment algorithm. Ca, calcium; P, phosphorus; vit D, vitamin D. Adapted with permission from Messa et al. [53].

Table 2. OPTIMA study efficacy outcomes

Best conventional treatment Cinacalcet

iPTH 300–500 pg/mL
(n = 92)

iPTH >500–800 pg/mL
(n = 89)

iPTH 300–500 pg/mL
(n = 193)

iPTH >500–800 pg/mL
(n = 167)

iPTH, % change, mean ± SD 2.0 ± 46.2 1.8 ± 42.5 −39.9 ± 33.7 −53.4 ± 27.7
Ca × P, % change, mean ± SD 3.5 ± 27.3 5.9 ± 31.2 −11.1 ± 27.4 −13.0 ± 26.0

SD, standard deviation.
Adapted with permission from Messa et al. [53].

of cinacalcet and existing treatments of vitamin D sterols
and phosphate binders to control intact PTH (iPTH) and
reduce serum calcium and phosphorus (Figure 2). Patients
were assigned to cinacalcet or conventional therapy in a
2:1 ratio. Conventional therapy gave investigators full free-
dom to administer vitamin D sterols and phosphate binders
as appropriate to maximize target achievement. Cinacalcet
was titrated from a starting dose of 30 mg/d until an iPTH of
150–300 pg/mL was achieved. Dose reductions related to
patient safety were allowed at any time during the 23-week
study. Vitamin D sterol dose was reduced in patients with
calcium ≥9.5 mg2/dL2 or phosphorus ≥5.5 mg2/dL2. The
dose of vitamin D sterols was reduced by 50% in sequen-
tial steps until a minimum dose (calcitriol, 0.5 µg three
times per week [TIW] intravenous or 0.25 µg TIW oral;
alfacalcidol, 1 µg TIW intravenous or 0.25 µg daily oral;
paricalcitol, 2 µg TIW intravenous) was prescribed. Effi-
cacy as measured by achievement of KDOQITM targets was
evaluated during Weeks 17–23.

More patients achieved the primary endpoint of iPTH
control (≤300 pg/mL) with cinacalcet compared with stan-
dard care (71% versus 22%; P < 0.001). Cinacalcet reduced
iPTH levels irrespective of the baseline PTH level (Table 2).
When patients were stratified into a less severe SHPT
group (baseline iPTH, 300–500 pg/mL) and more severe

SHPT group (baseline iPTH, 500–800 pg/mL), the greatest
reduction in serum iPTH was achieved in patients with more
severe SHPT (Table 2). However, the proportion of patients
in the cinacalcet group reaching the primary endpoint of
iPTH ≤300 pg/mL was greater in the less severe SHPT
group (Figure 3). Additionally, the median dose of cinacal-
cet was lower in the less severe SHPT group (30 mg/d) than
in the more severe SHPT group (60 mg/d).

Compared with the best standard care, the cinacalcet-
based algorithm used in the OPTIMA study provided supe-
rior control of SHPT. Attempts by physicians to maximize
therapy with standard care to attain the recommended tar-
gets were generally unsuccessful, with just 30% of patients
in the less severe SHPT group achieving the primary end-
point (iPTH ≤300 pg/mL) and 20% of patients reaching
the composite endpoint (iPTH ≤300 pg/mL and Ca × P
<55 mg2/dL2). In contrast, 80% of cinacalcet-treated pa-
tients in the less severe SHPT group reached the pri-
mary endpoint, and 64% reached the composite endpoint
(Figure 3).

As previously discussed, treatment with vitamin D sterols
is often associated with hypercalcaemia and hyperphos-
phataemia, with consequent risk of increased mortality
[24,37,45]. Importantly, in this study, treatment with
cinacalcet in combination with vitamin D sterols enabled
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Fig. 3. OPTIMA trial: percentage of patients achieving endpoint targets
by baseline iPTH level. BCT, best conventional treatment. Adapted with
permission from Messa et al. [53].

approximately a 24% reduction in the dose of vitamin D
sterols compared with baseline.

Summary and conclusions

Overall, evidence from the CONTROL and OPTIMA trials
demonstrates the clinical utility of treatment with cinacal-
cet in combination with reduced doses of vitamin D sterols.
These treatment regimens allowed for both replenishment
of vitamin D and improved control of SHPT. Compared
with conventional therapy, an increased proportion of CKD
patients were able to achieve their individual KDOQITM

targets, as well as combined targets of reduced iPTH, cal-
cium, phosphorus and Ca × P. Furthermore, in the OPTIMA
trial, this treatment regimen improved control of both PTH
and Ca × P in patients with moderate (300–500 pg/mL
PTH) and severe (500–800 pg/mL PTH) SHPT. Given the
potential risks involved in therapy with vitamin D sterols,
including vascular calcification and adynamic bone, the
ability to lower vitamin D sterol doses while maintaining,
and indeed improving, KDOQITM target achievement is an
exciting development. Prospective, long-term clinical tri-
als will be necessary to definitively evaluate the effects of
this treatment on mortality, cardiovascular calcification and
other outcomes.
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