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EEG signal classification has been a research hotspot recently. The combination
of EEG signal classification with machine learning technology is very popular. Traditional
machine leaning methods for EEG signal classification assume that the EEG signals are
drawn from the same distribution. However, the assumption is not always satisfied with
the practical applications. In practical applications, the training dataset and the testing
dataset are from different but related domains. How to make best use of the training
dataset knowledge to improve the testing dataset is critical for these circumstances. In
this paper, a novel method combining the non-negative matrix factorization technology
and the transfer learning (NMF-TL) is proposed for EEG signal classification. Specifically,
the shared subspace is extracted from the testing dataset and training dataset using
non-negative matrix factorization firstly and then the shared subspace and the original
feature space are combined to obtain the final EEG signal classification results. On
the one hand, the non-negative matrix factorization can assure to obtain essential
information between the testing and the training dataset; on the other hand, the
combination of shared subspace and the original feature space can fully use all the
signals including the testing and the training dataset. Extensive experiments on Bonn
EEG confirmed the effectiveness of the proposed method.

Keywords: non-negative factorization, transfer learning, shared hidden subspace, EEG signal, classification

INTRODUCTION

Epilepsy (Talevi et al., 2007) is a chronic disease with sudden abnormal discharge of brain neurons,
which leads to transient brain dysfunction. Existing studies (Subasi and Gursoy, 2010) have proved
that epileptic seizures are caused by sudden abnormal discharge of brain neurons, and the use of
EEG signals can effectively improve the progress of epilepsy line detection and diagnosis in order
to facilitate the timely treatment of relevant medical staff. Due to its recurrent characteristics, it
brings great inconvenience to patients’ daily life. At present, there are about 50 million epileptic
patients in the world; most of them come from developing countries. Meanwhile, there are about
2.4 million new patients every year. Epilepsy can occur in all ages, and about 50% of the patients
in the world occur in adolescence or childhood. Compared with normal people, the mortality of
epileptic patients has increased by 2–3 times.

Frontiers in Neuroscience | www.frontiersin.org 1 March 2021 | Volume 15 | Article 647393

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.647393
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.647393
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.647393&domain=pdf&date_stamp=2021-03-24
https://www.frontiersin.org/articles/10.3389/fnins.2021.647393/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-647393 March 18, 2021 Time: 15:45 # 2

Dong et al. Transfer Non-negative Matrix Factorization Learning

It is one of the important means to identify and diagnose
epilepsy patients with computer-aided therapy according to
pathological information contained in the EEG signals. In the
classical epilepsy recognition (Guler and Ubeyli, 2007; Tazllas
et al., 2009; Dorai and Ponnambalam, 2010; Iscan et al., 2011;
Acharya et al., 2013; Fouad et al., 2015) methods, we usually
train a classifier to recognize and diagnose epilepsy based on the
existing data. The core steps are feature extraction and classifier
training. The quality of feature representation is directly related
to the training of classifiers. Therefore, in the classification of EEG
signals, many methods are generally used to extract the features of
EEG signals, such as principal component analysis (PCA) (Subasi
and Gursoy, 2010), Kernel principal component analysis (KPCA)
(Patel et al., 2018), and wavelet packet decomposition (WPD)
(Ting et al., 2008).

With the wide applications of computer-aided diagnosis
technology, more and more methods have been applied to
EEG signal detection in recent years, such as support vector
machine (SVM) (Temko et al., 2011), linear discriminant
analysis (LDA) (Subasi and Gursoy, 2010), empirical mode
decomposition (EMD) (Bajaj and Pachori, 2012), and fuzzy
system (Aarabi et al., 2009). The common characteristic of
these methods is that they usually train classifiers to recognize
EEG signals according to the existing labeled data. In such
cases, great challenges have always been encountered in the
process of EEG signal classification. Firstly, the EEG signal
is a highly non-linear and non-stationary signal. It is normal
situation that different EEG acquisition equipment, different
patients, and even the same patient at a different time have
different data with diverse characteristics, which leads to the
inapplicability of the training model. Second, the number of
EEG signals is always insufficient due to the patient’s body
or privacy, which also leads to the problems of robustness
and generalization of traditional classification methods in EEG
signals detection.

To this end, the transfer learning (Dong and Wang, 2014)
method is proposed. Transfer learning is a new machine learning
method that uses existing knowledge to solve problems in
different but related fields. It relaxes two basic assumptions
in traditional machine learning: (1) training samples and new
testing samples for learning satisfy the condition of independent
and identically distribution; (2) the number of samples in the
auxiliary domain is much more than that in the target domain. Its
purpose is to improve the performance for the target domain with
the aid of the auxiliary domain. For the application of epileptic
EEG signal classification, health signals and/or signals during
seizures are used for training while the testing samples are the
signals during seizure-free intervals.

In this paper, we try to solve the problem of epileptic seizure
classification with the framework of transfer learning. It is
obvious that EEG signals in different fields contain some shared
knowledge independent of the data. We reconstruct the EEG
signals of different fields to find the shared hidden features
between the auxiliary domain and the target domain. In order to
improve the recognition ability of the target domain, we augment
the dimension of the data and combine the original data with the
obtained shared features.

In summary, we propose a novel method called transferred
SVM based on non-negative matrix factorization (Lee and Seung,
1999) (NMF-TL). Specifically, we use a variety of methods to
extract the features of EEG signals firstly, and then non-negative
matrix factorization is used to extract the shared potential
features between the auxiliary domain and the target domain;
finally, the augmented dimension is used to train the final
classification model in order to improve the discrimination ability
of the target domain. The principle of the proposed method is
shown in Figure 1.

The rest of the paper is organized as follows. We introduce the
feature extraction of EEG signals and the latest transfer learning
achievements in Section “Related Work.” In Section “Proposed
Method,” the proposed method is formulated in detail. The
German EEG data set is used to carry out extensive experiments
in Section “Experiments.” Finally, we summarize our method.

RELATED WORK

In this section, we review the application of feature extraction and
transfer learning in EEG signal processing in recent years, as well
as the research on non-negative matrix factorization.

Feature Extraction Methods About EEG
Signals
One of the challenges of EEG signal processing is feature
extraction. EEG signals have the characteristic of being non-
stationary, i.e., the EEG signal is non-linear in nature. At present,
there are four EEG signal processing methods: (1) time domain
analysis; (2) frequency domain analysis; (3) combination of time
and frequency domain; and (4) non-linear method.

Time domain analysis mainly extracts the waveform
characteristics of EEG, such as linear prediction (Altunay
et al., 2010; Joshi et al., 2014), principal component analysis
(Ghosh-Dastidar et al., 2008), independent component analysis
(Jung et al., 2001; Viola et al., 2009), and linear discriminant
analysis (Jung et al., 2001). Frequency domain analysis uses
Fourier transform to extract the frequency characteristics of
the EEG signal. Frequency domain analysis can be divided
into parametric method and non-parametric method. The
non-parametric method extracts frequency domain information
of time series. The Welch (Welch, 1967; Polat and Güne,
2007; Faust et al., 2008) method is a typical method. For
the non-parametric method’s disadvantage of information
loss, the parametric method is proposed. The parametric
method mainly includes moving average model, autoregressive
(Deryaübeyl and Güler, 2004) model, and autoregressive
moving average. Time domain analysis and frequency domain
analysis cannot get all the information of the EEG signal
separately. So the methods of combining time and frequency
domain are proposed, such as wavelet transform (Subasi,
2007) and Hilbert Huang transform (Oweis and Abdulhay,
2011). Non-linear technology can be used to describe the
biological system effectively. It is also applicable to EEG
signal analysis. Non-linear methods mainly use various
parameters of EEG which can describe biological information
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FIGURE 1 | Principle of the proposed transferred SVM based on non-negative matrix factorization.

to extract the features of EEG, such as maximum Lyapunov
exponent, correlation dimension, fractal dimension, Hurst
index, approximate entropy and sample entropy, and recursive
quantitative analysis.

Non-negative Matrix Factorization
In the process of signal processing, it is an important problem
to construct a method that multidimensional data can be better
detected. To this end, non-negative matrix factorization (NMF)
is proposed; it can extract the potential feature structure of data
and reduce the dimension of features.

NMF was proposed by Lee and Sueng (Lee and Seung,
1999). It has obtained great achievements in many fields
such as signal processing, biomedical engineering, pattern
recognition, computer vision, and image engineering. In
recent years, many scholars have improved it from different
views. In order to overcome the problem of local and
sparse optimization, some scholars (Chen et al., 2001; Li
et al., 2001) combine the sparse penalty term with sed as
the objective function. However, the local NMF algorithm
has poor ability to describe the data. Xu et al. (2003)
optimized and proposed a restricted NMF. Wang et al. (2004)
added Fisher discriminant information (the difference between
intraclass divergence and interclass divergence) into GKLD
to form an objective function, and constructed the Fisher
NMF algorithm. In order to eliminate the influence of sample
uncertainty on data, some weighted NMF (Wang et al., 2006)
were also proposed.

For a given domain dataset X = [x1, x2, · · · , xN] ∈ Rd×N ,
xi = [xi1, xi2, · · · , xid] ∈ Rd×1, where N is the number of
samples and d is the number of dimensionality. The goal of non-
negative matrix factorization is to find out two non-negative and
low-rank matrices: one is coefficient matrixW ∈ Rd×r

+ and the
other is base matrixH ∈ Rr×N

+ , which satisfyX ≈WH, wherer <
min

{
d,N

}
. So the objective function can be defined as follows:

min
W,H
||X-WH||2F

s.t.W ≥ 0, H ≥ 0
(1)

Lee and Sueng proposed an iterative multiplicative update
algorithm and obtained the following update rules:

Wi,j ←Wi,j

(
XHT)

i,j(
WHHT)

i,j
(2)

Hi,j ← Hi,j

(
WTX

)
i,j(

WTWH
)
i,j

(3)

Transfer Learning
In the task of EEG signal classification, the traditional machine
learning method assumes that all data have the same data
distribution. However, due to the non-stationarity of EEG
signals, this assumption does not exist, which makes it difficult
for traditional methods to achieve good results in practical
applications. In order to overcome this problem, transfer
learning is put forward.

Transfer learning is proposed to solve small sample problems
and personalized problems and has been widely used in BCI
classification in recent years. A dual-filter framework (Tu and
Sun, 2012) is proposed, which can be used to learn the common
knowledge of source domain and target domain. Transfer
learning, semi-supervised learning, and TSK fuzzy system are
combined (Jiang et al., 2017) to improve the interpretability
of transfer learning. In literacy (Yang et al., 2014), with the
adoption of the large projection support vector machine, the
useful knowledge between the training domain and test domain
is learned by calculating the maximum average deviation. In
literacy (Raghu et al., 2020), two different classification methods
are proposed based on convolutional neural networks: (1)
transfer learning by a pre-training network and (2) image feature
extraction by a pre-training network and classification by a
support vector machine classifier.

PROPOSED METHOD

In this paper, we propose a transfer learning method based on
subspace learning. Our method is mainly divided into three steps:
the first step is to extract the feature of the EEG signal; the
second step is to use non-negative matrix factorization to learn
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the shared knowledge of the auxiliary domain and target domain;
thirdly, the dimension of data is augmented by the combination
of the original feature space with the obtained shared feature
space. Finally, we use the augmented data space for transfer
learning. The principle of the proposed method is shown in
Figure 1.

Notations
(1) Let domain D =

{
xi, yi

}
∈ X× Y : i = 1, 2, · · · , n, where

X represents the domain sample instance space, Y
represents the domain sample label space, and

{
xi, yi

}
represents an instance in domain D.

(2) Let P(D) = P(X, Y) be the data distribution in domain D.
There are two domainsDs and Dt ; if Ds 6= Dt , then Ds and
Dt are different domains.

(3) Let Ds =
{(
xsi , y

s
i
)
∈ Xs
× Ys, i = 1, 2, · · · , ns

}
represent

the source domain and Dt ={(
xti , y

t
i
)
∈ Xt
× Yt, i = 1, 2, · · · , nt

}
represent

the target domain, where ns ≥ nt , the superscript
represents the domain, and the subscript represents the
index of the sample.

This proposed method is based on the following assumptions:
(1) There is only one source domain and one target domain.
(2) The data distribution is different but related, and two
different domains share a low-dimensional shared hidden
subspace through non-negative matrix factorization. (3) The
source domain includes a large amount of data and label
information, and the target domain includes a small amount of
tagged data. The learning task is to make full use of the source
domain information to train a classifier with better generalization
performance for the target domain.

Low-Dimensional Shared Hidden
Subspace Learning
Given source domain and target domain data X ={

Xs, Xt}, where Xs
=

{
xs1, x

s
2, · · · , x

s
ns

}
∈ Rds×ns and

Xt
=

{
xt1, x

t
2, · · · , x

t
nt

}
∈ Rdt×nt , ds and dt are the numbers

of dimensionality in the source domain and target domain,
respectively, andns andnt are the numbers of samples in the
source domain and target domain, respectively. With the
adoption of non-negative matrix factorization, we construct the
objective function as Eq. (4):

min
Ws,Wt,H

αs ||Xs
−WsH||2F + αt

∣∣∣∣Xt
−WtH

∣∣∣∣2
F

s.t.αs + αt = 1, 0 < αs, αt < 1
Ws, Wt, H > 0

(4)

whereWs
∈ Rds×r and Wt

∈ Rdt×r are the projection matrices for
the source domain and target domain data, respectively, which
can map the data from a low-dimensional shared hidden space
to the original feature space.ris the dimensionality of the low-
dimensional shared hidden space and1 ≤ r ≤ min

{
ds, dt

}
.H is

the low-dimensional shared hidden space between the source
and the target domain. αs andαt are the weight parameters for
the source and target domain and satisfiesαs + αt = 1. With the

adoption of ADMM and literature [27], we obtain the following
update rules:

(
Ws)

i,j ←

(
XsHT)

i,j(
WsHHT)

i,j

(
Ws)

i,j (5)

(
Wt)

i,j ←

(
XtHT)

i,j(
WtHHT)

i,j

(
Wt)

i,j (6)

(H)i,j ←

αs
(
(Ws)T Xs

)
i,j
+ αt

((
Wt)T Xt

)
i,j

αs
(
(Ws)T WsH

)
i,j
+ αt

((
Wt)T WtH

)
i,j

(H)i,j (7)

Based on the above analysis and derivation, low-dimensional
shared hidden subspace learning is obtained. The algorithm
description is summarized as shown in Table 1.

The Process of Training and Testing
After the low-dimensional shared hidden subspace H is obtained,
we use H as the shared knowledge between source domain
and target domain to transfer information. With the large
margin principle, we combine the shared information and SVM
conception to learn the final classifier. That is to say, for
the training data (source domain data), the classified decision
function consists of two parts: the original feature space and the
shared hidden space. Specifically, the classified decision function
is rewritten based on the classical SVM in the form of Eq. (8):

fs(x) =
(
ws)T xs + (

vs
)T Hxs + bs (8)

wherews and vs represent the classification parameter in the
original feature space and shared hidden subspace, respectively.
Finally, we use the learned parameters ws, vs, and bs to classify
the testing data (target domain data).

TABLE 1 | The description of the low-dimensional shared hidden
subspace learning.

Algorithm NMF-TL

1. Parameters: Dimensions of shared hidden space r,
weight parameters for source and target domain αs, αt

2. Input: source domain data {(xs
k, ys

k )|k = 1, 2, · · · , ns},
target domain data {(xt

k, yt
k)|k = 1, 2, · · · , nt}

3. Initialization: set Ws
0, Wt

0, H0 satisfying
Xs
=Ws

0H0, Xt
=Wt

0H0, iter = 1 set the maximum number
itermax of iterations and the threshold of error ε

4. Repeat:

4-1:update (Hiter)i,j using Eq.(7)

4-2:update ((Witer)
s)i,j using Eq. (5)

4-3:update ((Witer)
t)i,j using Eq. (6)

4-4: iter = iter + 1

textbfUntil:

‖ (Hiter)i,j − (Hiter−1)i,j ‖< ε or
‖ ((Witer)

s)i,j − ((Witer−1)s)i,j ‖< ε

or ‖ ((Witer)
t)i,j − ((Witer−1)t)i,j ‖< ε or (iter > itermax)

5. Output: low dimensional shared hidden space H ∈ Rr×d
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EXPERIMENTS

In this section, to evaluate the effectiveness of the proposed
method NMF-TL which combines the conception of non-
negative matrix factorization, transfer learning, and the large
margin principle, we did extensive experiments with EEG
signals. All the methods were carried out in MATLAB (R2016b)
on a computer with Intel(R) Core (TM) i7-4510U 2.50 GHz
CPU and 16GB RAM.

Dataset and Compared Methods
The dataset used in the experiments can be publicly downloaded
from the web http://www.meb.unibonn.de/epileptologie/science/
physik/eegdata.html. The original data contains five groups of
data (denoted as A–E), and the details are described in Figure 2.

Each group contains 100 single-channel EEG segments of 23.6 s
duration. The sampling rate of all datasets was 173.6 Hz. Since
there are 100 EEG signals in each group of data, it is not very
easy to visualize all their characteristics simultaneously. Figure 3
shows one typical signal in each group to facilitate intuitive
observation of the differences in the signals among the five
groups of data. The original EEG signals are processed by feature
extraction using wavelet packet decomposition (WPD), short-
time Fourier transform (SIFT), and kernel principle component
analysis (KPCA), and then the EEG signals are used to train and
test different classifiers in the experiment.

According to the EEG data described in Figure 2, we
designed 10 groups of datasets and each dataset is related
with different distributions from two scenarios to compare the
performance and effectiveness of the proposed method. In the

EEG Signal

Healthy

Measured during 
seizure(E)

Measured during 
seizure free intervals

Measured with 
eyes open(A)

Measured with 
eyes closed(B)

Epileptic

Obtained in the hippocampal formation of 
the opposite hemisphere of the brain(C)

Obtained from within the 
epileptogentic zone(D)

FIGURE 2 | Description of the EEG data.

FIGURE 3 | Typical EEG signals in groups (A–E).
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first scenario, the source domain (i.e., the training dataset) and
the target domain (i.e., the testing dataset) are drawn from the
identical distribution, while in the second scenario the data
distribution is different. The detailed information is summarized
in Table 2. Specifically, in scenario 1, dataset 1# is designed for
binary classification while dataset 2# is designed for multiclass
classification; in scenario 2, datasets 3#–6# are designed for
binary classification while datasets 7# and 8# are designed for
multiclass classification. For binary classification, we designated
the healthy subjects (A or B) as positive class and the epileptic
subjects (C, D, or E) as negative class. For multiclass classification,
the classification task is to identify different classes according to
Figure 2A–E.

A 10-fold cross-validation strategy was used to obtain the
final results for scenario 1. For scenario 2, one cross-validation-
like strategy was adopted. Specifically, for each dataset in
scenario 2, firstly, source data and target data were sampled
separately satisfying different distributions to obtain the one
classifier; secondly, the source data and the target data are
swapped to obtain another classifier. The one-round result is
obtained based on the two classifiers. The process is similar
to the traditional twofold cross validation strategy. The above
procedure was repeated 10 times. For both scenarios, the average
result is recorded.

The proposed method is compared with other seven different
classification methods, namely, SVM (Guler and Ubeyli, 2007),
LDA (Peng and Lu, 2012), DT (Goker et al., 2012), NB (Tazllas
et al., 2009), KNN (Cover and Hart, 1967), MTLF (Xu et al., 2017),
and LMPROJ (Quanz and Huan, 2009).

Results and Analysis
The results on classification accuracy of 8 classifiers on 8 different
datasets are recorded in Tables 3–5.

In Table 3, we give the comparison results of the proposed
method and other compared methods based on WPD feature
extraction. It can be seen that our method is obviously better than
other results. In the results of A/E, B/C, and B/D classification,
our method has little improvement effect compared with other
methods, with an increase of about 6%. However, in other group

TABLE 2 | The description of the 8 groups of datasets.

Scenario Datasets Source domain
(training dataset)

Target domain
(testing dataset)

Scenario 1:
same
distribution

1# A(75),E(75) A(25),E(25)

2# A(75),B(75),E(75) A(25),B(25),E(25)

Scenario 2:
different
distribution

3# A(75),E(75) A(25),C(25)

4# A(75),E(75) A(25),D(25)

5# B(75),E(75) B(25),C(25)

6# B(75),E(75) B(25),D (25)

7# A(75),B(75),E(75) A(25),B(25),C(25)

8# A(75),B(75),E(75) A(25),B(25),D(25)

TABLE 3 | Classification accuracy comparison of 8 classifiers on datasets based
on WPD feature extraction.

Method 1# 2# 3# 4# 5# 6# 7# 8#

SVM 0.9150 0.6733 0.6842 0.6987 0.9550 0.9650 0.6433 0.6667

LDA 0.9150 0.8600 0.8350 0.8450 0.7850 0.8050 0.8367 0.8300

DT 0.8950 0.7933 0.8500 0.8300 0.9500 0.9300 0.7300 0.7267

NB 0.8700 0.7799 0.5800 0.5600 0.7600 0.7450 0.5799 0.6167

KNN 0.9150 0.8533 0.7650 0.8050 0.9600 0.9500 0.7500 0.7467

MTLF 0.9600 0.8800 0.6950 0.7000 0.9000 0.8850 0.7433 0.7564

LMPROJ 0.8700 0.7767 0.7950 0.8750 0.8000 0.9200 0.6800 0.6700

NMF-TL 0.9700 0.9800 0.9500 0.9500 0.9700 0.9750 0.9699 0.9467

TABLE 4 | Classification accuracy comparison of 8 classifiers on datasets based
on SIFT feature extraction.

Method 1# 2# 3# 4# 5# 6# 7# 8#

SVM 0.9800 0.6908 0.5600 0.5800 0.7150 0.7700 0.7187 0.7033

LDA 0.9900 0.8900 0.5050 0.5650 0.6300 0.6650 0.5700 0.6100

DT 0.9764 0.9300 0.6500 0.7200 0.5600 0.6450 0.6467 0.7067

NB 0.9450 0.9367 0.5800 0.5800 0.5650 0.6400 0.6499 0.6233

KNN 0.9864 0.9367 0.5100 0.5650 0.5100 0.5400 0.6100 0.6333

MTLF 0.9850 0.9833 0.5125 0.5800 0.8450 0.8400 0.6634 0.7067

LMPROJ 0.9800 0.7933 0.6000 0.8750 0.8700 0.8750 0.6700 0.6750

NMF-TL 0.9950 0.9933 0.9700 0.9650 0.9700 0.9650 0.9467 0.9500

TABLE 5 | Classification accuracy comparison of 8 classifiers on datasets based
on KPCA feature extraction.

Method 1# 2# 3# 4# 5# 6# 7# 8#

SVM 0.9300 0.8300 0.5700 0.5645 0.7500 0.7700 0.5933 0.6267

LDA 0.9050 0.5467 0.8900 0.9530 0.9150 0.9150 0.6467 0.6733

DT 0.9800 0.8533 0.8950 0.9725 0.8400 0.8650 0.7767 0.8700

NB 0.8950 0.8149 0.6300 0.7900 0.7900 0.7550 0.6367 0.6700

KNN 0.9400 0.7767 0.8450 0.8950 0.8850 0.9050 0.7400 0.7467

MTLF 0.9350 0.9400 0.7750 0.8500 0.7650 0.8150 0.8199 0.8400

LMPROJ 0.9550 0.9233 0.7717 0.7700 0.8900 0.8400 0.8633 0.8700

NMF-TL 0.9870 0.9500 0.9650 0.9800 0.9800 0.9600 0.9600 0.9767

classifications, our method improves the effect obviously, and
it improves the accuracy by more than 10%. This also proves
that our method can better learn the shared knowledge between
source domain and target domain.

In the STFT feature classification results shown in Table 4,
we can see that our method has achieved good results in other
groups of experiments except the A/E group. This is because
A/E classification is a traditional binary classification and the
proposed method has not demonstrated the superiority over
other compared method. For the A/B/E group experiment, our
method has improved the accuracy of about 9% compared with
the other non-transfer learning methods and improved about 5%
compared with the other two transfer learning methods. In all the
other group experiments, the proposed method achieved a better
range of results.

From Table 5, we can see that our method has improved
by about 4% compared with other methods in the A/E group
classification. In other groups of experiments, our method has
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improved about 12% accuracy compared with several baseline
methods and also improved about 5% accuracy compared with
the other two transfer learning methods.

In summary, from Tables 3–5, we can draw the following
conclusion:

(1) For the traditional scenario, i.e., the scenario where the
training dataset and the testing dataset are drawn from
the same distribution, the proposed method could not
demonstrate the superiority over other compared methods,
especially for binary classification tasks.

(2) For the transfer learning scenario, the i.e., scenario where
the training dataset and the testing dataset are drawn
from different but related domains, the transfer learning
methods can achieve better results compared with the non-
transfer learning methods. The results display that the
transfer learning method can exert the positive transfer
ability to the best advantage.

(3) For the transfer learning scenario, i.e., the scenario where
the training dataset and the testing dataset are drawn from
different but related domains, the proposed method shows
better performance compared with the other two transfer
learning methods. These results show that the proposed
method can not only find the shared hidden knowledge
but also find the potential relationship between the source
domain and the target domain.

At the same time, in order to make our experimental results
more visual, we give a broken line chart of the accuracy
of our experimental results as shown in Figures 4–6. From
Figures 4–6, we can clearly see that our experimental method

is obviously better than other experiments in accuracy, and our
experimental method has greatly improved the experimental
accuracy compared with other methods.

Besides the classification accuracy, we also performed
experiments with measurements of F1 score and Recall.

In Table 6, we compare the F1_score results of our method
with other methods based on WPD feature extraction. It can
be seen that our method is superior to other methods except
the B/C and B/D dataset. In the comparison between A/C and
A/D, our method only improves about 0.25%. But in other
comparison results, the F1_score of this method is improved
by about 7%.The proposed method can find the potential
relationship between the source and the target domain by
non-negative matrix factorization and balance the performance
between accuracy and recall. LDA has also achieved good results
in this experiment, which shows that LDA classification has good
generalization ability.

The F1_score comparison results of 8 classification methods
based on KPCA feature extraction are shown in Table 7. The
proposed method has achieved good results except A/E and A/C
groups. Compared with other baseline methods, the F1_score
of the proposed method in the A/B/E, B/C, and B/D groups
increased by about 5%, and that in the A/B/C and A/B/D groups
increased by about 15%; compared with the other two transfer
learning methods, the F1_score of our method in the A/C and
A/D groups increased by about 18%, and that in the B/D, A/B/C,
and A/B/D groups increased by about 4.5%.

In Table 8, we show the F1_score comparison of eight
classification methods based on STFT feature extraction. It can
be seen that compared with the other baseline methods, the
proposed method has increased by about 8% in the A/B/E and

FIGURE 4 | Classification accuracy comparison of 8 classifiers on datasets based on WPD feature extraction.
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FIGURE 5 | Classification accuracy comparison of 8 classifiers on datasets based on SIFT feature extraction.

FIGURE 6 | Classification accuracy comparison of 8 classifiers on datasets based on KPCA feature extraction.
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TABLE 6 | F1_score of 8 classifiers on datasets based on WPD feature extraction.

Method 1# 2# 3# 4# 5# 6# 7# 8#

SVM 0.9364 0.8033 0.9784 0.9685 0.9562 0.9587 0.6877 0.6954

LDA 0.9600 0.9100 0.9000 0.9000 0.9700 0.9700 0.9100 0.9100

DT 0.9000 0.7600 0.8700 0.8700 0.9500 0.9500 0.7600 0.7600

NB 0.8659 0.8050 0.2092 0.3303 0.8022 0.7922 0.8050 0.7850

KNN 0.9600 0.8550 0.9000 0.9700 0.9900 0.9800 0.8450 0.8450

MTLF 0.9559 0.8850 0.5578 0.5994 0.8888 0.8885 0.8700 0.8700

LMPROJ 0.8678 0.8535 0.8109 0.8725 0.8260 0.9126 0.8025 0.7684

NMF-TL 0.9987 0.9850 0.9800 0.9700 0.9800 0.9800 0.9850 0.9800

TABLE 7 | F1_score of 8 classifiers on datasets based on PCA feature extraction.

Method 1# 2# 3# 4# 5# 6# 7# 8#

SVM 0.9014 0.8840 0.9572 0.9685 0.6503 0.6462 0.5972 0.6211

LDA 0.9100 0.5100 0.9000 0.9100 0.8700 0.8700 0.5300 0.5300

DT 0.9890 0.8450 0.9767 0.9823 0.8500 0.8500 0.8100 0.8200

NB 0.7930 0.8150 0.4302 0.7403 0.7759 0.7562 0.8152 0.4850

KNN 0.9800 0.7700 0.9300 0.9400 0.9100 0.9000 0.7700 0.7700

MTLF 0.9341 0.9200 0.7046 0.8131 0.8374 0.8274 0.9200 0.9200

LMPROJ 0.9566 0.9434 0.7806 0.8066 0.8984 0.8376 0.9037 0.9078

NMF-TL 0.9800 0.9450 0.9700 0.9980 0.9800 0.9400 0.9700 0.9700

TABLE 8 | F1_score of 8 classifiers on datasets based on SIFT feature extraction.

Method 1# 2# 3# 4# 5# 6# 7# 8#

SVM 0.9796 0.8264 0.9796 0.9765 0.8042 0.8218 0.7239 0.7470

LDA 0.9898 0.8500 0.9672 0.9801 0.9600 0.9765 0.8500 0.8500

DT 0.9987 0.9050 0.9253 0.9645 0.9900 0.9900 0.9050 0.9050

NB 0.9667 0.8850 0.4248 0.4247 0.6927 0.6972 0.8850 0.8900

KNN 0.9845 0.9150 0.9632 0.9754 0.9847 0.9667 0.9100 0.9100

MTLF 0.9900 0.9800 0.2720 0.3995 0.6766 0.8626 0.9391 0.9066

LMPROJ 0.9649 0.8661 0.3307 0.8871 0.8803 0.8812 0.8816 0.8016

NMF-TL 0.9920 0.9950 0.9987 0.9600 0.9800 0.9900 0.9700 0.9950

TABLE 9 | Recall of 8 classifiers on datasets based on WPD feature extraction.

Method 1# 2# 3# 4# 5# 6# 7# 8#

SVM 0.9600 0.9980 0.9700 0.9600 0.9700 0.9700 0.5100 0.5100

LDA 0.8700 0.7600 0.7700 0.7900 0.6000 0.6400 0.6900 0.6700

DT 0.8900 0.8600 0.8300 0.7900 0.9500 0.9100 0.6700 0.6600

NB 0.8400 0.8581 0.1200 0.2200 0.9600 0.9600 0.6521 0.6674

KNN 0.8700 0.8500 0.6300 0.6400 0.9300 0.9200 0.5600 0.5500

MTLF 0.9700 0.9393 0.5150 0.5300 0.9100 0.9050 0.7815 0.7757

LMPROJ 0.8600 0.9750 0.8700 0.8600 0.9200 0.8400 0.9750 0.9750

NMF-TL 0.9400 0.9700 0.9200 0.9300 0.9600 0.9700 0.9400 0.8800

A/B/D experimental groups, and that in the A/B/C experimental
group increased by about 6%; compared with the other two
transfer learning methods, it increased by about 66% in the A/C
experimental group and in other experimental groups obvious
improvement has also been observed.

We record the recall results of 8 classification methods based
on WPD feature extraction in Table 9. As shown in Table 9,
compared with the baseline method, the recall rate of the

TABLE 10 | Recall of 8 classifiers on datasets based on SITF feature extraction.

Method 1# 2# 3# 4# 5# 6# 7# 8#

SVM 0.9800 0.8350 0.8650 0.9650 0.9750 0.9850 0.6300 0.6650

LDA 0.9800 0.9700 0.0400 0.1300 0.2600 0.3300 0.0400 0.1300

DT 0.9900 0.9800 0.3000 0.4400 0.1300 0.3000 0.1300 0.3100

NB 0.9875 0.9548 0.4100 0.4100 0.9750 0.9800 0.6618 0.6594

KNN 0.9900 0.9870 0.0400 0.1300 0.0400 0.0800 0.0400 0.0800

MTLF 0.9850 0.9847 0.2391 0.3000 0.9750 0.9635 0.6588 0.7049

LMPROJ 0.9700 0.9550 0.2000 0.9575 0.9200 0.9125 0.9525 0.9675

NMF-TL 0.9987 0.9900 0.9400 0.9700 0.9600 0.9400 0.9000 0.8600

TABLE 11 | Recall of 8 classifiers on datasets based on PCA feature extraction.

Method 1# 2# 3# 4# 5# 6# 7# 8#

SVM 0.9550 0.9650 0.9200 0.9400 0.5600 0.5600 0.4600 0.4600

LDA 0.9000 0.6200 0.8800 0.9600 0.9600 0.9600 0.8800 0.9600

DT 0.9600 0.8700 0.7900 0.9800 0.8300 0.8800 0.7100 0.9700

NB 0.7700 0.8643 0.2800 0.7500 0.7100 0.7100 0.6809 0.8060

KNN 0.9800 0.7700 0.9300 0.9400 0.9100 0.9000 0.7700 0.7700

MTLF 0.9200 0.9898 0.7000 0.7000 0.9500 0.9525 0.7898 0.8534

LMPROJ 0.9600 0.9450 0.9500 0.9550 0.9700 0.9200 0.9600 0.9600

NMF-TL 0.9700 0.9600 0.9900 0.9600 0.9800 0.9800 0.9300 0.9700

TABLE 12 | Friedman values for 8 different methods on datasets based on WPD
feature extraction.

Method 1# 2# 3# 4# 5# 6# 7# 8#

SVM 1.420 37.81 36.01 36.64 0.4300 1.200 38.14 27.41

LDA 7.128 11.42 1.48 3.528 9.148 3.020 3.045 12.23

DT 0.7375 3.788 0.6325 1.418 0.5150 0.8775 0.2700 1.408

NB 1.818 6.735 25.40 17.75 9.423 11.36 28.11 20.25

KNN 2.260 2.368 3.562 1.470 9.910 1.628 13.25 3.648

MTLF 0.1725 0.4475 12.60 10.80 3.980 5.590 12.16 10.86

LMPROJ 2.250 14.74 1.788 0.3450 5.288 3.245 28.73 30.51

NMF-TL 0.8150 0.3700 2.853 1.178 1.255 0.3225 1.238 1.023

TABLE 13 | Friedman values for 8 different methods on datasets based on SIFT
feature extraction.

Method 1# 2# 3# 4# 5# 6# 7# 8#

SVM 0.430 35.27 36.06 36.64 27.27 11.71 15.88 9.250

LDA 16.50 16.00 14.52 13.55 18.67 21.72 18.12 17.78

DT 8.593 23.98 7.800 12.89 8.280 15.47 14.95 30.32

NB 0.1075 1.283 23.04 25.43 31.86 25.96 25.13 33.13

KNN 16.80 35.85 17.12 27.64 16.65 31.67 15.76 28.85

LMPROJ 1.00 14.00 26.10 4.310 1.010 0.9300 21.73 38.74

MTLF 0.4125 0.085 35.11 28.40 8.670 8.648 33.47 26.43

NMF-TL 0.4300 0.2850 6.195 0.7825 0.5150 3.300 3.865 2.028

proposed method in the A/B/C and A/B/D groups increased by
about 22%; compared with the two transfer learning methods, the
recall rate of our method in the A/C and B/C experimental groups
increased by about 4%, and the recall rate in the A/D, B/D, and
A/B/C experimental groups increased by about 6.5%.
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TABLE 14 | Friedman values for 8 different methods on datasets based on KPCA
feature extraction.

Method 1# 2# 3# 4# 5# 6# 7# 8#

SVM 14.75 37.46 28.83 7.850 9.773 33.44 8.365 27.28

LDA 1.565 0.9150 2.570 4.422 2.220 0.6975 0.7675 2.165

DT 1.223 1.010 2.085 2.727 2.143 2.800 2.433 4.095

NB 2.213 21.05 5.057 21.55 2.513 1.095 13.15 2.580

KNN 1.165 0.3075 3.162 0.8975 1.445 0.3050 0.2450 4.475

LMPROJ 0.5450 0.4900 11.59 8.845 2.665 5.875 4.033 35.63

MTLF 0.1725 0.3825 12.73 7.200 7.773 5.955 11.04 5.973

NMF-TL 0.3625 0.7600 0.2575 0.6225 0.8150 2.307 0.2150 2.545

In Table 10, we can see that the proposed method has achieved
good results in terms of recall rate. In the B/C group, the
difference is only 1.5% compared with the optimal result. In
A/E, the proposed method is 0.87% higher than the optimal
value. In the A/B/E, A/C, A/D, and A/B/C groups, the NMF-
TL method has achieved the best results. In the B/C group,
the proposed method is only 1.5% lower than the optimal
value, which indicates that the NMF-TL method is good in this
group of experiments.

From Table 11, we can see that except the A/B/E and A/B/C
groups, the proposed method has achieved the best results. At the
same time, in the A/B/E group the proposed method is only 1%
lower than the optimal value and in A/B/C group, the difference
is more, which is a decrease by 3%.

In summary, from the recall results shown in Tables 9–11, we
can draw the following conclusion:

(1) Recall rate means the probability of being predicted as a
positive sample in the actual positive sample. In Table 9, we
can clearly see that our method has achieved good results,
which also proves that our method rarely has misdiagnosis
results in the detection process and improves the accuracy
of our diagnosis results.

(2) In the diagnosis of diseases, there will be misdiagnosis.
A good detection method can greatly reduce the incidence
of misdiagnosis. In this experiment, our method is
obviously better than other methods.

(3) The higher the recall rate, the lower the misdiagnosis rate
of the correct samples. The lower the misdiagnosis rate in
medical diagnosis, the more conducive it is to the relevant
practitioners to make judgment as soon as possible. In
this group of experiments, our method has achieved good
results, which shows that compared with other methods,
our algorithm has a lower misdiagnosis rate.

Friedman and Nemenyi Tests
Friedman and Nemenyi tests are used to compare several
algorithms on 8 different datasets. The Friedman test can
analyze whether there exist obvious differences between all
comparison algorithms on multiple data sets. Nemenyi was
used to further analyze whether those pairs of algorithms have
significant differences. In Tables 12–14, we report Friedman
values for each algorithm on 8 datasets with three different

feature extraction methods. Figures 7–9 show the Nemenyi test
chart for each algorithm on 8 datasets with three different feature
extraction methods.

From Tables 12–14, we draw the following conclusions.

(1) For WPD feature extraction, it can be seen that the
proposed method has achieved good results in several
groups. In the experiments of the A/B/E, B/D, and A/B/D
groups, our results have won the first place; in the
comparison of the A/E, A/C, and B/C groups, ours got
the third place; and in the rest of the groups, ours got the
second place. We can see that the proposed method has
obvious differences with other algorithms, especially with
SVM, LDA, NB, and KNN. This is because the traditional
classification method is not suitable for transfer learning
circumstances which need to find the potential relationship
between the source and the target domain.

FIGURE 7 | Nemenyi test chart of 8 different methods on datasets based on
WPD feature extraction.

FIGURE 8 | Nemenyi test chart of 8 different methods on datasets based on
SIFT feature extraction.

FIGURE 9 | Nemenyi test chart of 8 different methods on datasets based on
KPCA feature extraction.
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(2) For SIFT feature extraction, our method got the first place
in most of the experiments, the third place in the A/E
group, and the second place in the B/D group.

(3) For KPCA feature extraction, our experimental results are
almost the same as those of other feature extractions and
we also get the best results in many groups, but the results
in the A/B/E and B/D groups are not very ideal, and our
results are not as good as those of other experiments.

The horizontal line in Figure 7 indicates the size of the average
order value. The solid dot on the horizontal line represents the
average order value of each corresponding algorithm. The blue
line represents the size of the CD value. The red line represents
the CD value of each algorithm. The more there are overlapping
red lines, the more similar the performance of the two algorithms.
From Figure 7, we can see that our method is significantly
higher than the critical value CD compared with other methods,
and it also shows that our method has a completely different
performance from other methods.

From Figure8, we can see that the values of several models
are significantly larger than the CD value, which also shows that
our method is significantly different from other methods based
on SITF feature extraction, and there is no model similar to our
experimental model. At the same time, in addition to SVM, other
models are similar.

From Figure 9, we can see that compared with other groups
of experiments, the p-value we obtained in this group of
experiments is the largest, which shows that compared with
WPD and SIFT feature extraction, there are greater differences
in the models of this group of experiments. We can see that the
performance of our method is not as good as other methods,
such as LMPROJ, NB, MTLF, and DT. This is because our
method needs to extract the shared potential features between the
source and the target domain, which leads to the performance
degradation of our method. In terms of performance, LDA and
SVM are most similar to our method.

CONCLUSION

In this paper, we proposed new transfer learning methods based
on non-negative matrix factorization with the large margin
principle for EEG signal classification. Specifically, we first
learned the shared hidden subspace data between the source
domain and the target domain, then we trained the SVM classifier
on the augmented feature space consisting of the original feature
space and the shared hidden subspace, and finally we use the
learned classifier to classify the new target domain data. Extensive
experiments confirmed the effectiveness of the proposed method.
As future work, we will evaluate the proposed method on more
new datasets, such as the Chinese physiological signal challenge
dataset on electrocardiogram classification.
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