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Intratumour heterogeneity complicates biomarker discovery

and treatment personalization, and pervasive cancer evolution

is a key mechanism leading to therapy failure and patient death.

Thus, understanding subclonal heterogeneity architectures

and cancer evolution processes is critical for the development

of effective therapeutic approaches which can control or thwart

cancer evolutionary plasticity. Current insights into

heterogeneity are mainly limited to the macroheterogeneity

level, established by cancer subclones that have undergone

significant clonal expansion. Novel single cell sequencing and

blood-based subclonal tracking technologies are enabling

detailed insights into microheterogeneity and the dynamics of

clonal evolution. We assess how this starts to delineate the

rules governing cancer evolution and novel angles for more

effective therapeutic intervention.
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Introduction
Cancer is a genetic and epigenetic disease arising from a

single cell that has acquired the hallmarks of cancer.

Although monoclonal in origin, the background mutation

rate and genomic instability mechanisms which are oper-

ative in many cancers foster the generation of new muta-

tions during the ensuing expansion of the cancer cell

population [1,2]. Although most new mutations are likely

to be deleterious or have no impact on cellular fitness, the

enormous number of mutations which can be generated

during progression into an advanced cancer, harbouring

up to hundreds of billions of malignant cells [3], likely

generates a wealth of viable phenotypes. This subclonal

diversity is the substrate which Darwinian selection can

act upon, permitting the on-going evolutionary adaptation
www.sciencedirect.com 
of cancer populations through the expansion of subclones

harbouring beneficial aberrations [4].

However, new mutations, bestowing genetic diversity,

are initially confined to individual cells and to small

subclones after subsequent rounds of cell division. These

remain below the detection limit of standard exome or

genome sequencing approaches, which have low sensi-

tivity and high false positive rates when applied for the

detection of mutations with allele frequencies below 10%

in the DNA extracted from a tumour sample [5]. Thus,

this microheterogeneity remains undetectable until a

significant expansion of one or more subclones establishes

macroheterogeneity (Figure 1a), which may have a

branched evolutionary pattern (Figure 1b). Novel single

cell [6,7,8�] and ultra-deep DNA sequencing technolo-

gies [9�] only recently started to permit investigations into

intratumour micro-heterogeneity and macro-heterogene-

ity, whilst circulating tumour DNA (ctDNA) detection

techniques [10–13] and circulating tumour cell molecular

analyses [14] provide insight into the dynamics of evolu-

tionary adaptation. We review how these techniques

reveal intratumour micro-heterogeneity and macro-het-

erogeneity, thereby unravelling the fundamental evolu-

tionary nature of cancer and the central role of genetic

intratumour heterogeneity for patient outcome.

Evidence for intratumour macroheterogeneity
Intratumour macroheterogeneity has been observed

across several solid tumour types. Exome sequencing

of multiple tumour regions from ten clear cell renal cell

carcinomas (ccRCC) demonstrated that, on average, over

two thirds of driver somatic copy number aberrations

(SCNAs) and of driver mutations were heterogeneous

within individual tumours [15��]. Subclones were spatial-

ly demarcated within primary tumours and differed be-

tween primary tumours and metastatic sites within

patients. Reconstructing the ancestral relationships of

these subclones revealed branched evolutionary patterns

with multiple subclones evolving simultaneously in each

tumour but along distinct evolutionary paths [15��]. A

characteristic found in all ten tumours was the presence of

inactivating somatic alterations in the von Hippel Lindau

(VHL) gene and loss of heterozygosity of chromosome 3p,

harbouring the second copy of the VHL gene, on the trunk

of the phylogenetic trees. Thus, these driver aberrations

had been acquired early, most likely in the founding cell

of each tumour. In contrast, other known ccRCC driver

genes, including PI3K-mTOR pathway genes and

those encoding epigenetic regulators were predominantly
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Macro and microheterogeneity in cancer evolution. (a) Schematic

illustrating clonal evolution. Multiple subclones evolve from the

founding clone (blue) and undergo major clonal expansions, changing

the composition of the tumour cell population. Subclones are

detectable as macroheterogeneity by standard next generation

sequencing approaches owing to their large population sizes.

Magnifications of small proportions of the cancer cell population

(insets) show the population structure at the microheterogeneity level.

Newly generated mutations in single cells, which subsequently expand

into small subclonal populations are below the detection limit of

standard next-generation sequencing techniques and can only be

detected through single cell or ultra-deep sequencing technologies. (b)

Phylogenetic tree reconstructed from the macroheterogeneity data,

depicting a branched evolutionary trajectory. The founding clone (blue)

represents the trunk of the phylogenetic tree.
mutated in tumour subclones. SETD2, BAP1 and PBRM1
driver gene mutations were found in distinct subclones

within the same tumour, defying that mutations in these

genes define distinct molecular ccRCC subtypes [15��].
Studies into signalling pathway activity and prognostic

and predictive biomarker expression demonstrated that
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genetic heterogeneity was associated with phenotypic

diversity [15��,16��,17]. Multi-region exome sequencing

of high-grade serous ovarian cancers also found macro-

heterogeneity and branched evolution, with early truncal

TP53 mutations in five out of six patients, whereas driver

genes such as PIK3CA, CTNNB1 and NF1 were mutated

in subclones [18]. Multi-region SCNA profiling of nine

glioblastomas demonstrated homogenous CDKN2A/B
losses and EGFR amplifications, suggesting early acqui-

sition on the trunk of the phylogenetic trees [19]. In

contrast, SCNAs harbouring RB1, AKT3, and MDM4 were

always found to be subclonal whereas those affecting

CDK6, MET, PDGFRA, PTEN and TP53 were subclonal

in some and truncal in other cases [19].

Evidence for macroheterogeneity with significantly ex-

panded subclones has also been identified within individ-

ual cancer samples. Deep sequencing of triple negative

breast cancer biopsies revealed that most TP53, PIK3CA,

and PTEN mutations had been acquired early during

tumour evolution although they were subclonal in a small

proportion of cases [20�]. In contrast, mutations in

cytoskeletal, cell shape and motility proteins were pre-

dominantly subclonal, suggesting on-going evolutionary

adaptation. Fluorescence in situ hybridisation of driver

SCNAs identified genetically distinct subclonal popula-

tions in the majority of ETV6-RUNX1 positive acute

lymphoblastic leukaemias (ALL) [21]. Twenty-four cases

exhibited branched evolution and only six malignancies

followed a linear evolutionary pattern [21]. Sequencing of

single biopsies from non-small cell lung cancers

(NSCLC) revealed subclonal heterogeneity in ten out

of 17 cases [22]. Tumours harbouring KRAS or EGFR
mutations had always acquired these in the founding

clone, whereas putative driver mutations in HGF were

subclonal. A large study investigating mutation concor-

dance within NSCLC primary tumours and between

primary tumours and metastases or recurrences found

no macroheterogeneity of EGFR driver mutations, further

supporting the notion that activating EGFR mutations are

generally truncal [23]. This was also confirmed by two

recent NSCLC multi-region exome sequencing studies.

All identified activating EGFR mutations and indeed the

majority of all other known NSCLC driver mutations and

driver SCNAs were located on the trunks of the phyloge-

netic trees [24,25]. Macroheterogeneity and branched

phylogenetic patterns were nevertheless identified in

each tumour. Although most heterogeneous aberrations

may be passengers, the high mutation rate in NSCLCs

impairs the ability to define the driver gene catalogue of

these tumours [26] and subclonal drivers may have

remained undetected as a consequence. Mutational sig-

nature analysis showed that a cell-endogenous mutational

process caused by up-regulation of the APOBEC deami-

nase [24,25] was the predominant mechanism of NSCLC

subclonal mutation generation [27��], even in patients

with on-going tobacco smoke exposure.
www.sciencedirect.com



Intratumour heterogeneity in cancer evolution Barber, Davies and Gerlinger 3
Insights into intratumour microheterogeneity
Novel sequencing technologies increasingly allow the

investigation of microheterogeneity at the fundamental

level of the single cell. The detection of SCNAs and point

mutations in up to 60 individual cell nuclei from each of

two breast cancers identified major subclones evolving in

a branched evolutionary fashion in each tumour [8�],
corroborating the conclusion from breast cancer macro-

heterogeneity studies [20�]. Single cell resolution further

revealed relatively stable SCNA profiles across cancer

cells within a tumour whereas point mutations differed

between major subclonal populations but also within

subclones. Thus, SCNAs had been acquired early during

carcinogenesis and point mutation acquisition was con-

tinuously driving microheterogeneity generation. Muta-

tion rate estimates based on this data revealed �8 new

mutations per cell division in a triple negative cancer and

0.6–0.9 new mutations in an ER positive tumour, which is

similar to the estimated 0.6 new mutations per division for

normal cells. Importantly, single cell mutational hetero-

geneity allows insights into current mutation rates. In

contrast, mutations observed at the macroheterogeneity

level have been acquired many generations before clonal

expansion made them detectable and only provides a

historical record of the mutational processes that were

operative in earlier tumour stages [28�].

Reconstruction of SCNA profiles from single cell RNA

sequencing data from glioblastomas identified a mono-

clonal structure in four cases and two major subclones

within one further case [29��]. Within the limits of the

assay, which has a low sensitivity to detect small aberra-

tions, SCNAs were similar between individual cells of a

clone or subclone. Thus, the generation of new SCNAs

may be a rare event and the observed profiles were likely

acquired early during cancer evolution, similar to the

results in breast cancers [8�]. Single cell RNA expression

data further enabled the simultaneous assessment of gene

expression profiles between single cells with similar

SCNA profiles. This detected transcriptional signatures

of different glioblastoma subtypes and variable degrees of

stemness co-existing in different cells within a tumour.

The simultaneous interrogation of genetic and non-

genetic macroheterogeneity within a cancer cell popula-

tion provides powerful opportunities to assess phenotypic

consequences of subclonal genetic aberrations.

Macroheterogeneity of known driver mutations is rare

between primary colorectal cancers (CRCs) and associat-

ed metastatic lesions. Mutations in KRAS, NRAS, BRAF
and APC driver genes were always concordant and only

low-level discordance was observed for mutations in

TP53, PIK3CA and PTEN in a study of 69 primary

CRC and metastasis pairs [30]. The absence of macro-

heterogeneity, for example for KRAS and NRAS muta-

tions, suggests that these drivers were acquired on the

trunk of the phylogenetic tree, in tumours in which they
www.sciencedirect.com 
are detectable. The high concordance most likely

explains the robust performance of KRAS and NRAS
mutations as predictors of primary resistance to anti-

EGFR therapy in CRCs [31,32]. However, KRAS and
NRAS mutations became detectable in the ctDNA from

23 out of 24 initially KRAS/NRAS wild-type CRCs at the

time acquired resistance to anti-EGFR treatment had

developed [33��]. Surprisingly, multiple distinct activat-

ing KRAS and NRAS mutations emerged in the ctDNA in

63% of patients, demonstrating that polyclonal resistance

evolution was common. An analysis of the kinetics of

KRAS mutation evolution in these patients further con-

cluded that KRAS mutations had been present before

anti-EGFR therapy initiation, in small subclones com-

prising �2000–3000 cancer cells [34]. Direct support for

this microheterogeneity has been provided by the detec-

tion of low level KRAS mutations by sensitive digital PCR

technology in patients found to be KRAS wild-type by

standard detection techniques [41]. Thus, microhetero-

geneity of KRAS mutations and potentially also of other

resistance driver mutations is likely to be present in many

metastatic CRCs which are KRAS wild-type based on

standard sequencing approaches. These mutations may

evade detection owing to the small number of affected

cells and through spatial segregation across metastatic

sites but they eventually drive resistance evolution and

therapy failure. The reliable evolution of one or multiple

KRAS or NRAS mutant subclones in most patients during

anti-EGFR therapy further suggest that the population

size and mutation rates are sufficiently high to generate

many beneficial driver mutations in any metastatic CRC.

The presence of KRAS mutation microheterogeneity in

many tumours which are KRAS wild-type by standard

sequencing technologies together with the absence of

KRAS mutational macroheterogeneity further indicated

that these new subclones rarely undergo significant clonal

expansion. Thus, KRAS mutations apparently have a low

or no selective advantage unless they are acquired early

during carcinogenesis or the tumour is treated with

EGFR-targeted agents.

The presence of strong driver aberrations in the founding

cell of most CRCs which leaves only limited opportunity

to further optimize cancer cell fitness could be a parsimo-

nious explanation for this paradox. In other words, many

CRCs may already occupy a fitness peak on the fitness

landscape at the time of cancer initiation (Figure 2a)

precluding significant expansion and macroheterogeneity

evolution of subclones harbouring additional drivers. This

may be fundamentally different in the founding cell of a

ccRCC (Figure 2b), which may only harbour a small

number of weak drivers such as mutations in VHL and

chromosome 3p loss. This is supported by studies in

patients with germ-line VHL mutations which only

showed a modest proliferative advantage of biallelic

VHL inactivation in renal tubular cells [35] compared

to the proliferative advantage conferred by biallelic
Current Opinion in Genetics & Development 2015, 30:1–6
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Influence of the fitness landscape on cancer evolutionary patterns. (a)
Hypothetical cancer fitness landscape in which the founding cell (red

dot) is already located at a fitness peak. Further evolutionary

adaptation is only possible through a change in the fitness landscape,

for example through a change in the environment or through drug

therapy. Microheterogeneity can be extensive in this tumour but

macroheterogeneity is absent. (b) Hypothetical fitness landscape

where the founding cell is not located at a fitness peak. Tumour

subclones can increase their relative fitness through the acquisition of

further driver mutations which will lead to subclonal expansion.

Increases in fitness are illustrated as arrows climbing up the fitness

peaks. If multiple subclones acquire drivers that increase their relative

fitness, branched evolution can occur. Multiple fitness peaks indicate

multiple possible phenotypes which lead to increased cellular fitness.
inactivation of the APC tumour suppressor gene (which is

altered in �80% of CRCs [36]) in colon cells. Thus, the

founder clone of a typical ccRCC is likely to be located on

a fitness landscape that permits significant further fitness

increments through the acquisition of additional driver

aberrations (Figure 2b). This would explain the frequent

evolution of subclones harbouring additional driver

genes and the detection of macroheterogeneity in these

tumours.

Conclusions
Exome and genome sequencing studies of up to 500 can-

cer samples recently identified the most prevalent driver

genes in many cancer types. In parallel, smaller studies
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started to portray the subclonal landscapes of many tu-

mour types at the macroheterogeneity level through

multi-region sequencing approaches or subclonal compo-

sition analysis of individual biopsies. This provided am-

ple evidence for on-going evolutionary adaptation during

cancer progression, frequently along complex branched

trajectories, and started to delineate the spatial structures

of subclonal architectures. The spatial segregation of

functionally distinct subclones is a major hurdle for per-

sonalized cancer therapies as it complicates efforts to

accurately assess the driver aberration landscapes of in-

dividual tumours. These results also question whether

and how tumours harbouring subclones with different

driver mutations can be optimally treated. The concept of

a clinically dominant clone, which is not necessarily

numerically dominant in a cancer but ultimately lethal

for an individual patient [37�,38], is emerging from this

work and the development of strategies to detect, track

and treat clinically dominant subclones is an important

area of future research. At the same time, macroheter-

ogeneity studies started to define cancer type specific

‘evolutionary rules’, such as the identification of driver

genes which are commonly altered on the trunk of a

specific tumour type, providing opportunities to prioritize

the development of targeted therapeutics [39]. Most

recently, new technologies enabled the study of micro-

heterogeneity in exceedingly small subclones and even at

the quantum level of the single cell. Combined with

assessments of subclonal population dynamics through

ctDNA or circulating tumour cell tracking [14], these

tools start to unravel key mechanisms of cancer evolution

at an unprecedented level of detail. For example, quan-

tification of de novo mutation generation, the construc-

tion of genotype-phenotype maps and ultimately the

mapping of dynamic fitness landscapes can now be ac-

complished. As on-going cancer evolution fosters cancer

progression and therapy failure [40], a fundamental un-

derstanding of the rules governing cancer evolution may

lead to novel therapeutic and preventive approaches to

slow down or thwart evolution in order to improve clinical

outcomes.
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