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With progressive climate change and the associated increase in mean temperature, heat stress 
tolerance has emerged as one of the key traits in the product profile of the maize breeding pipeline 
for lowland tropics. The present study aims to identify the genomic regions associated with heat 
stress tolerance in tropical maize. An association mapping panel, called the heat tolerant association 
mapping (HTAM) panel, was constituted by involving a total of 543 tropical maize inbred lines from 
diverse genetic backgrounds, test-crossed and phenotyped across nine locations in South Asia under 
natural heat stress. The panel was genotyped using a genotyping-by-sequencing (GBS) platform. 
Considering the large variations in vapor pressure deficit (VPD) at high temperature (Tmax) across 
different phenotyping locations, genome-wide association study (GWAS) was conducted separately 
for each location. The individual location GWAS identified a total of 269 novel significant single 
nucleotide polymorphisms (SNPs) for grain yield under heat stress at a p value of <  10–5. A total of 175 
SNPs were found in 140 unique gene models implicated in various biological pathway responses to 
different abiotic stresses. Haplotype trend regression (HTR) analysis of the significant SNPs identified 
26 haplotype blocks and 96 single SNP variants significant across one to five locations. The genomic 
regions identified based on GWAS and HTR analysis considering genomic region x environment 
interactions are useful for breeding efforts aimed at developing heat stress resilient maize cultivars 
for current and future climatic conditions through marker-assisted introgression into elite genetic 
backgrounds and/or genome-wide selection.

In Asia region maize has emerged as the third most important crop after rice and wheat, with average annual 
growth rate of 3.1% in maize area during 1993–20131. Though the growth in maize area resulted in 2.4–5.6% 
increases in production, maize productivity in this region remain low with high inter-annual variability. Cli-
mate change effects accounted for over 50% of the total year-to-year variation in maize  yields2. In Asia region, 
maize is largely (~ 80%) grown as rainfed crop and therefore is highly exposed to weather extremes, including 
intermittent drought and heat stress. Thus, there is a need for fast-tracking the development and deployment of 
stress-resilient maize to cope-up with extremes weather events. Due to exponential increase in maize demand 
spring maize has emerged as third cropping season where the crop is grown during the hot-summer period of 
the year (Feb–May). Maize crop grown during spring season is invariably exposed to high temperature regimes 
(> 35 ℃) during most part of the critical crop growth period, especially from the late vegetative stage until early 
grain filling. Also, during the main maize cropping season (monsoon season), which accounts for over 70% of 
the total maize area in the region, there is an increased frequency of drought years along with high temperature 
that severely affects maize yields. Climate modeling studies suggested that increased day as well as night tem-
peratures will become more common in the tropics and that may significantly affect food  production3,4. South 
Asia region has been identified as one of the hot-spot regions for climate change effects; therefore, without 
sufficient adaptation measures, the region is likely to suffer negative impacts of the climate  change5. During the 
past 2 decades, Asian tropics have experienced frequent episodes of extreme weather events including increased 
day/night temperatures, apart from scattered drought/heat stress periods almost every year in one or another 
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country of South  Asia6. Impact assessment of climate change effects on maize in South Asia showed that heat 
stress affected areas of South Asia will increase significantly under future climates, especially in the pre-monsoon 
season (spring) and in monsoon  season7.

Being a tropical crop, maize can survive brief exposures to extreme temperatures (< 0 °C and > 40 °C), but 
prolonged exposure to temperatures above 35 °C is unfavorable for crop growth. The temperatures above 40 °C 
during the reproductive stage can cause irreversible physiological damage and severely affect grain  yield8,9. In 
view of recent climate change patterns in the lowland tropics, heat stress alone and in combination with drought, 
has emerged as one of the major production constraints for maize in several maize-dependent  countries6,10. 
Lobell and  Burke11 showed that an increase of 2 °C temperature would result in a greater yield penalty in maize 
crop than a 20% decrease in precipitation. Due to high vapor pressure deficit (VPD) under heat stress, maize 
crop experience severe physiological drought due to increased atmospheric demand for moisture driven by high 
temperature and low humidity, which explains the relatively high yield penalties under heat stress compared to 
drought. Unless frequently irrigated to maintain high humidity within crop canopy and to offset the effect of high 
VPD associated physiological drought, crops face the compound effects of heat plus drought, which results in 
relatively higher yield losses. The intensity of heat stress is defined by the prevailing VPD, which is a function of 
maximum temperature (Tmax) and relative humidity at  Tmax12. Varying degree of VPD results in strong geno-
type × environment interaction effects and therefore maize crops exposed to heat stress at different locations may 
respond differently, depending on the level of VPD at  Tmax13. These studies highlight the need to incorporate 
heat stress resilience into maize cultivars grown in lowland tropics. Understanding the genetic architecture of 
heat stress tolerance by identifying the genomic regions conferring heat tolerance and developing marker-trait 
associations can accelerate the development of heat stress-resilient maize varieties through marker-assisted 
ingression of validated genomic regions into elite genetic backgrounds and/or genomic selection. In recent years, 
GWAS has been extensively used to decipher genomic regions associated with various agronomic traits, qual-
ity traits, a range of diseases, and traits associated with key abiotic  stresses14. Genomic regions associated with 
key traits under heat stress have also been identified using association mapping  studies15,16. However, limited 
studies are available on complex traits such as grain yield under heat stress in tropical maize. Genome-wide 
association mapping for combined drought and heat  tolerance17 identified 6 significant haplotype associations 
for grain yield under combined drought and heat stress management on chromosome 4. The study also identi-
fied significant hot-spots for grain yield exclusively under heat stress on chromosome 8 (bin 8.05 and 10.03) and 
on chromosome 4 for combined heat and drought stress (bin 4.02–4.03 and bin4.04). Another mapping study 
for heat stress tolerance in sub-tropical  maize18 identified 12 significant SNP associations for grain yield under 
heat stress on a panel of 662 DH lines with tropical origin. These SNPS were localized on chromosomes 1, 3, 6, 
7 and 10 accounting for about 18% of the phenotypic variation. In addition, the study also revealed significant 
haplotype trait associations on chromosomes 1, 3, and 7.

With this rationale, the present study aims to identify superior alleles associated with heat stress tolerance 
using genome-wide association studies (GWAS) and haplotype trend regression (HTR) analysis, in tropical 
working germplasm maintained in the breeding program.

Materials and methods
Association mapping panel. A set of 534 maize inbred lines representing the wide genetic background 
of tropical maize were included in the association mapping panel, named as heat tolerant association mapping 
(HTAM) panel (Supple. Table-1). The lines involved in the panel included the selected 449 lines derived from the 
International Maize and Wheat Improvement Center (CIMMYT), 52 lines from the Maize and Millet Research 
Institute (MMRI), Pakistan, 23 tropicalized temperate lines from Purdue University, USA, and 10 lines from 
Kaveri Seeds, Hyderabad, India. The CIMMYT lines involved in the panel were derived from various pools and 
populations, including several biparental pedigree populations developed by the CIMMYT-Asia maize program 
for abiotic stress breeding, and selected lines from pools/populations from CIMMYT-Mexico, such as La Posta 
Sequia-C7 (tropical late white-dent), DTPY-C9 (drought tolerant population—yellow), DTPW-C9 (drought tol-
erant population—white), G18 Sequia C5 (drought tolerant early yellow tropical population) and Pool16 BN 
Sequia-C5 (drought tolerant early white tropical population), which had reasonably good adaptation to the 
Asian tropics. Further details about the pools/populations from CIMMYT’s lowland tropical maize program can 
be found  elsewhere19.

Phenotyping under managed heat stress. The HTAM panel was test-crossed with an established tester 
line from CIMMYT (CML451) with high general combining ability. CML451 is a high yielding line widely used 
by lowland tropical breeding programs in Asia; it has good local adaptation and resistance to foliar diseases 
common in the region but is highly susceptible to heat stress. The test-cross progenies were phenotyped at nine 
locations during the spring season (March to June) of 2013 and 2014. In spring 2013, the testcrosses were evalu-
ated in four locations of India and Nepal, viz., Raichur (RA) and B’gudi (BG-1), Karnataka and Ludhiana (LU), 
Punjab, India, and Nepalgunj (NG), Nepal. In spring 2014, the testcross were evaluated at five locations in India, 
viz., Hyderabad (HY) and Baijenki (BJ) in Telangana state, at two locations in Jalandhar district (JL-1, JL-2) of 
Punjab and B’gudi (BG-2) in Karnataka. Locations were carefully selected based on weather data during the 
spring season (Feb–June) over the past 10 years, which showed that at all these locations, maximum temperature 
(Tmax) is usually > 35 °C  after mid-March and invariably reaches close to 40 ℃ or more during the first fortnight 
of the month of May, and similar weather pattern was observed during the multilocation trials conducted in the 
year 2013 and 2014 (Supple. Table 2). The geographical coordinates of the trial locations are given in Table 1.

Trials at all locations in both years were planted during the second or third week of March, except at the Jal-
landhar location, where one set was planted in the last week of February and the other set in the second week of 
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March 2014. Spring season planting time at all the locations was adjusted in such a way that most of the reproduc-
tive stage, including flowering, pollination, fertilization, and early grain filling, is exposed to severe heat stress. 
The weather parameters, viz., maximum, minimum temperature, relative humidity and vapor pressure deficit 
(VPD), of the trial locations were captured for the cropping period (Supple. Table 2). All the trials were planted 
using an alpha-lattice design with two replications in rows of 4.0 m in length with 0.75 m row-to-row spacing 
and 0.2 m plant-to-plant spacing. At maturity, ears were harvested separately from each plot and the grain yield 
(GY) was recorded on a per plot basis. Final grain yield was calculated after adjusting the moisture content at 
12.5% for each plot and converting it to tons per hectare (t  ha−1).

Phenotyping data analysis. Analyses of variance (ANOVA) for GY at individual locations were carried 
out using META-R (Multi-Environment Trial Analysis in R) software. Genetic (σ2g) and error (σ2e) variance 
components are estimated from ANOVA. Broad-sense heritability (h2) for individual locations was estimated as:

where h2 is the broad-sense heritability, σ2g is the genetic variance, σ2p is the phenotypic variance estimated as 
σ2p = σ2g + (σ2e/r), where σ2e is the error variance and r is number of replications.

Best linear unbiased estimators (BLUEs) were estimated for individual locations as:

where Ybir was the adjusted phenotypic observation for the ith genotype in the bth block within the rth replica-
tion. µ denoted the mean, Gi denoted the fixed effect of the ith genotype and ebir the residual error term. Descrip-
tive statistics including mean, minimum, maximum and least significant difference (LSD) were also generated 
using standard procedures implemented in METAR. Best linear unbiased estimators (BLUEs) were used for 
GWAS.

HTAM panel genotyping. DNA extraction was done following the modified CTAB method (CIMMYT 
Applied Molecular Genetics Laboratory, 2003), from 3 to 4 week young leaves of each inbred line in the HTAM 
panel raised for test-cross development. Single nucleotide polymorphisms (SNPs) were generated through GBS 
v2.7 using Illumina Hi-seq 2000/2500 at the Institute for Genomic Diversity, Cornell University, Ithaca, NY, 
USA. The physical coordinates of GBS SNPs were derived from AGPv2. A total of 955,690 SNPs were gener-
ated after imputing the missing data points by accepting a 5% mismatch with the closest neighbor in small SNP 
windows across the entire maize database (~ 22,000 Zea samples). The criteria for filtering SNPs for GWAS, 
PCA (principal component analysis) and LD (linkage disequilibrium) analysis were based on Suwarno et al.20 
with slight modifications. SNPs were filtered based on a call rate (CR) > 0.7 and with a minor allele frequency 
(MAF) ≥ 0.03, for association analysis and with CR of ≥ 0.9 and MAF of ≥ 0.1% for principal component analysis 
(PCA).

Genome-wide association studies (GWAS). A total of 955,690 SNPs obtained for the HTAM panel 
after imputation, were further filtered using the multiple selection criteria (as described above in the HTAM 
panel genotyping section) and used for GWAS analysis. The association between the filtered SNPs and the trait 
of interest (GY) was detected by employing a Mixed Linear Model (MLM) in the SNP and Variation Suits v8.6.0 
software (GoldenHelix, Inc., Bozeman, MT, www. golde nhelix. com). GWAS was conducted for individual loca-
tions by MLM statistics in which the kinship relationship matrix (K) and population structure matrix (Q-based 
on the first 10 PCAs) were considered to correct for false positive or spurious associations related to familial 
relatedness. Marker-trait association (MTA) with a p value threshold of ≤ −  10–5 was considered as significant 
association. Fitness of the model was determined by observing the Q–Q (quantile–quantile) plot ****(Supple. 
Figure 1), the plots of observed –log10 p values versus expected –log10 p values under the null hypothesis that 
there is no association between the marker and the phenotype.

h2 = σ 2g/σ 2p

Ybir= µ+Gi + Rr + Bbr + ebir

Table 1.  Details of the locations and descriptive statistics for grain yield (t  ha−1) of HTAM panel testcrosses 
evaluated under heat stress. h2 broad-sense heritability, LSD least significant difference, σ2g genotypic variance, 
σ2e error variance. ***,**,*Significant at p < 0.001, 0.01 and 0.05.

Locations Latitude and longitude Year Entries h2 Mean Min Max LSD (5%) σ2g σ2e F-Value

B’Gudi-1 16°.73′N; 76°.79′E 2013 290 0.62 2.77 1.26 4.36 1.86 0.74*** 0.90 1.88

Ludhiana 30°.99′N; 75°.74′E 2013 290 0.50 3.61 1.99 5.26 2.38 0.75** 1.48 1.54

Nepalgunj 28°.05′N; 81°.61′E 2013 290 0.36 2.25 1.54 3.22 1.60 0.19*** 0.67 1.30

Raichur 16°.22′N; 77°.38′E 2013 335 0.44 2.48 1.71 3.60 2.41 0.39*** 1.51 1.27

Beijenki 18°.25′N; 79°.02′E 2014 420 0.53 2.56 1.15 4.87 2.32 0.80*** 1.40 1.60

B’Gudi-2 16°.73′N; 76°.79′E 2014 285 0.69 3.19 1.27 5.49 2.23 1.43*** 1.30 2.18

Hyderabad 17°.51′N; 78°.27′E 2014 479 0.61 3.65 2.20 5.24 1.72 0.61*** 0.77 1.84

Jalandhar-1 31°.32′N; 75°.57′E 2014 471 0.49 4.63 3.23 5.51 2.03 0.35*** 1.08 1.34

Jalandhar-2 31°.32′N; 75°.57′E 2014 435 0.41 6.81 5.42 8.06 2.53 0.59*** 1.67 1.37

http://www.goldenhelix.com
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Linkage disequilibrium analysis. Linkage disequilibrium was estimated using 43,705 SNPs filtered from 
the total SNPs with a CR of > 0.9 and MAF of > 0.3. The extent of genome-wide linkage disequilibrium was esti-
mated based on adjacent pairwise  r2 values and the physical distance among the  SNPs21 using the ‘nlin’ function 
in  R22. Average pairwise distances in which LD decayed at  r2 = 0.2 and  r2 = 0.1 were then calculated based on the 
model given by Hill and  Robertson23.

Haplotype trend regression (HTR) analysis. Haplotype trend regression takes one or more blocks of 
markers and estimates haplotypes for each block of markers which was then regressed on by-sample haplotype 
probabilities against a dependent variable. Haplotype blocks were detected based on the block-defining algo-
rithm to minimize historical  recombination24 from significantly associated SNPs identified at each location. 
Haplotype frequency was estimated using 50 EM iterations, an EM convergence tolerance of 0.0001 and a fre-
quency threshold of 0.01. In addition to the haplotype blocks detected using the algorithm, the single variant 
SNPs were also included for further analysis. Trend regression analysis of the haplotypes and SNPs was carried 
out based on a stepwise regression of the grain yield with the pre-estimated haplotypes with forward elimina-
tion. The significant haplotypes blocks were finalized based on the Bonferroni p value cutoff of ≤  10–2 and False 
Discovery Rate (FDR) p value cutoff of ≤  10–3.

Results
Performance of the HTAM panel TC under heat stress. Genotypic variation for grain yield was sig-
nificant at all the locations, with heritability ranging between 0.44 at RA and 0.69 at BG-2 (Table 1). Mean grain 
yield under heat stress ranged from 2.25 t  ha−1 at NG to 6.81 t  ha−1 at JA-2. Maximum grain yield ranged from 
3.22 t  ha−1 (NG) to 8.06 t  ha−1 (JA-2), whereas minimum grain yield ranged from 1.15 t  ha−1 (BJ) to 5.42 t  ha−1 
(JA-2) (Table 1). Apart from the lowest grain yield, NG expressed the least variation between maximum and 
minimum yields in the trial (1.68 t  ha−1) indicating that this location experienced the most severe heat stress, 
followed by RA, the second lowest yielding location with narrow variability (1.89 t  ha−1). Among nine environ-
ments, BG-2 was found to be the best location in terms of expressing genotypic variability, with a 4.22 t  ha−1 dif-
ference between maximum and minimum yields at the location with 3.19 t  ha−1, the mean yield of the trial. The 
correlation between grain yield at locations ranged from − 0.198 and maximum of 0.390 (Table 2). Notably none 
of significant  R2 value are ≥ 0.5. Out of 36 correlations combinations calculated among locations across 2 years, 
 R2 values for 25 combinations were significant, including two negative correlations. Among the 19 positively 
correlated locations, except four combinations—i.e. between NG and BG1, NG with BG2 and HY and BG2 and 
JA1, all other significant correlations were found between locations with similar VPD regimes during late veg-
etative and reproductive stage (Supple. Table 2). The two negatively significant correlations were noted between 
locations with different VPD regimes.

GWAS results. In total, 955,690 GBS SNPs were identified for the panel. Principal component analysis 
using genome-wide markers revealed only a moderate population structure (Fig. 1). The first two components 
explained 32.30% variance. Upon imposing the selection criteria of a minor allele frequency (MAF) of 0.3 and 
a call rate of 90%, a sub-set of SNPs was shortlisted to 43,705 SNPs, which were used for Linkage Disequilib-
rium (LD) decay estimation. The LD decay was 4.76 kb at  r2 of 0.2 and 13.72 kb at  r2 of 0.1 (Fig. 2). To carry 
out the association analysis, the total number of SNPs were filtered based on a call rate of 70% and an MAF of 
0.03. The number of SNPs used for GWAS varied from 281,268 SNPs to 289,061 SNPs, as in each location the 
number of test crosses evaluated varied from 290 to 479 (Table 3). A total of 269 significantly associated SNPs 
were identified from nine locations at the p value threshold of ≤  10–5 (Fig. 3, Supple. Table 3). The proportion 
of variation explained ranged from 3.3 to 7.84%, with an average of 4.75%. The number of significantly associ-
ated SNPs for each location ranged from 44 in BG-1 to 21 in RA (Table 3). Out of the total significant SNPs, the 
maximum number of SNPs were identified on chromosome 9 (50 SNPs) and the minimum number of SNPs 
were in chromosome 7 (12 SNPs) across locations. The p-value threshold of the significantly associated SNPs 
ranged from 8.08 ×  10–7 to 9.96 ×  10–5. Highly significant SNPs were found in the HY location on chromosome 3, 

Table 2.  Correlation between grain yield at different locations under heat stress. ***,**,*Statistical significance 
at p < 0.10, 0.01 and 0.05.

Year Locations

2013 2014

BG1 LU NG RA BJ BG2 HY JA1 JA2

2013

BG1 1.000

LU 0.102 1.000

NG 0.390*** 0.290*** 1.000

RA 0.293*** 0.153** 0.351*** 1.000

2014

BJ 0.226*** 0.145* 0.197** 0.118* 1.000

BG2 0.241*** 0.064 0.215*** 0.211** 0.016 1.000

HY 0.128* 0.065 0.205*** 0.124* 0.282*** 0.214*** 1.000

JA1 0.087 0.126* 0.126* 0.090 − 0.118** 0.098* − 0.010 1.000

JA2 0.040 0.198** 0.125* 0.054 − 0.198*** 0.043 0.018 0.281*** 1.000
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viz., S3_157585702, S3_157585709 and S3_157585667. A total of 175 SNPs were found within 140 unique gene 
models.

Haplotype trend regression (HTR) analysis. In the present study, significant SNPs identified in each 
location totaled 269 SNPs; they are specific to the location, as none of the SNPs were common across the loca-
tions. To make a consensus of the individual location analysis, haplotype trend regression analysis was car-
ried out involving all the 269 SNPs to form the haplotype blocks and regressed against the individual location 

Figure 1.  Grouping of accessions of HTAM panel based on first two Principal components.

Figure 2.  Linkage disequilibrium (LD) decay in the HTAM panel.
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grain yield. From each location, individual SNP variants or haplotype blocks with bonferroni p value <  10–2 
and false discovery rate (FDR) p value of <  10–3 were selected. The analysis resulted in 26 haplotype blocks in 
8 chromosomes (except in chromosomes 1 and 7) and 91 single variant SNPs did not form part of haplotype 
blocks (Supple. Table 4). The proportion of variance explained by haplotype/SNP variants ranged between 3.10 
and 18.24%. Among these, 13 variants were found to be significant in more than one location (Table 4), which 
included 5 haplotype blocks and 8 single SNP variants. Notably the SNP variant SNP3- S5_24337729 was found 
to be significant in 5 locations (Table 5), viz., LU, NG, BJ, BG-2 and HY followed by Haplotype Hap-9.1 located 
at 26 Mb on chromosome 9, which was found to be significant in three locations, viz., BG-1, LU and BJ. All the 
other variants occurred in at least 2 locations.

Discussion
Studies have highlighted the potential advantage of incorporating heat with or without drought tolerance into 
maize germplasm; this has the potential to offset predicted yield losses in current and future climatic scenarios in 
South Asia, compared to the current high yielding but heat stress-vulnerable maize varieties that are extensively 
grown in the lowland  tropics25. Heat stress tolerance is a relatively new trait added to the product profile of the 
maize breeding pipeline for the lowland tropics in Asia. A limited success was achieved by breeders over the 
period by relying on the traditional breeding approaches of selecting tolerant lines based on phenotype, despite 
the known problems due to genotype x environment interaction, low heritability of grain yield under stress, 
etc.26–28. The integration of new molecular breeding approaches and methodologies has helped to understand 
the genetic basis of the plant response to stress and make informed selection decisions and introgression of heat 
tolerance into elite genetic  backgrounds29–31. In the present study, GWAS was carried out in the HTAM panel 
phenotyped for grain yield under reproductive stage heat stress at nine locations in South Asia. Heat stress during 
flowering is known to have a negative impact on pollen viability and silk  receptivity32–35 and cause a decrease in 
 photosynthesis36, which eventually affects grain yield, as evident from the mean and range of grain yield in all 
locations (Table 1). Grain yield at different locations were weakly correlated as none of the correlation coefficient 
values were ≥ 0.50 (Table 2) and therefore biologically not  meaningful37. These weak correlations indicate strong 
genotype by environment interaction effects under heat stress due to different VPD regimes at Tmax at different 
 locations12 that resulted in significantly different phenotypic expression in terms of grain yield under heat stress.

Though the GWAS of the panel was carried out with > 280 K SNPs, accuracy of the association analysis was 
affected by several genetic and non-genetic  factors38. LD decay is the key factor among them. In the present 
HTAM panel, the LD decay was 4.76 kb at  r2 = 0.2 and 13.72 kb at  r2 = 0.1. This result is in agreement with vari-
ous CIMMYT association mapping panels of tropical/sub-tropical germplasm for abiotic and biotic stress and 
nutritional quality  traits39–41. The LD decay distance is shorter in tropical and sub-tropical lines than in temper-
ate lines because of their diverse nature and a higher number of rare  alleles42, which result in obtaining high 
mapping  resolution17,43.

In the present study, a total of 269 significantly associated SNPs were identified at p value <  10–5 (Fig. 3). Of 
269 SNPs, 175 SNPs (i.e., 65.05% of the SNPs) were within the 140 unique gene models. Among the SNPs within 
the gene models, SNPs S1_283602921, S2_184967723, and S5_182091381 on chromosomes 1, 2 and 5 were in 
the gene model GRMZM2G065374/Zm00001d034298, and GRMZM2G137426/ Zm00001d017138 coding for 
bHLH47 and bHLH128 genes, respectively. In general, bHLH (basic-Helix-Loop-Helix) transcription factors 
(TFs) are involved in regulating various abiotic stresses like drought and salinity, along with biological pro-
cesses such as plant development, flavonoid biosynthesis, flowering and  photosynthesis44–46. Similarly, the SNP 
S5_5626614 on chromosome 5 and SNPs S1_281635911, S3_2629620, S5_191376812 on chromosomes 1, 3 and 
5 were within the gene models GRMZM2G386273/Zm00001d013172, GRMZM2G028151/Zm00001d034204, 
GRMZM2G142179/Zm00001d039324 and GRMZM2G057386/Zm00001d017466 coding for bZIP55, EREB107, 
EREB184 and EREB50, respectively. The bZIP (basic lucine zipper) and EREB TFs play a critical role in myriad 
biological functions such as cell elongation, organ and tissue differentiation, root growth, plant senescence and 
light  response47,48. Apart from these biological functions, these TFs respond to various abiotic stresses like cold, 
drought and  salt49, and enhance the tolerance of plants by altering or reprogramming the various metabolic pro-
cesses. It has also been reported that bHLH genes interact with bZIP and MYB drought tolerant  genes50,51. The 

Table 3.  Number of SNPs used for GWAS and PCA analysis and numbers of marker-trait associations (MTA) 
for grain yield under heat stress at individual locations.

Locations
Number of SNPs used 
for GWAS

Number of SNPs used 
for PCA No of entries tested

Significant MTAs at 
P ≥  10–5

Significant MTAs at P 
value cut off*

BG-1 289,060 124,496 290 44 19 (5.02 ×  10–05)

LU 289,060 124,496 290 29 13 (5.02 ×  10–05)

NG 289,060 124,496 290 28 9 (5.02 ×  10–05)

RA 288,826 124,832 335 20 8 (4.66 ×  10–05)

BJ 281,901 115,936 420 23 9 (4.11 ×  10–05)

BG-2 289,061 124,496 285 25 12 (4.08 ×  10–05)

HY 281,268 113,263 479 38 24 (3.96 ×  10–05)

JA-1 282,186 114,654 471 40 28 (6.09 ×  10–05)

JA-2 286,786 121,597 435 23 14 (6.05 ×  10–05)
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SNP S3_178992082 on chromosome 3 is within the gene model GRMZM2G449033/Zm00001d042843 and codes 
for the na1 (nana plant1) gene. Similarly, S9_122089710 on chromosome 9 and S2_1035863 on chromosome 2 
are within the gene models GRMZM2G077495/Zm00001d047250 and GRMZM2G064212/Zm00001d001790 
that code for PLATZ14 and ATG4 genes, respectively. Reports state that na1 is an important gene in the brassi-
nosteroid biosynthetic pathway, which plays an important role in internode elongation and sex determination in 
tassel and silk  primordia52. Similarly, in maize, the high energy consuming processes are endosperm development 
and grain filling in which the PLATZ protein interacts with the RNAPIII subunits to regulate the transcription of 
many transfer RNAs (tRNAs) and 5S ribosomal RNA (5S rRNA)53. Autophagy related proteins are the primary 

Figure 3.  Genome-wide association analysis and significant marker-trait associations for grain yield under heat 
stress at different phenotyping locations.
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route for nutrient recycling in plants and become critical during nitrogen stress and under suboptimal field 
conditions that severely impact maize productivity.

Of all the candidate genes identified in the present study, 51 SNPs/region were reported in previous GWAS 
and QTL studies. In the present study eight putative candidate gene regions were identified: two putative can-
didate gene regions for grain yield under heat stress, two for grain yield under drought stress, two for days to 
50% anthesis under heat stress, one each for days to 50% anthesis under drought and combined drought and 
heat stress reported by Yuan et al.17 (Supple. Table 3). In the process of improving grain yield under abiotic stress 
conditions, stress-adaptive secondary traits with high heritability and good correlation with grain yield under 
stress could improve the efficiency and success of the breeding  program54. In the present study, a total of 13 SNPs 
(Supple. Table 3) were found within the QTL regions of heat stress-related secondary trials like leaf firing (11 
SNPs), leaf blotching (2 SNPs) and tassel blast (1 SNP)55. Similarly, 16 SNPs (Supple. Table 3) were found within 
QTL regions for heat susceptibility index (HSI) for grain yield (15 SNPs) and HSI for leaf  scorching56. Apart 
from the heat stress studies, few of the SNPs were previously reported for other abiotic stresses like drought and 
waterlogging stress. The SNP S10_25666798 within the candidate gene GRMZM2G037378/Zm00001d023885 
was reported for its association with rooting depth under drought  stress39, and a total of 20 SNPs were found 
within the QTLs reported for grain yield under waterlogging  stress57. SNPs within various gene models, which 
had biological functions related to stress tolerance mechanisms, and the SNPs that were in previously reported 
functional and QTL regions can be further validated, re-sequenced to identify causal mutations and the most 
favorable alleles in order to develop simple PCR-based markers for  MAS58,59.

Table 4.  Trend regression analysis using significant SNPs and haplotype blocks for grain yield under heat 
stress conditions.

Haplotype block/
SNPs Chromosome Markers used

Number of 
haplotypes P-Value R2 Bonferroni P Favorable alleles

SNP-1 1 S1_177613739 2 1.14E−04 3.68E−02 2.77E−02 G

SNP-2 1 S1_202550281 2 6.06E−07 5.42E−02 1.47E−04 T

Hap_4 4 S4_179804506, 
S4_179804514 2 1.47E−04 5.42E−02 3.57E−02 AT

SNP-3 5 S5_24337729 2 9.32E−08 7.33E−02 2.26E−05 G

SNP-4 5 S5_5626614 2 2.24E−06 6.17E−02 5.45E−04 A

Hap_6 6 S6_164097936, 
S6_164097938 2 6.15E−07 1.10E−01 1.50E−04 TT

SNP-5 7 S7_30875396 2 3.82E−06 4.88E−02 9.27E−04 G

SNP-6 9 S9_152043636 2 2.84E−05 4.32E−02 6.90E−03 C

Hap_9.1 9 S9_26578085, 
S9_26618809 3 1.09E−09 9.16E−02 2.66E−07 TT

Hap_9.2 9 S9_26821739, 
S9_26821740 2 5.24E−05 6.30E−02 1.27E−02 AG

Hap_9.3 9 S9_41360950, 
S9_41517742 2 5.68E−05 7.62E−02 1.38E−02 TC

SNP-7 10 S10_127255564 2 6.28E−06 7.37E−02 1.53E−03 T

SNP-8 10 S10_143169509 2 4.17E−05 3.95E−02 1.01E−02 T

Table 5.  Number of significantly associated SNPs and haplotypes common in two and more locations.

Haplotype block/SNPs Occurrence in number of locations BG-1 LU NG RA BJ BG-2 HY JA-1 JA-2

SNP-1 2

SNP-2 2 ✓ ✓

Hap_4 2 ✓ ✓

SNP-3 5 ✓ ✓ ✓ ✓ ✓

SNP-4 2 ✓ ✓

Hap_6 2 ✓ ✓

SNP-5 2 ✓ ✓

SNP-6 2 ✓ ✓

Hap_9.1 3 ✓ ✓ ✓

Hap_9.2 2 ✓ ✓

Hap_9.3 2 ✓ ✓

SNP-7 2 ✓

SNP-8 2 ✓ ✓



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13730  | https://doi.org/10.1038/s41598-021-93061-7

www.nature.com/scientificreports/

The significant SNPs identified in the present study from 9 locations were unique, except for two SNPs, viz., 
S9_26830815 and S9_26830818, which were significantly associated with the trait in BG-1 and NG. Though none 
of the other SNPs were common across the locations, most of the SNPs between the locations were in proximity 
(Supple.  Table 3) and considered for haplotype trend regression analysis. The haplotype analysis approach con-
siders the natural dependence that exists between SNPs, which is relevant when considering high-density DNA 
sequences. Haplotypes were identified and haplotype frequencies were estimated, followed by trend regression 
analysis across all nine locations. This study helped to identify stable variants significantly associated with grain 
yield under heat stress across locations. Twenty-six haplotype blocks were identified, and 91 single SNP variants 
did not form part of any haplotype blocks (Supple.  Table 4). Twenty-one haplotype blocks were formed with 2 
SNPs, 2 blocks each were formed with 3 and 4 SNPs, and 1 block with 5 SNPs. The haplotype blocks with more 
than two SNPs in strong LDs are more informative than the biallelic SNPs, because of their multiallelic  nature60. 
The higher allelic resolution of identified candidate regions will sustain a more accurate delineation of complex 
marker–trait correlations. The range and mean of phenotypic variance explained were higher than the single 
SNP-based GWAS. Also, 67.4% of the haplotypes in the HTR analysis had more PVEs (the range of difference 
was 0.07–12.22%) than the PVEs based on single SNP-based GWAS. This difference indicates the potential of 
the HTR to increase the PVEs explained for complex traits like grain  yield61.

The identified haplotype blocks were found to be significant at a single location to a maximum of five loca-
tions. A set of 13 variants (5 haplotype blocks and 8 single SNP variants) were found to be significant for grain 
yield under heat stress in two to five locations (Table 5). Notably, the single variant SNP_3 (S5_24337729), which 
was significant across 5 locations, and Hap_6 (S6_164097936, S6_164097938), significant in two locations, were 
found to be within the intervals of two meta QTLs, MQTL5.3 and MQTL6.2, for grain yield and ASI under 
drought and optimal conditions, as reported by Semagn et al.62. These regions are important, as haplotype-based 
analysis is useful for fine mapping, marker-assisted selection and precise discovery of new genes responsible for 
heat tolerance, as well as for overcoming the biallelic limitation of single SNP-based  analyses63,64. In the present 
study, the genomic regions identified based on individual location GWAS and haplotype trend regression analysis 
will be increasingly important in future post-genomic approaches for precise selection of environmentally resil-
ient cultivars and to improve resilience of future cultivars to extreme weather conditions such as heat.

Conclusion
The present study identified genomic regions based on location-wise GWAS conducted for grain yield under heat 
stress in nine locations across South Asia, followed by HTRs that are robust and stable across locations with a 
range of heat stress regimes. Validation of these genomic regions in breeding populations followed by introgres-
sion of these common genomic regions into elite genetic backgrounds can be used in developing new genera-
tions of maize varieties with stable performance under a range of heat stress environments. The trait-associated 
markers obtained from this study, in the growing quantity of pan-genome sequence data, can help in the precise 
selection of resilient cultivars for heat stress. Further, the variants identified in this study for grain yield under 
heat stress can be used as covariates in prediction models in GS approaches for increasing prediction accuracy.
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