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Abstract: Throughout the several-hundred-year-long history of the concept of strength, inaccurate
material strength as a result of the size effect and the inconsistency of strength theories have been two
continuous and challenging issues, and have even been taken to be inherent attributes of material
strength. Applying the structural stressing state theory and method, this study experimentally
investigates the uniaxial load-bearing process of concrete specimens and reveals their stressing state
mutation features at specific load levels. Exploration of this general feature resulted in the discovery
of essential strength, which is basically without size effect. Then, biaxial and triaxial experiments
with concrete specimens were conducted in order to obtain the results for various combinations of
principal stresses on essential strength. Consequently, according to Yu’s unified strength theory,
the formula for strength of concrete was determined by fitting the relation between the combined
principal stresses and the essential strength, which was verified by experiments carried out using
natural marble specimens. Essential strength could promote the accuracy of strength indices, and
the formula for strength might replace the existing strength theories for brittle materials. The initial
solution of these two classic issues could make a new contribution to Yu’s unified strength theory and
its final goal, promoting related research on material strength and leading to a more rational use of
material strength in practical engineering.
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1. Introduction

Since the concept of strength was proposed by da Vinci in the 1500s and Galileo in 1638, scientists
from around the world have developed up to one hundred theories addressing issues related to
strength. Yu reviewed 1163 references and summarized the research achievements related to strength
theories/criteria since 1638 [1], particularly over the last 100 years [2], and suggested that two issues
had accompanied the concept of strength throughout its history:

The first issue was the inaccuracy of material strength determinations resulting from the specimen’s
size effect (abbr. size effect). Early in the 16th century, da Vinci realized the effect of size on material
strength. Subsequently, researchers were forced to acknowledge that the size effect was unavoidable,
such that it seemed impossible to obtain the accurate strength for a material. This impossibility

Materials 2019, 12, 2685; doi:10.3390/ma12172685 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/1996-1944/12/17/2685?type=check_update&version=1
http://dx.doi.org/10.3390/ma12172685
http://www.mdpi.com/journal/materials


Materials 2019, 12, 2685 2 of 13

was even assumed to be an inherent property of material strength. Accordingly, many countries
have developed individual regulations for obtaining material strength indices and making them
available for related research and engineering applications [3–5]. Thus, it was commonly thought that
research into uniaxial material strength indices had come to an end, and most researchers turned to
other issues related to material strength, such as impact [4], cyclic [6] and tensile/compressive [3,6–8]
performances, and constitutive/failure models [1,9,10] (size effect involved [3]) for various concrete
specimens [1,3,4,6,7,9].

The second issue was that up to one hundred of these strength theories and criteria were basically
inconsistent in terms of forms of expression or physical implications [11,12], and material strength
is certainly related to the complex stress states of unit bodies in reality. Now, the classic and most
commonly applied strength theories or criteria are the 1st–4th strength theories. The 1st and 2nd
strength theories were proposed before 1900, based on Rankine’s strength criterion [11] and Mariotte
and Saint-Venant’s strength criteria [12,13], respectively. During the last century, the 3rd strength
theory was derived from Tresca and von Mises’ strength criteria [14,15], and the 4th strength theory was
derived from von Mises’ strength criterion [15]. One recent achievement was the unified strength theory
proposed based on Yu’s strength criterion [16], which is the closest to the essence of material strength,
as its expression is able to cover the greatest number of strength theories and criteria. However, early
in the 20th century, a number of famous scientists, including Voigt and Mohr, believed that it would be
impossible to develop a single strength theory that would cover various materials [6,15], in other words,
a single strength criterion did not exist for various materials. Until now, it has commonly been taken
for granted that there is no definite relation between material strength and combined principal stresses.

As a result, these two issues have even been regarded as intrinsic attributes of material
strength [9,17–27]. Furthermore, these innate attributes were essentially a result of a common cause:
size effect, i.e., all research on material strength was inevitably carried out taking account of the size
effect. In addition, variations in the manufacture of material and the testing of material strength were
commonly thought to be the reason for inaccuracies in material strength. However, structural stressing
state theory and its applications have led us to investigate these innate attributes as follows:

Essentially, a material strength depends on the maximum uniaxial stress magnitude that the
unit body can withstand [28]. In the existing design codes of concrete, σ was derived based on the
ultimate loads of specimens and included the size effect. However, it is doubtful that this can explain
the effect of the specimen’s size on the material strength, because the strength of any unit body in a
specimen will fail as long as its uniaxial stress reaches the definite value σ, no matter the loading case
or the size of the specimen. The material strength defined by the unit body should be definite and
independent of the sizes and shapes of specimens, like the specific gravity of a substance. It could
be seen from experimental observations of concrete specimens that specimens were severely broken
at their ultimate load, and that most unit bodies were in complex (non-uniaxial) and non-identical
stress states. This fact implies that ultimate loads and yield loads of specimens might be inappropriate
for determining uniaxial material strength [3–5]. The accurate material strength should exist in the
uniaxial load-bearing process of the specimen somewhere and there the unit bodies in the specimen
will lose their identical and uniaxial stress states or their ability to withstand average uniaxial stress.
Hence, this paper experimentally investigates the uniaxial stress process of concrete specimens with
different sizes based on the structural stressing state theory and method, leading to the discovery of
essential strength, basically without a size effect.

Strength theories/criteria have generally been derived based on mechanical models and
mathematical equations with some assumptions, including the material properties and forms of
failure, rather than from totally experimental results. Even for the classic single-shear criterion,
twin-shear criterion and unified yield criteria, a linear and/or incomplete basis has been taken in order
to express material strength with naturally nonlinear properties. Also, although the unified strength
theory could unify strength theories/criteria within a single expression, it expresses the individual
strength criteria through adjustable parameters. The discovery of essential strength implies that there
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should be a definite formula describing the relationship between essential strength and combined
principal stresses. Hence, this study investigates the experimental data of the biaxial and triaxial
stressing processes of concrete specimens using the proposed methods, and obtains the results of
combinations of principal stresses with respect to the essential strength of concrete. Consequently, the
formula for the strength of concrete was determined by fitting the relation between essential strength
and the combination of principal stresses. The formula for strength was verified through biaxial and
triaxial experiments using natural marble specimens.

2. Structural Stressing State Concept and Method

2.1. Concept and Modeling of a Specimen’s Stressing State

The natural law stating that quantitative change leads to qualitative change in a system suggests
that the working behavior of a physical system when encountering an input action will definitely
present a qualitative change in response to the quantitative change [29]. This led to the development
of the structural stressing state theory, which is able to reveal the essential working state features of
structures subjected to a full loading process [30]. This study applies the structural stressing state
concept and method in order to model the load-bearing process of specimens for concrete strength.
In addition, the stressing states of specimens are expressed as the generalized strain energy density
(GSED) distribution mode/pattern of the unit bodies in the specimen [31]. The stressing state mode can
reflect two basic characteristics: (i) the stressing state of the specimen is stable and fixed for a loading
case and within a load magnitude; (ii) the change of the stressing state only corresponds to a specific
load, which is defined as the failure load of the specimen. It needs to be emphasized again that these
two characteristics are embodiments of the natural law that quantitative changes in a system lead to
qualitative changes, rather than accidental or random phenomena. Ordinarily, the stressing state mode
of a specimen is expressed as the vector or matrix S j consisting of GSED values (eij) of all or some
typical measured points to the jth load value F j

S j = [e1 j, e2 j, . . . , enj]
T, ei j =

∫ εi j

0
σi jdε, E j =

∑
ei j (1)

where εi j and σi j are the ith strain and stress values for the jth load F j; n is the number of unit bodies
(or measured points). Correspondingly, the parameter characterizing S j is defined as E j, which is
the GSED sum of the elements in S j. The evolution of E j with load increase will reflect the stressing
state change of the specimen. Actually, the Ej-Fj (abbr. E − F) curve will embody the qualitative
mutation of S j when the quantitative change in Sj reaches a certain extent, which can be detected by
the Mann-Kendall (M-K) criterion below.

2.2. The M-K Criterion

The stressing state mutation feature of the specimen is surely embodied in the curve, which is an
objective law of structural working behavior. However, the empirical or intuitive judgment of mutation
features could be somewhat subjective, or even misleading; therefore, the statistical M-K criterion is
used to detect mutations in the E− F curve. There are two reasons contributing to the choice of the
M-K criterion [32–35]: (i) its function of detecting trend changes is only applicable to identifying the
location at which the specimen’s stressing state mutates; (ii) it is unnecessary for numerical samples to
obey a definite distribution or to be concerned about some abnormal interferences, making it suitable
for experimental data that do not strictly conform to a definite distribution and contain some abnormal
values. Additionally, although the M-K criterion requires the independence of the numerical sequence,
the experimental data of specimens can also be investigated using the M-K criterion. This is because
the relevant and independent ingredients coexist in the response of the specimen, and units far away
from each other have little spatial relevance or mutual effects, resulting in the independence of the
ingredients in the experimental data. Also, the innate randomness in the experimental model and
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material properties leads to some independent ingredients as well. Hence, the stressing state mutation
of the specimen can be detected on the basis of the M-K criterion. The procedure of the M-K criterion is:

For the numerical sequence {E(i)} (the load step i = 1, 2, . . . , n), a statistical quantity dk at the kth
load step can be defined as

dk =
k∑
i

mi(2 ≤ k ≤ n), mi =

{
+1 E′(i) > E′(i)(1 ≤ j ≤ i)
0 otherwise

(2)

where mi is the cumulative number of the samples; “+1” adds one more to the present value if the
inequality on the right side is satisfied for the jth comparison. Calculate the mean value and variance
of the statistical quantity dk

E(dk) = k(k− 1)/4(2 ≤ k ≤ n), Var(dk) = k(k− 1)(2k + 5)/72(2 ≤ k ≤ n) (3)

Then, a new statistical quantity UFk is defined by

UFk =

{
0 k = 1

dk − E(dk)/
√

Var(dk) 2 ≤ k ≤ n
(4)

and the UFk-F curve can be plotted.
For the inverse sequence of {E(j)} (the load step j = n, n − 1, . . . , 1), the same steps from Equation

(2) to Equation (4) are carried out to derive the UBk-F curve.
Finally, the intersection of the UFk-F and UBk-F curves defines the characteristic point of the E-F

curve, i.e., the mutation point of the structural stressing state.

3. Essential Strength of Concrete

3.1. Concrete Specimens and Their Uniaxial Experiment

In accordance with the structural stressing state concept and method described above, this study
conducted uniaxial and compressive experiments using concrete specimens. Cube, prism and cylinder
concrete specimens with different sizes were carefully made to macroscopically embody homogeneous
and isotropic properties, as listed in Table 1. The concrete No. was C40 with sand content: 0.31,
water-cement ratio: 0.32, cement:sand:stone (1:1.117:1.863), curing condition (20 ± 2) ◦C, relative
humidity > 90% and 28d, with reference to the code for design of concrete structures of China [36–46].

Table 1. Concrete specimens made in the uniaxial and compressive experiment.

Cube Specimens (mm)
(Length ×Width × Height)

Prism Specimens (mm)
(Length ×Width × Height)

Cylinder Specimens (mm)
(Diameter × Height)
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At least three specimens with the same size and shape were tested. The experimental apparatus
was set up so that the acting displacement (load) increment would be at a given rate of 1.0 mm/min.
The experiment recorded the displacement at the top side and the cracking profile on the vertical side.
For the concrete specimens that were 150 mm in width or diameter, the vertical and horizontal strains
were also recorded, as the strain gauges could be placed on their vertical sides, as shown in Figure 1a.
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Figure 1. Investigation of the uniaxial stressing states of specimens. (a) The stress state of a prism
specimen on the middle cross-section I-I and the lateral/vertical strain gauges LS/VS; (b) the E − σ1

curve of the concrete specimen and its characteristic points σ1k, σ1s and Ω detected by the M-K criterion,
as well as the average ultimate stress σ1u; (c–e) The characteristic points (Ω) in the E − σ1 curves of
cube, prism and cylinder concrete specimens at their failure loads. Compressive stress is positive here.

3.2. Investigation into the Uniaxial Stressing States of Specimens

For the prism specimen shown as an example in Figure 1a, F j is the resultant force of a uniformly
distributed load acting on the top side of the specimen at the jth load. σ1 is the average stress on the
cross-section I-I at Fj. Using Equation (1), the vertical strains (Figure 1b) measured at the jth load can
be expressed as the GSED values, and their sum is denoted as E to characterize the stressing state of the
specimen. Thus, the E− σ1 curve can be plotted to reflect stressing state evolution. For convenience,
compressive stress is set as scalar (positive sign) here.

Then, the M-K criterion detects the mutation points σ1k, σ1s and Ω in the E− σ1 curve, together
with observing the strain-developing tendency and the cracking profile. σ1k in segment 0~σ1u is the
turning point at which the specimen shifts from a linearly elastic working state to an elastic one. σ1s in
segment σ1k~σ1u is the turning point at which the specimen shifts from an elastic working state to an
elastic-plastic one. In particular, Ω in segment σ1s~σ1u is the turning point at which the specimen shifts
from the elastic-plastic working state to the failure one. According to structural stressing state theory,
Ω is the starting point of the specimen’s failure process, at which the specimen enters the developing
failure state, until it reaches the ultimate state σ1u. It can be observed from the lateral strain σ1 curves
(Figure 1b) that the lateral strains maintain quite a linear increase and do not exhibit any mutations,
even at σ1k and σ1s before Ω, indicating that the specimen maintains a stable uniaxial stressing state.
After Ω, the lateral strains increase sharply, implying that the stable uniaxial stressing state of the
specimen has failed or has changed to another state. Correspondingly, based on the cracking pictures
of the specimen (Figure 1b), it can be seen that only a few tiny cracks occur at Ω; after Ω, the cracks
quickly propagate with load increase, as shown in the crack profiles, to σ1f and σ1u. Similarly, the
E− σ1 curves of the cube and prism specimens with different sizes (unit: mm) can be plotted, and the
M-K criterion is able to distinguish the mutation points (Ω) in the curves, as shown in Figure 1c,d.
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Evidently, the mutation points (Ω) correspond to nearly the same average stress value, around Ω = 35
MPa, with small errors within 0.5 MPa. This evidence suggests that the concrete strength could be
determined basically without size effect if Ω were defined as the concrete strength index.

3.3. Essential Strength of Concrete without Size Effect

Researchers on material strength have been pursuing accurate material strength indices for a
long time. At present, the sizes of the standard specimens for deriving material strength are based
on engineering practice and experimental achievements that have, to a great extent, approached the
essence of material strength. Therefore, the standard specimens make is possible to reflect material
strength at a certain scale, but at present, the inaccurate working state of the specimen is used for
deriving the material strength, leading to a considerable size effect and variation in strength values. As
per the definition, a material’s strength is the maximum uniaxial stress that can be withstood by the
unit [28,47], i.e., the material strength should be the average uniaxial stress of the units in the specimen
at which they lose their consistent and uniaxial stressing states, or enter complex and inconsistent
stress states. However, the existing material strength is derived at the end point of the failure process
of the specimen, where units are in their complex and inconsistent stress states, rather than at the
starting point, where units have only lost their consistent and uniaxial stress states. Typically, the
strength of concrete (σ) is determined using the ultimate load or the limited residual strain of the
specimen, whereby the stress states of the unit bodies are inconsistent or non-identical. As a result, the
σ for the ending points of the E− σ1 curves implies a considerable size effect and degree of variation
(Figure 1c,d). In this study, the failure load of the specimen can be determined by the M-K criterion.
This failure load can be used to derive the concrete’s strength using the small size effect present with the
sizes of standard specimens, i.e., the concrete strength defined by Ω is basically constant (Ω = 35 MPa)
and basically unrelated to the sizes of the specimens (Figure 1c,d). Additionally, Ω causes the concrete
strength to be closer to the essence of material strength, which should be unrelated to the size of the
specimen, like with specific gravity. In other words, the stressing state mutation of the specimen at its
failure load could be small relative to the variation in material structure, specimen configuration and
experimental errors. Therefore, concrete strength should be defined at the failure loads of the specimens
instead of at their ultimate loads, and Ω is referred to as the essential strength. While concrete is a
highly typical brittle material, other brittle materials will have their own essential strengths.

In contrast with the ultimate load of the specimen being used to derive the concrete strength, the
stressing state mutation of the specimens reveals the gap between the failure load and the ultimate
load. Actually, the two ends of this gap are the starting point (the failure load) and the end point (the
ultimate load) in the failure process of the specimen under the uniaxial loading case. The starting point
reflects the maximum uniaxial stress-bearing capacity of a unit body, which can be used to derive the
essential concrete strength, largely without size effect, thus meeting the definition of material strength;
the ending point reflects the maximum complex stress-bearing capacity of a unit body, and can be
used to derive the material strength with the size effect, which does not entirely meet the definition of
material strength.

4. Unified Formula of Strength for Concrete

4.1. Investigation into Biaxial and Triaxial Stressing States of Concrete Specimens

The discovery of essential strength inspired us to think that there might be a definite relation
between essential strength and the combined principal stresses. Accordingly, biaxial and triaxial
experiments were carried out in order to obtain the combinations of principal stresses present at the
failure loads of the concrete specimens. Figure 2a shows the size of the specimens (100 mm × 100
mm × 100 mm) and the loading cases corresponding to the combined principal stresses (compressive
stress is positive). The loading apparatus firstly exerted the given confining forces F2 and F3 on the
vertical sides of the specimen, making it possible to derive the second and third principal stresses Ω2
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and Ω3. Then, based on the active force F1 on the top side of the specimen, the first principal stress
σ1 was derived. σ1 was denoted as Ω1 at the failure load of the specimen. Figure 2a also shows the
combinations of principal stresses (Ω2 = 0, Ω3 , 0) and (Ω2 , 0, Ω3 , 0) at the given confining load
F2 or F3, whereby the number in brackets is the interval of the serial principal stresses Ω2 and Ω3.
The experimental displacements and strains along the three loading directions are applied to plot the
E− σ1 curves for the biaxial stress states (Ω2 , 0, Ω3 = 0) in Figure 2b and for the triaxial stress states
(Ω2 , 0, Ω3 , 0) in Figure 2c,d. The point at about σ1s = 10 MPa is set as the starting point of the
curve segment to apply the M-K criterion, because the load F2 or the loads F2 and F3, initially confined
to the specimen, could cover up the acting effect of F1 (as σ1) until σ1s. For the biaxial experiment in
Figure 2b, the end of the E− σ1 curve is also referred to as σ1u, corresponding to the ultimate load of
the specimen judged from its experimental working state. Thus, from σ1s to σ1u, the mutation points
(Ω1) at the failure loads of the biaxial specimens can be detected using the M-K criterion. In addition,
from the cracking pictures of the specimen, it can be observed that some micro-cracks occur at Ω1

(the picture to Ω1), but the corresponding lateral strain remains at relatively low values, with a stable
increase from σ1s to Ω1. After Ω1, the cracks propagate quickly until the ultimate stressing state of
the specimen (the pictures at σ1f and σ1u). It should be noted that the cracks in the triaxial specimen
propagate until its collapse. However, from σ1u on, the apparatus parts play a considerable constraint
role in the collapsing state of the triaxial specimen, such that the specimen can still stand a little more
load than σ1u, while the corresponding strain increases steeply. So σ1u is still taken as the end of the
E− σ1 curve for the triaxial specimen. Then, from σ1s to σ1u, the M-K criterion detects the failure load
of the specimen together with the judgments of lateral strain and cracking profiles (Figure 2b–d).

Materials 2019, 12, x FOR PEER REVIEW 7 of 14 

× 100 mm) and the loading cases corresponding to the combined principal stresses (compressive 
stress is positive). The loading apparatus firstly exerted the given confining forces 2F  and 3F  on the 

vertical sides of the specimen, making it possible to derive the second and third principal stresses 2Ω  

and 3Ω . Then, based on the active force F1 on the top side of the specimen, the first principal stress 

1σ  was derived. 1σ was denoted as 1Ω  at the failure load of the specimen. Figure 2a also shows the 

combinations of principal stresses ( =2 0Ω , ≠3 0Ω ) and ( ≠2 0Ω , ≠3 0Ω ) at the given confining load 

2F  or 3F , whereby the number in brackets is the interval of the serial principal stresses 2Ω  and 3Ω . 
The experimental displacements and strains along the three loading directions are applied to plot the

-E 1σ curves for the biaxial stress states ( ≠2 0Ω , =3 0Ω ) in Figure 2b and for the triaxial stress states 

( ≠2 0Ω , ≠3 0Ω  ) in Figure 2c,d. The point at about 1s =10 MPaσ  is set as the starting point of the curve 

segment to apply the M-K criterion, because the load 2F  or the loads 2F  and 3F , initially confined to 

the specimen, could cover up the acting effect of F1 (as 1σ ) until 1sσ . For the biaxial experiment in 

Figure 2b, the end of the -E 1σ  curve is also referred to as 1uσ , corresponding to the ultimate load of 

the specimen judged from its experimental working state. Thus, from 1sσ  to 1uσ , the mutation points 

( 1Ω ) at the failure loads of the biaxial specimens can be detected using the M-K criterion. In addition, 

from the cracking pictures of the specimen, it can be observed that some micro-cracks occur at 1Ω  

(the picture to 1Ω ), but the corresponding lateral strain remains at relatively low values, with a stable 

increase from 1sσ  to 1Ω . After 1Ω , the cracks propagate quickly until the ultimate stressing state of 

the specimen (the pictures at f1σ  and u1σ ). It should be noted that the cracks in the triaxial specimen 

propagate until its collapse. However, from u1σ on, the apparatus parts play a considerable constraint 
role in the collapsing state of the triaxial specimen, such that the specimen can still stand a little more 
load than 1uσ , while the corresponding strain increases steeply. So 1uσ  is still taken as the end of the 

-E 1σ  curve for the triaxial specimen. Then, from 1sσ  to 1uσ , the M-K criterion detects the failure load 
of the specimen together with the judgments of lateral strain and cracking profiles (Figure 2b–d). 

 
 

(a) (b) 

  
(c) (d) 

Figure 2. The E− σ1 curves and the characteristic points. (a) The triaxial stress state of a specimen. (b)
The E− σ1 curves of the biaxial specimens with their characteristic points σ1s and Ω1, and the lateral
strain σ1 curve (Ω2 = 10 MPa, Ω3 = 0) with the characteristic points (Ω1, σ1u and σ1u close to Ω1) to
their cracking profiles. (c,d) The E− σ1 curves of the triaxial specimens, and two lateral strain-σ1 curves
(Ω2 = 9 MPa, Ω3 = 8 MPa; Ω2 = Ω3 = 9 MPa) with their characteristic points (Ω1, σ1c).

Thus, a combination of principal stresses (Ω1, Ω2, Ω3) can be obtained at the failure load of the
biaxial or the triaxial specimen, i.e., Ω2 and Ω3 are derived from the given confining forces F2 and
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F3, and Ω1 from the failure load of the specimen. Table 2 lists the typical combinations of principal
stresses (compressive stress is positive). The biaxial combined principal stresses are Ω1 , 0, Ω2 , 0
and Ω3 = 0; the triaxial combined principal stresses are Ω1 , 0, Ω2 , 0 and Ω3 , 0. Furthermore,
Table 2 also lists the data for verifying the following formula for strength.

Table 2. Combined principal stresses and verification data (MPa).

Ω1 Ω2 Ω3 Ωr
a efit

b Ω1 Ω2 Ω3 Ωr efit

37.53 10 0 35.03 0.09% 44.08 24 4 35.08 0.23%
38.05 14 0 34.55 −1.29% 45.05 28 4 35.05 0.14%
39.00 18 0 34.5 −1.43% 45.05 16 8 35.05 0.14%
40.35 22 0 34.85 −0.43% 46.01 20 8 35.01 0.03%

-given 26 0 35.47 1.34% 47.03 24 8 35.03 0.09%
41.95 30 0 34.45 −1.57% 52.04 20 16 35.04 0.11%
43.43 34 0 34.93 −0.20% 44.03 9 9 35.03 0.09%
40.03 8 4 35.03 0.09% 47.17 12 12 35.17 0.49%
41.41 12 4 35.41 1.17% 50.03 15 15 35.03 0.09%
42.04 16 4 35.04 0.11% 53.04 18 18 35.04 0.11%
43.03 20 4 35.03 0.09% 56.06 21 21 35.06 0.17%

Note: a Ωr = Ω1 −Ω2/4− 3Ω3/4 is the equivalent stress of Equation (8), which will be derived in the next section;
b efit = [(Ωr −Ω)/Ω] × 100% is the error between Ωr and Ω = 35 MPa (the essential strength of concrete), which
will be described below.

4.2. The Formula for the Relationship between Essential Strength and Combined Principal Stresses

The material strength under a combination of principal stresses must be the same as the uniaxial
material strength, i.e., the equivalent stress of the combined principal stresses must be equal to the
uniaxial material strength [1,38]. Table 2 provides the data to fit/formulate the relation between the
essential strength and the corresponding combined principal stresses. Here, it should be stated that
according to material mechanics, the concrete could be a macroscopically homogeneous and isotropic
material; therefore, the direction of the main axis for material strength needs to be consistent with
the first principal stress Ω1 or the equivalent stress Ωr. With reference to the unified expression of
equivalent stress in Yu’s unified strength theory [1], Equation (5) is defined for expressing the general
relationship between equivalent stress and essential strength

Ω1 − aΩ2 − bΩ3 = Ω (5)

in which a and b are the coefficients weighing the contributions of Ω2 and Ω3 to the equivalent stress
Ωr = Ω1 − aΩ2 − bΩ3 in the direction of Ω1; Ω is the essential strength and has the same sign as Ω1.
Ωr represents the collective effect of three principal stresses (Ω1, Ω2, Ω3) on the essential strength (Ω).
In fitting Equation (5) using the data in Table 2, any two different combinations of principal stresses
can be substituted into Equation (5) in order to form simultaneous equations, and these equations can
then be solved in order to obtain a and b. The fitted a and b values range from 0.2 to 0.3 and from 0.7
to 0.8, respectively. The averages of a and b are 1/4 and 3/4, with fairly small variations of −0.0032
and 0.0047. The weight coefficients a and b are basically constant for the essential strength and the
combined principal stresses. Thus, a precise and definite relationship between essential strength (Ω)
and combined principal stresses (Ω1, Ω2, Ω3) can be defined as

Ω1 −
1
4

Ω2 −
3
4

Ω3 = Ω (6)

In Equation (6), both Ω1 (Ωr) and Ω can be compressive or tensional. Equation (6) adopts the
following rule for sorting principal stresses: compressive cases use a positive sign for compressive
principal stresses, and a negative sign for tensile principal stresses. Contrariwise, tensional cases take a
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positive sign for tensional principal stresses and a negative sign for compressive principal stresses.
Thus, the relationship Ω1 ≥ Ω2 ≥ Ω3 is applicable in cases of compression and tension.

Equation (6) is referred to as a formula for strength for two reasons: (1) the formula is directly
derived by fitting experimental data, without the reliance on assumptions (elastic or plastic basis, type
of material, type of failure) generally necessary for a strength theory; and (2) importantly, the essential
strength and the formula for strength are derived from the consistent stressing state features (mutation)
of the specimens, which is the embodiment of the natural law stating that quantitative change in a
system will lead to qualitative change in that system.

5. Verification of the Formula of Strength

5.1. The Definite Relation between Uniaxial Strength and Shear Strength

There are two fundamental material strengths, uniaxial (tensional or compressive) strength σ and
shear strength τ. However, the relation between σ and τ has thus far been uncertain, and this is a
classic issue. Equation (6) addresses this issue on the basis of essential strength.

For a pure shear case for a unit body, if the shear stress is τ, the principal stresses σ1 = τ, σ2 =

0 and σ3 = −τ [48]. Then, substituting the combined principal stresses into the left of Equation (6)
results in the equivalent stress σr = 7τ/4. When σr reaches Ω (essential strength), τΩ at this moment is
defined as the shear strength. Thus, a definite relation can be derived as

τΩ =
4
7

Ω (7)

Equation (7) evidently presents two essential characteristics of material strength: (i) the most
fundamental material strength is Ω or τΩ, as they can be definitely expressed by each other, implying
the unification of Ω and τΩ for a material; (ii) τΩ is also essential strength according to essential
strength Ω.

5.2. Rationality of Weight Coefficients in the Formula for Strength

In Equation (6), the weight coefficients a and b satisfy a + b = 1, which is not the preset result,
but rather the one fitted by the experimental data (Table 2). The coefficients in Equation (6) show
the homogeneous contributions of Ω2, Ω3 and their interactions (Ω3) to Ωr by the identical weights
(1/4), i.e., Ωr = Ω1 − [(1/4)Ω2 + (1/4)Ω3 + (1/4)Ω3 + (1/4)Ω3] = Ω1 − (1/4)Ω2 − (3/4)Ω3. Any
other weight coefficients apart from a = 1/4 and b = 3/4 are not able to reflect the homogeneity.
Figure 3 explains why Ω3, rather than Ω2, embodies the contribution of the action of Ω2 on Ω3 (or Ω3

on Ω2) to the equivalent stress Ωr. This is because Ω2 is greater than Ω3, and their difference is not of
sufficient scale whereby Ω3 would be able to impose its effect on Ω2 or Ω2 could impose its effect on
Ω3. Therefore, the interaction between Ω2 and Ω3 has the same scope, depending on that with the
lower value, complying with Newton’s third law of action and reaction.

In the case of Ω1 = Ω2 = Ω3, a physical phenomenon occurs in which strength failure cannot
take place (Ωr = 0), no matter how great the three equal principal stresses are. Equation (6) reflects
this physical phenomenon by means of weight coefficients (a + b = 1); otherwise, as long as (a + b) , 1,
Equation (6) fails with respect to this physical phenomenon. In the case of Ω+

2 = −Ω−3 (where “+” and
“−” indicate tensional and compressive principal stresses), the weight coefficients a = 1/4 and b = 3/4
reflect Ω+

2 and Ω−3 having a nonzero contribution to Ωr, which compensates for the sense that Ω+
2 and

Ω−3 should have a zero contribution to as a result of Ω+
2 = −Ω−3 (e.g., the 2nd strength theory). In fact,

the contributions of Ω+
2 and Ω−3 to offset each other, but the contributions of the interaction between

Ω+
2 and Ω−3 to cannot offset each other. Therefore, the fitted coefficients fully reflect both the physical

and quantitative rationalities of how and how much Ω2 and Ω3 contribute to the equivalent stress Ωr.
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It should be noted that Equation (6) is in line with Yu’s unified strength theory and its final goal.
In fact, Yu’s unified strength theory has touched this goal, since Equation (6) simply reflects a case
in which α = 1 and β = 1/3 in Yu’s theory. Furthermore, Equation (6) has another theoretical basis:
structural stressing state theory. Actually, Equation (6) is the result achieved by combining both Yu’s
theory and structural stressing state theory, and is a typical result of interdisciplinary science.

5.3. Verification of Equation (6) with Natural Marble

To verify the accuracy of Equation (6), Table 2 lists the equivalent stresses (Ωr) on the left side of
Equation (6), and then compares their differences (efit is defined in Table 2) from the essential strength
of concrete (Ω = 35 MPa). Equation (6) has an average error of only 0.02% (the average of the efit

values).
To verify whether Equation (6) is also valid for use with other brittle materials or not, this study

conducted uniaxial and triaxial experiments with natural marble specimens and then obtained the
essential strength and the combined principal stresses (Table 3). In Table 3, compressive stress is also
positive; the essential strength of natural marble is Ω= 130.60 MPa; the size of the specimens is 50 mm
× 50 mm × 100 mm; the sorting of the principal stresses adopts the rule in Equation (6). Evidently, even
though the brittle marble specimens have considerable natural defects with respect to their material
properties, the experiment also validates Equation (6), with an average error and a maximum error of
−1.21% and 3.35%, respectively. This implies that Equation (6) has great applicability and omnipotence
for brittle materials.

Table 3. Combined principal stresses of natural marble specimens and verifying data (MPa).

Ω1 Ω2 Ω3 Ωr efit Ω1 Ω2 Ω3 Ωr efit

136.9 10 10 126.90 −2.83% 165.15 60 30 127.65 −2.26%
149.92 40 10 132.42 1.39% 179.72 100 30 132.22 1.24%
154.86 80 10 127.36 −2.48% 186.77 150 30 126.77 −2.93%
163.73 120 10 126.23 −3.35% 171.30 45 45 126.30 −3.29%
171.62 150 10 126.62 −3.05% 191.31 100 45 132.56 1.50%
178.83 180 10 126.33 −3.27% 202.36 150 45 131.11 0.39%
148.92 20 20 128.92 −1.29% 214.97 200 45 131.22 0.47%
160.14 70 20 127.64 −2.27% 202.00 68 68 134.00 2.60%

5.4. Qualification of Equation (6) as the Formula for Strength

Now, the basic characteristics of Equation (6) can be summarized based on the verifications above.
Equation (6) is obtained directly from experimental data, without the use of the preset assumptions on
which the existing strength theories are based, and with only the use of suitable materials (homogeneous
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and isotropic materials). Therefore, Equation (6) could be an expression of the true physical properties
of material strength and a reflection of the objective laws related to material strength. In other words,
because the common stressing state mutation feature of specimens complies with the natural law
stating that quantitative changes within a system will lead to qualitative changes within that system,
both essential strength and Equation (6) naturally have a universality and generality that is suitable
for brittle materials, as verified using brittle natural marble. Furthermore, the weight coefficients of
Equation (6) embody the homogeneous and symmetrical contributions of principal stresses to the
equivalent stress. In addition, the equivalent stress in Equation (6) only relates to the principal stress
state, and does not include any material failure parameters related to the size effect. Meanwhile,
equivalent stress and essential strength, with explicit physical meanings, are on the two sides of
Equation (6), and their relation is described in a simple expression without any uncertain coefficients.
Additionally, Equation (6) is generally conservative in quantity, since the essential strength is always
equal to the equivalent stress, whose quantitative value is as high as the essential strength value.
These characteristics of Equation (6) reflect the objectivity/truth, universality/generality, omnipotence,
absoluteness/definiteness, homogeneity and symmetry, stability, simplicity and conservation of a
physical law [49–52]. Therefore, Equation (6) can be qualified as the unified formula for the strength
for brittle materials. As for whether or not Equation (6) is suitable for various materials (as a law of
strength), further verification is required.

Accordingly, a general strength condition for brittle materials corresponding to Equation (6) can
be set as

Ω1 −
1
4

Ω2 −
3
4

Ω3 ≤ [Ω] (8)

in which [Ω] is the allowable essential stress.

6. Conclusions

Through the experimental investigation into the uniaxial stressing state of concrete specimens, the
essential strength of concrete, which is essentially without the size effect, was revealed based on the
failure loads of the specimens with respect to their general stressing state mutation features, which are
an embodiment of the natural law that quantitative change in a system will lead to qualitative change
in that system.

Then, biaxial and triaxial experiments of concrete specimens were carried out to obtain the data
for combined principal stresses at the failure loads of specimens. Based on the data, the formula
for strength was determined, revealing a definite relation between essential strength and combined
principal stresses for concrete:

Ω1 −
1
4

Ω2 −
3
4

Ω3 = Ω

The experiments for the brittle natural marble validated the formula for strength. Correspondingly,
a general strength condition can be proposed as:

Ω1 −
1
4

Ω2 −
3
4

Ω3 ≤ [Ω]

Furthermore, the definite relation between the essential uniaxial strength and the essential shear
strength is achieved from the formula for strength:

τΩ =
4
7

Ω

In conclusion, essential strength and the formula for strength could extend the traditional
knowledge relating to material strength and could lead to the improvement of design codes on material
strength. In addition, these discoveries still need deep and wide verifications of their rationality and
validity, as well as investigation of their use for other materials, particularly their applications in
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practical engineering. In addition, the results achieved in this study cannot claim to have been able
to resolve the size effect issue on material properties, but they explore a new way of dealing with
this issue.
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