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INTRODUCTION

The novel coronavirus disease 2019 (COVID-19), which began 
in December 2019, has spread rapidly worldwide. On March 
11, 2020, the World Health Organization declared COVID-19 a 
pandemic, a public health emergency of international con-
cern. Non-pharmaceutical interventions (NPIs) have been im-
plemented to control the COVID-19 pandemic, which are cru-
cial when an effective vaccine is unavailable. Social distancing, 
mask wearing, school closures, reducing social activities, and 
introducing restrictions were among the common NPI mea-
sures implemented. The first case of COVID-19 in Korea was 
diagnosed on January 20, 2020, after which the Korean govern-
ment implemented NPIs that limited or prohibited many so-
cial activities and required schools to frequently close. In Ko-

rea, vaccination has been implemented since February 26, 
2021; however, mutation of the disease-causing virus contin-
ues to place a burden on the public health system. 

In the early phase of the outbreak, the epidemiological char-
acteristics of COVID-19 were unclear, and clinical features 
were unavailable because it was a newly emerging infectious 
disease. In these circumstances, various studies were conducted 
using mathematical models to predict the transmission dy-
namics of infectious diseases and evaluate the impact of inter-
vention measures. Consequently, models have played an im-
portant role in designing strategies for effectively controlling 
and responding to the spread of infectious diseases.

The increasing capacity of modeling in support of responses 
to the pandemic motivated us to perform this descriptive re-
view of published literature on the mathematical modeling of 
COVID-19 transmission dynamics and control interventions in 
South Korea. Fig. 1 depicts a summary of the present research 
landscape on COVID-19 modeling. Our analysis covers model 
structure characterization, modeling methods, and the mod-
eling role.

 

SEARCH METHOD AND CRITERIA

A review of articles published between August 7, 2020 and Au-
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gust 21, 2022 was performed to characterize mathematical 
models relevant to COVID-19 transmission in Korea. The pub-
lications to be reviewed were searched using Web of Science, 
Scopus, Google Scholar, and PubMed. The search strategy 
aimed to return relevant publications using the following key-
words in each category: 1) country: in Korea, in South Korea, 
in Republic of Korea, or Korean; 2) disease: SARS-CoV-2, COV-
ID-19, or corona; 3) model type: compartment*, stochastic 
model, agent-based or individual-based, statistical model, 
mathematical model*, deterministic model, SIR, SEIR*, SEIR, 
or SEIQR; and 4) purpose: predict*, forecast*, assess*, control*, 
intervent*, NPIs, vaccin*, impact*, effect*, or estimat*.

The search yielded 92 papers, and the abstracts of all returned 
studies were evaluated for suitability. Full-text articles were 
excluded if the study was not on a mathematical model. For ex-
ample, studies that used statistical methods or machine learn-
ing to analyze clinical data were excluded. We also excluded 
cases that were not directly related, such as those studying the 
impact of the COVID-19 pandemic on other diseases. In total, 
42 published papers were selected for the final analysis through 
a full-text assessment of the remaining papers. 

MODEL CLASSIFICATION

Different modeling approaches can be applied to solve a vari-
ety of problems and modeling goals. Table 1 summarizes the 
associated modeling structures, methods, target population, 
and modeling objectives.

MODEL STRUCTURE

Mathematical models are often classified into two types accord-
ing to their structure: compartmental and agent-based models 
(ABMs). Of the papers reviewed, 35 used compartmental mod-
els, and four used ABMs to reflect individual attributes or per-
form individual-level analyses. Exceptions that are not in either 
category are used to estimate disease-related characteristics, 
such as incubation periods, serial intervals, and asymptomatic 
proportions, by applying statistical and probability formulas.1-3 

In compartmental models, a population is categorized into 
several compartments according to disease status. Compart-
mental models under a homogeneous assumption indicate 
that the interaction is constant between individuals because 
of well-mixed properties.4-20 SEIR is a simple example of a com-
partmental model with common infection categories consist-
ing of S, E, I, and R, where waning immunity is not considered. 
S denotes individuals susceptible to the disease, that is, those 
who are not infected. E denotes individuals who are within the 
exposure period after infection transmission; these individuals 
are assumed to remain uninfected. I denotes infectious indi-
viduals who can spread the disease by contact with susceptible 
individuals. R denotes individuals who have been infected and 
then removed from the possibility of spreading the infection.

Most homogeneous compartmental models are based on 
the SIR7,15,16,21 or SEIR structures,21 or their variations.13,14,18,20 
The infectious compartment is typically subdivided according 
to various criteria, such as detection, symptoms, and isola-
tion.13,14,18 Some studies have expanded the models by adding 

Fig. 1. Diagram outlining the research landscape of COVID-19 modeling.
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compartments required to address particular research ques-
tions. SEIHR,4,5,9,11 SEIQR,8 and SEIHQR models were construct-
ed to analyze the effects of isolation and quarantine, in which 

hospitalization (H) and quarantine (Q) were introduced. A 
death compartment was added to the SEIR model to assess 
mortality rate.10,21 Behavior-changed, vaccinated, and quaran-

Table 1. Summary of Approaches and Objectives of COVID-19 Modeling

Ref
Modeling approaches Objectives

Target populations
Structures Methods Values estimated Intervention evaluated

1 Statistical approach 
  (maximum likelihood estimation)

R0, others (incubation 
  period, serial interval)

Korea

2 Statistical approach (renewal equation) R0, R(t) Korea
3 Statistical approach (probabilistic model) Others (undetected 

  asymptomatic patients)
Korea

4 SEIHR Deterministic Social distancing Korea
5 SEIHR Deterministic R0 Daegu/Gyeongbuk
6 SSFEIQR Deterministic R0 Behavior change Daegu/Gyeongbuk
7 SIR Deterministic R(t) Korea
8 SEIQR Deterministic Quarantine Seoul/Gyeonggi
9 SEIHR Deterministic R(t) Social distancing Seoul/Gyeonggi
10 SEIRD Deterministic Others Daegu/Gyeongbuk
11 SEIHR Stochastic R(t) Social distancing Korea (cities)
12 SSFEIHR Deterministic R(t) Social distancing, behavior changes Korea
13 SADR Deterministic R0, others Korea
14 SUC Deterministic Others Testing Korea
15 SIR Deterministic Social distancing, school closure, mask wearing, quarantine Korea
16 SIR Stochastic Social distancing, isolation Korea 
17 SfSqVuVqEuEqIuIhIaR Deterministic Others Vaccination Korea
18 SEP1P2M1M2GI1I2R Deterministic R(t) Social distancing, contact tracing, testing Korea
19 SEIHQR Deterministic R0, R(t), others Social distancing, testing Korea
20 SI Stochastic R0 Korea
21 SIR, SEIR Deterministic Others Testing, health facility expansion, contact tracing Korea
22 SEIHR+age Deterministic R(t), R(age), others Social distancing Seoul/Gyeonggi
23 SEAIHVR+age Deterministic R(age) Vaccination Korea
24 SEIQR+age, job Deterministic R(t), R(age) Vaccination Korea
25 V-SLIR+age Deterministic Vaccination Korea
26 SEIQH+age Deterministic R(age) Social distancing, school closure, contact tracing, testing Korea
27 SEAPR+age Deterministic R(age) Vaccination Korea
28 SEAPMIR+age Deterministic Vaccination Korea
29 SSFEIQR+age Deterministic R(age) Social distancing, school closure Seoul/Gyeonggi
30 SQsEQEIQIR+age Deterministic Others Social distancing, school closure, quarantine, isolation Korea
31 SVEPAIHMHSRD+age Deterministic R(t), R(age) Vaccination Korea
32 SEIpIsIaQ+age Stochastic Others Korea
33 SEIaIadIsVRD+age Deterministic R(t), others Vaccination Korea
34 SEIQRUVP+age Deterministic R(t), R(age) Vaccination Korea
35 SEIR+job Deterministic Testing, quarantine Tertiary hospital
36 ABM Stochastic Others Social distancing, school closure Daegu/Gyeongbuk
37 ABM Stochastic Isolation Korea
38 ABM Stochastic Others Mask wearing Sarang Jeil church
39 ABM Stochastic Others Contact tracing, quarantine, isolation Korea
40 XEδE0IδIoQδQ0MδM0

CδC0R+age
Deterministic Others Vaccination Korea

41 SEIQR+region Deterministic Others Social distancing, testing Korea
42 SEPIACR+region Stochastic R0, others Daegu/Gyeongbuk
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tined statuses have also been used as compartments in mod-
els to evaluate their impact.6,12,17

In a simple compartmental model that divides people into 
groups based on disease status alone, each group is represent-
ed by one representative variable. Therefore, all other charac-
teristics of everyone belonging to a group are considered to be 
the identical. However, individual compartments of the model 
can be further subdivided according to additional characteris-
tics to become a structured model in order to better describe a 
phenomenon or answer a question of interest. In the reviewed 
studies, age was the most considered characteristic other than 
disease status,22-34 and an age-structured model was established 
to evaluate vaccine policy22-34 and examine school-related pol-
icy.26,29,30 Several studies have used structured models that sub-
divide groups into occupational categories for analysis, taking 
into account the roles and risks of healthcare workers.24,35 By 
adding the characteristics of each individual in this way to sub-
divide the groups, we ultimately arrive at an ABM.

ABM is the most heterogeneous methodology for predict-
ing phenomena or determining strategies. In ABM, individu-
als interact within the network as unique and autonomous en-
tities and act by adapting to the situation of the system including 
themselves, other entities, and the surrounding environment. 
This enables the prediction of transmission dynamics that re-
flect desired factors by depicting the characteristics of each in-
dividual and their behavioral patterns similar to real situations. 
In addition, ABM is known to be very suitable for individual-
level policy development and evaluating individual strategies, 
since it can represent the actual location where control mea-
sures are taken to reduce transmission of the disease. On the 
other hand, simulations are time-consuming because the mod-
els are complex and computationally intensive, and mathemat-
ical theories and tools to support problem solving are lacking. 
In practice, we often do not take full advantage of ABM because 
it requires a wealth of input information to provide detailed 
results.

ABMs have also been used to describe infection processes 
for each individual in a population and to provide an oppor-
tunity to determine whether individuals become infected and 
develop the disease over time, in most cases.36-39 These models 
were used in Korea to predict the incidence and analyze the 
effect of intervention measures, reflecting the special circum-
stances of the Sarang Jeil church that led the initial spread of 
COVID-19.36,38 The effectiveness of tracing and isolation was 
evaluated by building a network-based ABM in which connec-
tions between individuals affect whether they are infected.37,39

MODELING METHOD

Mathematical models can be developed using deterministic 
and stochastic approaches. In deterministic models, we as-
sume that the epidemic process is deterministic; that is, the 

behavior of a population is determined completely by its his-
tory and rules. However, stochastic models incorporate possi-
ble variations in the transmission process with the random-
ness of possible behaviors.

Numerous models in the reviewed literature are determin-
istic because they are relatively easy to implement, and pre-
dicting events on average is sufficient for many purposes.4-10,12-15, 

17-19,21-31,33-35,40,41 Most compartmental models are deterministic 
models in which transitions between categories are described 
by applying averaging transition rates. Deterministic com-
partmental models are formulated in the form of differential 
equations. Key parameter values were obtained by fitting 
model on actual data, except for some studies that extracted 
all parameter values from previous studies.8,18,28

Stochastic models incorporate chance into whether events 
occur to predict variation in outcomes that may occur. Given 
fixed input values, deterministic models provide the same re-
sults, whereas stochastic models provide a range of possible 
outcomes. Stochastic models may be preferred in many in-
stances, as the chance of fluctuations may have a major role in 
governing disease dynamics, and variation in outcomes may be 
as important as the average behavior. A discrete-time stochastic 
model was used to simulate the spread of COVID-19 within the 
Sarang Jeil Church because chance may significantly influence 
the epidemiological patterns that emerge in small populations.38 
Events by chance at the beginning of an epidemic can lead to 
completely different consequences in the future, such as the 
amount of cases that occur throughout an outbreak or whether 
an outbreak occurs. Several studies applied stochastic models to 
investigate the spread in the Daegu and Gyeongbuk regions, 
which correspond to the early stages of the COVID-19 outbreak 
in Korea.36,38,39,42 Other studies implemented stochastic models 
to provide a range of possible outcomes or account for uncer-
tainty in the parameters.11,16,20,32 

DATA SOURCE

The Ministry of Health and Welfare (MOHW) and its affiliated 
agency, the Korea Disease Control and Prevention Agency 
(KDCA), have released various pieces of information related 
to COVID-19. The data provided by these agencies included 
the number of daily confirmed cases, number of daily deaths, 
number of hospitalized patients and those who recovered, 
vaccination statuses, and age and sex fatality rates. Most stud-
ies referenced the KDCA and MOHW for data.1-7,9-17,19-34,36,39-42 
Several studies that considered regional characteristics in trans-
mission dynamics utilized the number of quarantined and re-
leased people and the number of daily confirmed cases in the 
region, yielded by each local government. The data were pri-
marily used to estimate key parameters, such as the reproduc-
tion number and transmission rate.

Some studies employed data confined to specific circum-



5

Hyojung Lee, et al.

https://doi.org/10.3349/ymj.2022.0471

stances or sources other than the public data mentioned above 
to answer their research questions. A model was calibrated to 
the cluster infection events of Sarang Jeil Church to assess the 
effectiveness of mask wearing.38 In a study comparing the im-
pact of different intervention strategies in a tertiary hospital, 
data from the hospital were referenced.35 In addition, data from 
the International Airport Corporation, as well as Korea, were 
used to evaluate the risk of transmission considering importa-
tion.2 Moreover, some studies extracted all parameters from 
previous studies without using data.8,18,37

MODELING OBJECTIVES 

Estimation of epidemiological parameters
Estimating parameters using mathematical modeling ad-
dresses four main topics: the basic reproduction number (R0), 
time-dependent reproduction number, age-dependent trans-
mission rate, and several epidemiologically important param-
eters. Of the 42 papers reviewed, 14 estimated the basic repro-
duction number in the early stage of the COVID-19 outbreak 
in Korea by fitting data to a model. Estimating the basic repro-
duction number by fitting data involves two primary approach-
es: the transmission rate from the next-generation matrix and 
the renewal equation.

Basic reproduction number
Several papers have described a method of estimating the ba-
sic reproduction number using the transmission rate of a com-
partmental model.5,6,19,20 Kim, et al.6 approximated the number 
of susceptible and behavior-changed susceptible individuals 
by estimating the transmission rates of COVID-19 and aware-
ness or fear of the disease. Feng, et al.19 employed an adaptive 
Metropolis-Hastings algorithm to estimate the transmission 
rate and effective control reproduction number using the SEI-
HQR model and obtained an expression for R0 by applying a 
next-generation matrix. Park, et al.20 analyzed the basic repro-
duction number in South Korea, which enabled the identifi-
cation of the level of vaccines required to achieve herd immu-
nity. Kim, et al.42 calculated R0 by applying the approximate 
Bayesian computation sequential Monte Carlo method based 
on the two-patch model to account for the COVID-19 outbreak 
in the Shincheonji community and Daegu city under a super-
spreading event (SSE). Both studies determined differences in 
the basic reproduction number between church members 
and the remainder of the population in Daegu.

Time-dependent reproduction number
Other studies obtained time-dependent and effective repro-
duction numbers rather than the basic reproduction num-
ber.2,9,11,12,18,19,22,31,33,34 Ko, et al.24 applied maximum likelihood 
estimation to calculate reproduction number in consideration 
of the transmission matrix and used this to determine optimal 

vaccination priority. To explore different intervention scenari-
os for COVID-19 strategies, Jo, et al.33 estimated a time-varying 
reproduction number based on case notification data and se-
rial interval distributions. Memarbashi, et al.13 defined direct 
and indirect basic reproduction numbers using the virus trans-
mission probability through direct contact and the probability 
of infection from touching contaminated objects.

Studies have been conducted on the age-dependent trans-
mission rate to describe the observed phenomenon well or an-
alyze intervention strategies related to age characteristics.22-24,26, 

27,29,31,34 Kim, et al.23 estimated age-specific transmission proba-
bility for corresponding NPI levels to evaluate the effectiveness 
of age-specific vaccination prioritization strategies to mini-
mize morbidity and mortality. Shim27 calculated an age-spe-
cific susceptibility to account for relative incidence by age 
group. Kim, et al.29 estimated the transmission rate by age group 
based on reported data and quantified the impact of school 
closures on the spread of COVID-19.

Other key parameters
In addition to reproduction numbers and age-dependent 
transmission rates, several key parameters have been estimated 
using mathematical models.1,12-14,17,19,21,22,30,32,33,38-42 Son36 approx-
imated the probability of infection through contact with infected 
individuals in the household to analyze the impact of school 
openings. Choi, et al.22 estimated the period from symptom on-
set to confirmation, the transmission rate, and the infection 
probability of a person in each age group to investigate the po-
tential impact of social distancing under various scenarios. Kim, 
et al.42 estimated the parameters of the SEICR model, epidemic 
doubling time, and epidemic growth rate to quantify the rapid 
spread of COVID-19 in Daegu City, driven by a community of 
Shincheonji members.

Impact of control interventions

NPI
The Korean government has implemented various NPI strate-
gies and vaccinations to prevent the spread of COVID-19. Twen-
ty-three papers analyzed the impact of NPIs on the COVID-19 ep-
idemic in Korea, including social distancing, school closures, 
testing, contact tracing, quarantine, isolation, and mandatory 
mask wearing. Most papers that analyzed the effect of social dis-
tancing to control COVID-19 adopted deterministic compart-
mental models.4,9,11,12,15,18,19,22,26,30,41 Feng, et al.19 used a determin-
istic compartment model to analyze the impact of interventions 
on new infection cases according to contact rates. Cho and Kim16 
employed a stochastic compartment model based on the 
Bayesian approach to explore how social distancing affected 
the reduction of SSEs. A statistical model was applied to as-
sess the country-specific importation risk of COVID-19 and to 
investigate its impact on local transmission of the disease.2 In 
addition to social distancing, school closures were considered 
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major intervention measures.15,26,29,30,36 A stochastic ABM was 
used to simulate different scenarios to predict future spread 
and to analyze the impact of school openings.36 Several work 
compared the effectiveness of testing14,18,19,21,26,35,41 and contact 
tracing.18,26,39 Others have incorporated quarantine8,15,30,35,39 and 
isolation factors into the models to assess their impact.30,35,37,39 
In addition, studies have targeted mask wearing, health facili-
ty expansions, and behavior changes.6,12,15,21,38 

Vaccination
Since February 2021, when the vaccine was introduced to Ko-
rea in earnest, studies analyzing vaccines have been conduct-
ed with different purposes, depending on the publication peri-
od. Literature in 2020–2021 primarily investigated vaccine 
strategies and policies. Based on the scenarios, studies searched 
for optimal vaccine strategies or policy priorities to reduce con-
firmed cases and deaths and to reach herd immunity.24,25,27,28,31,34 
Several studies published from February to September 2021 
analyzed vaccine prioritization strategies.24,27,31,34 Wang, et al.17 
analyzed the vaccination impact on mutated COVID-19 trans-
mission. Jo, et al.33 investigated the effect of vaccination on the 
cumulative incidence and intensive care unit (ICU) capacity ac-
cording to social distancing level. 

Moreover, some studies have examined the impact of con-
trol interventions in consideration of both NPI and vaccina-
tion.17,23,33,34,40 Kim, et al.23 described the effects of social dis-
tancing, quarantine, and contact tracing, and evaluated the 
strategies of vaccine and booster shots. Ko, et al.40 analyzed 
how NPIs, antiviral drugs, and vaccination affect the spread of 
the omicron variant and number of severe cases by investigat-
ing vaccination and booster shot effects on omicron. Social dis-
tancing and screening for overseas travelers were confirmed to 
have played an important role in reducing transmission. 

Summary of selected papers by topic for modeling 
role

Reproduction number in the early outbreak period
We summarized several representative papers that considered 
the diversity of the structure, method, and role of modeling. The 
first study estimated the reproduction number using a com-
partmental model at the early stage of the outbreak in Korea.5 
In the second study, the impact of vaccination was analyzed 
using a deterministic age-structured model.27 Finally, the last 
study employed ABM to investigate the effectiveness of case 
isolation and contact tracing.39 

Choi and Ki5 estimated the basic reproduction number to 
evaluate the effectiveness of NPIs in the early stages of an out-
break in Korea using data on the number of confirmed cases 
from January 20, 2020 to March 4, 2020 provided by the KDCA. 
A deterministic compartmental model was proposed that in-
cluded susceptible, exposed, symptomatic infectious, hospital-
ized, recovered, and death compartments. The basic reproduc-

tion number from January 20, 2020 to February 17, 2020 was 
estimated to be 0.55, indicating that the control intervention was 
effective in mitigating the COVID-19 outbreak. However, from 
February 18, 2020 to March 4, 2020, the reproduction number 
was estimated to be between 3.472 and 3.543. Therefore, to im-
plement effective control interventions, isolating patients 
quickly proved to be important to reducing both the probabil-
ity of transmission when coming into contact with an infected 
case and duration of transmission.

Optimal vaccination strategy with heterogeneity
Shim27 developed optimal vaccination strategies to maximize 
the benefits of vaccines for individuals and communities un-
der different supply and efficacy scenarios. The deterministic 
age-structured model provided an optimal vaccine allocation 
scheme to minimize three goals: infections, deaths, and loss of 
life years, by considering demographic factors such as country-
specific age distribution and contact structure. The individu-
als were categorized into 16 age groups: 0–4, 5–9, …, ≥75 years. 
The unvaccinated population was divided into susceptible, ex-
posed, asymptomatic, symptomatic, and recovered compart-
ments, and the vaccinated population was divided into five com-
partments by age. The scenarios of partial protection for all 
vaccinated persons were assumed by reducing the probability 
of contracting the SARS-CoV-2 disease. In particular, the study 
determined that transmission-blocking vaccines should be 
prioritized in adults aged 20–49 years to minimize the cumula-
tive incidence and in adults aged 50 years and older to minimize 
mortality. Moreover, administering vaccines with low efficacy 
to teenagers and adults aged 50–59 years can be suggested.

Impact of isolation and contact tracing using ABM
The spread of COVID-19 in South Korea experienced two out-
break waves related to SSEs in Daegu and Gyeongbuk (the first) 
and Seoul and Gyeonggi (the second). Owing to the occurrence 
of an SSEs in Korea in the early stages of COVID-19 in 2020, 
SSEs are recognized as an important factor. Ryu, et al.39 devel-
oped an ABM, focusing on the early epidemiology of COV-
ID-19 in Korea to capture the intrinsic nature of heterogeneous 
transmission dynamics, which involves the social and behav-
ioral features and epidemiological characteristics of different 
levels of infectivity. An ABM can analyze essential individual 
variability by incorporating NPIs by varying the transmission 
rate and reproduction number of the index case. An ABM was 
utilized to evaluate the effectiveness of case isolation and con-
tact tracing under various scenarios, and the simulation results 
indicated that isolating SSEs reduced the outbreaks size. Case 
isolation combined with effective contact tracing was also de-
termined to play a critical role in mitigating larger outbreaks. 
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DISCUSSION

A descriptive review of 42 articles published between August 
7, 2020 and August 21, 2022 was performed to characterize 
mathematical models relevant to COVID-19 transmission in 
Korea. In the classification of models according to structure, 
the compartmental model was dominant. However, many 
compartmental models used heterogeneous structures of age 
and region to better explain phenomena or answer questions 
of interest. The compartmental model has several advantages 
in that it is relatively easy to implement and because predict-
ing events on average as quickly as possible is important dur-
ing a pandemic. On the other hand, ABM is known to be very 
suitable for predicting specific transmission dynamics and de-
veloping control measures by depicting characteristics, behav-
ioral patterns, and locations of individuals similar to real-life 
situations.

Many studies have applied deterministic approaches, espe-
cially when using compartmental models. Stochastic models 
have been used in applications where the chance of fluctuations 
may have a major role in dynamics and where the variation in 
outcomes may be important. A representative case in which 
chance of fluctuations may have a major role in dynamics is 
when the population to be modeled is small. Examples include 
modeling small outbreaks at an early stage or predicting eradi-
cation of an epidemic at the end. 

One role of modeling is to estimate key indicators, such as 
the basic reproduction number, time-dependent reproduction 
number, age-dependent transmission rate, and other epide-
miologically important parameters. Models can also be used 
to predict the transmission process of diseases and quantify the 
impact of various interventions by comparing estimated trans-
mission rates and reproduction numbers. In addition, numer-
ous studies have primarily focused on evaluating the effects of 
intervention strategies, such as social distancing and school at-
tendance policies, quarantine and isolation, and vaccination. 

The results have helped us understand the epidemiology of 
the disease, such as how far COVID-19 will spread and when 
the epidemic will end. In addition, the results have contribut-
ed to improving policies by analyzing the impact of interven-
tion measures according to several scenarios. In summary, 
mathematical modeling has been found to be a useful tool for 
providing scientific evidence for predictions and policymaking. 
For example, an expert in mathematical modeling for infectious 
disease was selected as a member of the National Advisory 
Committee on Infectious Disease Crisis Response starting from 
June 2022 in Korea.43 Also, reports for the estimation of COV-
ID-19 cases in Korea using mathematical modeling have been 
provided by the National Institute for Mathematical Scienc-
es.44,45 However, each government department has its own ad-
visory committee as needed, and the procedure and scope of 
utilizing the models are different. Accordingly, it would be nice 
if a systematic process was introduced to determine where 

modelers participate in committees and how models are con-
sidered and reflected in policy.

We would like to point out the limitations of modeling re-
search during the COVID-19 pandemic and suggest further re-
search required in the future. The diversity of studies, with differ-
ent groups implementing their own models, allows us to look at 
different aspects of epidemics. However, we observed that mod-
el selection in general tends to be biased in terms of structure, 
method, and study topic. For example, compared with ABM, the 
compartmental model was overwhelmingly used, and few stud-
ies have addressed economic value. This appears to be partly 
because of the availability of the data required to build the mod-
el. During the COVID-19 pandemic, governments provided well-
organized data; however, because the data have been processed, 
they are often unsuitable for use in certain studies. Obtaining 
data in a timely manner was almost impossible because differ-
ent institutions handle the necessary data, such as severe cas-
es, deaths, number of ICU beds, and disease-related costs, and 
the process of obtaining the data was difficult. Therefore, it is 
necessary to establish a system that allows easy and quick ac-
cess to necessary data and to conduct research using various 
types of models.

Modeling studies have rarely investigated the economic im-
pact of the COVID-19 pandemic in Korea, whereas some stud-
ies have explored the economic impact in other countries such 
as Europe and the United States.46-50 Chen, et al.48 explored the 
relationships between COVID-19 infected cases and economic 
cost, including mobility trends and stock prices in the early 
stages of the COVID-19 epidemic using a stochastic SIRD 
model. The model could provide financial implications related 
to COVID-19 by estimating the impact of social distancing in 
the United States. As pandemics of infectious diseases pose 
large social and economic impacts, as well as the burden of dis-
ease itself, research in this field will be helpful.

Approaches have been developed to reflect the key factors of 
COVID-19 transmission using various model structures and 
parameters. Examples of these factors include heterogeneous 
contact patterns, behavioral changes according to disease 
spread and intervention strategy, and the transmission risk of 
exposed, age-dependent characteristics related to disease. Some 
studies have analyzed the effect of contact tracing despite a lack 
of accessible close contact information.51-54 To overcome these 
limitations, most of the simulations were based on scenarios 
set under a certain level of assumptions, limiting quantitative 
analysis results. The quantification of contact patterns is impor-
tant for describing the transmission of infection through con-
tact. For example, for the question “By how much will the num-
ber of cases increase if social distancing is relaxed?”, changes in 
terms of contact levels as intervention strategies can be esti-
mated using contact surveys.44,55-63 Jo, et al.52 estimated a COV-
ID-19 infection network from actual data. However, the data 
used did not identify individuals who infected the patient, as 
no regional information was available on the route of infection 
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via contact tracing. It is recommended to conduct research that 
prepares evidence for key factors in infectious disease model-
ing that can greatly improve the reliability of research results, 
such as contact patterns.

Another limitation of most studies is that they do not reflect 
asymptomatic and unreported cases due to the lack of support-
ing information. Chun, et al.32 identified the need to estimate 
the rate of asymptomatic infection more accurately, particularly 
in children and adolescents who frequently experience asymp-
tomatic infection, and emphasized the importance of age-spe-
cific susceptibility. Shakiba, et al.64 described the population 
seropositive prevalence of the COVID-19 virus infection, indi-
cating that asymptomatic infections are much higher than the 
number of confirmed cases. In addition, the asymptomatic rate 
has been estimated by comparing the symptoms of seroposi-
tive individuals.65 Evidently, estimating asymptomatic cases can 
be improved if seropositive data are available, as shown in sev-
eral studies. Improving models by analyzing asymptomatic and 
unreported cases based on seroprevalence data is warranted in 
future research. 
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